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Abstract We consider a network of interconnected systems with discrete-time dy-
namics. Each system is called agent and we assume that two agents can interact as
far as their states are close in a sense defined by an algebraic relation. In this work
we present several implementation strategies answering to different classical prob-
lems in multi-agent systems. The primary goal of our methodology is to characterize
the controllers that preserve a given interconnection subgraph that makes possible
the global coordination. The second goal is to choose among these controllers those
that ensure an agreement. This is done by solving a convex optimization problem
associated to the minimization of a well-chosen cost function. Examples concern-
ing full or partial consensus of agents with double integrator dynamics illustrate the
implementation of the proposed methodology.

1 Introduction

The consensus problem has been extensively studied in the last decade. Depend-
ing on the application, the framework can assume directed or undirected interac-
tion graph, connections affected or not by delays, discrete or continuous, linear or
nonlinear agent dynamics, fixed or dynamical interaction graph, synchronized or
desynchronized interactions [12,14,16,17,19]. Controlling the network in a decen-
tralized way, by modeling it as a multi-agent system, results in computation and
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2 Irinel-Constantin Morărescu and Mirko Fiacchini

communication cost reduction [12, 18, 20]. On the other hand the coordination and
performances of interconnected systems are related to the network topology. Most
of existing works assume the connectivity of the interaction graph in order to guar-
antee the coordination behavior. However, some works have been oriented towards
networks in which the global agreement cannot be reached and only local ones are
obtained [15, 21]. Others propose controllers that are able to maintain the network
connectivity in order to ensure the global coordination [6, 9, 10, 22]

Here, we briefly recall the main results provided in our previous work [9, 10]
and we show how they can be implemented. Precisely, we consider a multi-agent
system with discrete-time dynamics and state-dependent interconnection topology.
Two agents are able to communicate if an algebraic relation between their states is
satisfied. The connected agents are called neighbors. The agents update their state in
a decentralized manner by taking into account their neighbors state. A connection is
preserved as far as the algebraic relation is verified. The design of the decentralized
controllers satisfying the algebraic constraint can be done either by minimizing a
cost function [9], or by negociations through the network at each step [7]. Our ap-
proach use invariance based techniques (see [1–3] for the use of invariance in control
theory) to characterize the conditions assuring that the algebraic constraint holds.
The resulting topology preservation conditions rewrites as a convex constraint that
may be posed in LMI form [4, 5]. Thus, we not only propose a new tool for decen-
tralized control but also an easy implementable one. The practical implementation
of this set theory based control strategy [8, 11] requires a minimal number of inter-
connections ensuring the network connectivity. It should be noted that our procedure
is quite flexible and, as we shall see, additional global objectives can be addressed.
Precisely, we focus on the implementation of the topology preservation, presented
in [9], to tackle specific problems concerning multi-agent systems. The subsystems
composing the network are mobile agents moving on the plane and whose commu-
nication capability is subject to constraints on their distances. Different coordination
tasks, as flocking, consensus and predictive control, are considered and solved em-
ploying the LMI conditions for avoiding the connections loss. Numerical illustrative
examples allow us to analyze the results and to compare the different control strate-
gies.

The chapter is organized as follows. Section 2 contains the main theoretical re-
sults. Firstly, we formulate the decentralized control problem under analysis. Sec-
ondly, we derive the LMI conditions for network topology preservation in general
settings as well as in the case of common feedback gains. Control design strate-
gies for full or partial state consensus of identical systems with double-integrator
dynamics are discussed in Section 3. In Section 4 we present some numerical exam-
ples illustrating the control strategies proposed in Section 3. Some conclusions and
remarks on further works are provided at the end of the chapter.
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Notation

The set of positive integers smaller than or equal to the integer n ∈ N is denoted
as Nn, i.e. Nn = {x ∈ N : 1 ≤ x ≤ n}. Given the finite set A ⊆ Nn, |A| is
its cardinality. Given a symmetric matrix P ∈ Rn×n, notation P > 0 (P ≥ 0)
means that P is positive (semi-)definite. By A† we denote the left pseudoinverse of
the matrix A. Given the matrix T ∈ Rn×m and N ∈ N, DN (T ) ∈ RnN×mN is
the block-diagonal matrix whose N block-diagonal elements are given by T , while
D(A,B, ..., Z) is the block-diagonal matrix, of adequate dimension, whose block-
diagonal elements are the matrices A,B, ..., Z. Given a set of N matrices Ak with
k ∈ NN , denote by {Ak}k∈NN

the matrix obtained concatenating Ak in column.

2 Set theory results for topology preservation

2.1 Problem formulation

Throughout the chapter we consider a multi-agent system with V ≥ 2 intercon-
nected agents assumed identical:

x+
i = Axi +Bui, (1)

where xi ∈ Rn is the state, ui ∈ Rm is the control input of the i-th agent and
A ∈ Rn×n, B ∈ Rn×m.

In order to pursue collaborative tasks in a decentralized way, the agents exchange
some information. The information available to every agent is supposed to be par-
tial, as only a portion of the overall system is assumed accessible to every agent. We
suppose that any agent has access to the state of a neighbor only if a constraint on
the distance between them is satisfied. If communication network looses its connec-
tivity the system may not be able to reach the global objective. Thus, the primary
problem underlying any cooperative task in the multi-agent context is the connec-
tion topology preservation. Theoretical results on this topic, presented in [9], are
recalled hereafter and applied in the following sections.

2.2 Feedback design for topology preservation

Let us suppose that the initial interconnection topology is given by the graph G =
(V, E) where the vertex set is V = NV and the connecting edge set E ⊆ V × V
represents the set of pairs of agents that satisfy a distance-like condition. Precisely,
given the real scalar r > 0, d ∈ N with d ≤ n and T ∈ Rd×n such that TT> is
invertible, the initial edge set is given by
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E = {(i, j) ∈ NV × NV | ‖T (xi(0)− xj(0))‖2 ≤ r}.

The set of edges that must be preserved is denoted by N ⊆ E . We suppose that
every agent i knows the state of the j-th one if and only if (i, j) ∈ N .

Definition 1. For all i ∈ V we define the set of connected neighbors of the i-th agent
as

Ni = {j ∈ NV : (i, j) ∈ N}.

Given the set of connections N , the objective is to design a decentralized control
law ensuring that none of these connections are lost. In other words, the aim is to
design the state-dependent control actions ui(k) independently from uj(k), for all
i, j ∈ NV and k ∈ N, such that every connection in N is maintained.

As usual in multi-agent systems we consider the i-th input to be the sum of terms
proportional to the distances between agent i and its neighbors. That is, denoting
el,m = xl − xm for all l,m ∈ NV , we define

ui =
∑
j∈Ni

Ki,j(xi − xj) =
∑
j∈Ni

Ki,jei,j . (2)

The design of each ui is reduced to the design of the controller gainsKi,j chosen
such that the link (i, j) is preserved where the dynamics of the ij system results in

e+
i,j = (A+BKi,j +BKj,i)ei,j +

k 6=j∑
k∈Ni

BKi,kei,k −
k 6=i∑
k∈Nj

BKj,kej,k, (3)

for all i, j ∈ NV . It is not difficult to see that, in the centralized case the dynamics
of the error can be imposed by an adequate choice ui, for all i ∈ NV , provided that
the agents dynamics is stabilizable.

The dynamics of the ij system is given by the matrix A+ BKi,j + BKj,i if no
perturbations due to the presence of other agents are present. Such perturbations,
which complicate the decentralized control design, can be bounded within a set
depending on the radius r and on the information on the neighbors common to the
i-th and j-th agents.

Consider the sets
Ni,j = Ni ∩Nj ,
N̄i,j = Ni \ (Ni,j ∪ {j}),
N̄j,i = Nj \ (Ni,j ∪ {i}),

(4)

then,Ni,j denotes the common neighbors of the i-th and the j-th agents and N̄i,j the
neighbors of the i-th one which are neither j nor one of its neighbors, analogously
for N̄j,i. We define the cardinalities

N = 2|Ni,j |+ 1, N̄ = |N̄i,j |+ |N̄i,j |,

where the indices are avoided here and in the following definitions to improve the
readability. The dynamics of the ij system, perturbed by the non-common neigh-
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bors, is

e+
i,j=(A+BKi,j +BKj,i)ei,j+

∑
k∈Ni,j

(BKi,kei,k−BKj,kej,k) + wi,j , (5)

with the bounded perturbation described by

wi,j =
∑

k∈N̄i,j

(BKi,kei,k)−
∑
l∈N̄j,i

(BKj,lej,l). (6)

The problem addressed in this work can be state as follows.

Problem 1. Design a procedure to find at each step a condition on the decentralized
control gains Ki,j , with i, j ∈ NV such that the following algebraic relation is
satisfied

‖Te+
i,j‖2 < r, ∀(i, j) ∈ N , (7)

if the constraints
‖Tei,k‖2 ≤ r, ∀k ∈ N̄i,j ,
‖Tej,k‖2 ≤ r, ∀k ∈ N̄j,i,

(8)

hold.

In order to ease the presentation, we introduce different notations for the con-
troller gains.

Definition 2. Denote with e ∈ RnN the vector obtained concatenating ei,j with all
ei,k and ej,k where k ∈ Ni,j . Denote with Ǩi,j ∈ Rm×n(N−1) the matrix obtained
concatenating Ki,k and −Kj,k where k ∈ Ni,j and with K̂i,j ∈ Rm×nN̄ the vector
obtained concatenating all Ki,k where k ∈ N̄i,j and −Kj,k where k ∈ N̄j,i. We
also define

∆ = T [A+BǨi,j , BǨi,j ] DN (T )† ∈ Rd×dN ,
Γ = TB K̂i,j DN̄ (T )† ∈ Rd×dN̄ ,
Z = DN (T ) e ∈ RdN ,

(9)

where Ǩi,j = Ki,j +Kj,i.

We recall here an important contribution presented in [9], namely the sufficient
condition for the constraint (7) to hold.

Theorem 1. Problem 1 admits solutions if there exists Λ = D(λ1Id, ..., λN̄Id) with
λk ≥ 0, for all k ∈ NN̄ such that r

2 − r2
∑

k∈NN̄

λk 0 Z>∆>

0 Λ Γ>

∆Z Γ Id

 > 0. (10)

Furthermore, any solution (∆,Γ ) of the previous LMI defines admissible con-
troller gains for the Problem 1.
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Proof. First notice that every solution of (10) satisfies also∑
k∈NN̄

λk < 1, Γ>Γ − Λ < 0, (11)

as the principal minors of a positive definite matrix are positive definite. Since (11) is
a necessary condition for Problem 1 to admit a solution, there is no loss of generality
in assuming it satisfied. Condition (7) is equivalent to

[Z> Z̄>]

[
∆>∆ ∆>Γ
Γ>∆ Γ>Γ

] [
Z
Z̄

]
< r2. (12)

This condition must be satisfied for every Z̄ such that

Z̄>DkZ̄ ≤ r2, ∀k ∈ NN̄ , (13)

with
Dk = diag(0d, . . . , 0d, Id, 0d, . . . , 0d) ∈ RdN̄×dN̄ ,

holds. Applying the S-procedure, a sufficient condition for (7) to hold for every
Z̄ ∈ RdN̄ satisfying (13) is the existence of λk ≥ 0, for all k ∈ NN̄ , such that

Z>∆>∆Z + 2Z̄>Γ>∆Z + Z̄>[Γ>Γ − Λ]Z̄ < r2 − r2δ, (14)

for every Z̄ ∈ RdN̄ , with δ =
∑
k∈NN̄

λk. From (11) and Z being known, the
left-hand side of (14) is a concave function in Z̄ whose maximum is attained at

Z̄ = −(Γ>Γ − Λ)−1Γ>∆Z. (15)

Hence condition (14) holds for every Z̄ ∈ RdN̄ if and only if it is satisfied for the
maximum of the function at left-hand side, that is if and only if

Z>∆>∆Z − Z>∆>Γ (Γ>Γ − Λ)−1Γ>∆Z < r2 − r2δ, (16)

which is given by (14) at (15). Hence every Λ, ∆ and Γ satisfying conditions (11)
and (16) ensure the satisfaction of ‖Te+

i,j‖2 < r for all Z̄ such that (13) holds. The
condition (16) is equivalent to
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Z>∆>∆Z − r2 + r2δ Z>∆>Γ

Γ>∆Z Γ>Γ − Λ

]
< 0

⇔
[
Z>∆>∆Z Z>∆>Γ
Γ>∆Z Γ>Γ

]
<

[
r2 − r2δ 0

0 Λ

]
⇔

[
Z>∆>

Γ>

] [
∆Z Γ

]
<

[
r2 − r2δ 0

0 Λ

]

⇔

 r2 − r2δ 0 Z>∆>

0 Λ Γ>

∆Z Γ Id

 > 0.

Thus (10) is equivalent to (14), sufficient condition for (7) to hold.

The quantity δ =
∑
k∈NN̄

λk can be geometrically interpreted as a bound on the
perturbation generated in the ij dynamics by the non-common neighbors. Precisely,
the effect of the non-common neighbors can be modelled as a perturbation on the
ij system bounded by an ellipsoid determined by T>T and of radius

√
δr. There-

fore the condition δ < 1, implicitly imposed by (10), is necessary to ensure the
preservation of the connection (i, j).

2.3 Network preservation with common feedback gains

The condition presented in the previous subsection ensures that the algebraic con-
straint related to the ij system is satisfied at the successive time instant. No insur-
ance on its satisfaction along the evolution of the overall system can be guaranteed,
unless proper choices ofKi,j are done. In case the feedback gains are assumed to be
the same for every agent and every ij system, a sufficient condition for guaranteeing
the network topology preservation at every future time instant can be posed.

Assumption 1 Given the system (1) with control input (2), assume that Ki,j = K̄
for all (i, j) ∈ N .

The objective is to characterize the set of common feedback gains such that, if
applied to control the multi-agent system, they ensure that the value of ‖Tei,j‖2
does not increase for all (i, j) ∈ N . In fact, this would clearly implies that if the
connection condition is satisfied by the initial condition, i.e. ‖Tei,j(0)‖2 ≤ r for all
(i, j) ∈ N , it holds also at every successive instant, then the network topology is
preserved. Given the sets as in (4), define

NM = max
(i,j)∈N

{|Ni|+ |Nj | − 2}.

Then, roughly speaking, NM ∈ N is the maximum over (i, j) ∈ N of the sum
of neighbours of the agents i-th and j-th, apart from the agents themselves.

Proposition 1. Let Assumption 1 hold. If there exists λ ∈ [0, 1] such that
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λT>T (A+ 2BK̄)>T>

T (A+ 2BK̄) λId

]
≥ 0,[

(1− λ)T>T NMK̄
>B>T>

NMTBK̄ (1− λ)Id

]
≥ 0,

(17)

then the systems given by (5) and (6) are such that ‖Te+
i,j‖2 ≤ r for all (i, j) ∈ N

if el,k ∈ Rn satisfies ‖Tel,k‖2 ≤ r for all (l, k) ∈ N .

Proof. Define the set BT = {e ∈ Rn : ‖Te‖2 ≤ r}, then e ∈ BT if and only if
e>T>Te ≤ r2. The first condition in (17) is equivalent to (A+ 2BK̄)>T>T (A+
2BK̄) ≤ λ2T>T , which implies that (A+ 2BK̄)BT ⊆ λBT . From Assumption 1
one have that Ki,j = Kj,i = K̄, which means that A + 2BK̄ is the dynamics of
any i, j system in the absence of the perturbation of the neighbors. Then the set BT
is mapped in λBT if no perturbation is present, that is (A+BKi,j +BKj,i)ei,j ∈
λBT , for all ei,j ∈ BT . Analogously, the second condition in (17) is equivalent to
N2
MK̄

>B>T>TBK̄ ≤ (1−λ)2T>T , which leads to
∑

k∈NNM

BK̄BT = NMBK̄BT ⊆

(1− λ)BT . This means that if ei,k ∈ BT for all k ∈ Ni \ {j} and ek,j ∈ BT for all
k ∈ Nj \ {i}, as implicitly assumed, then∑

k∈Ni,j

(BK̄ei,k −BK̄ej,k) +
∑

k∈N̄i,j

(BK̄ei,k)−
∑
l∈N̄j,i

(BK̄ej,l)∈(1− λ)BT ,

for all (i, j) ∈ N . From properties of the Minkowski set addition, we have e+
i,j ∈

λBT + (1− λ)BT = BT , if el,k ∈ BT for all (l, k) ∈ N , which ends the proof.

Corollary 1. Let Assumption 1 hold. If there exist λ ∈ [0, 1] and λ̄ > 0 such that[
(λ− λ̄)T>T (A+ 2BK̄)>T>

T (A+ 2BK̄) (λ− λ̄)Id

]
≥ 0,[

(1− λ)T>T NMK̄
>B>T>

NMTBK̄ (1− λ)Id

]
≥ 0,

then the systems given by (5) and (6) are such that

‖Te+
i,j‖2 ≤ (1− λ̄)‖Tei,j‖2,

for all (i, j) ∈ N if el,k ∈ Rn satisfies ‖Tel,k‖2 ≤ r for all (l, k) ∈ N .

3 Applications to decentralized control of multi-agent systems

In this section we illustrate the application of our results, published in [9, 10] and
recalled above, for controlling the multi-agent system presented in the first part of
Section 2. Different strategies (based on optimal and predictive control) to achieve
the collaborative objectives are presented hereafter and numerically implemented.
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Let us consider the double-integrator dynamics on the plane, that is (1) with
xi =[pxi (k), vxi (k), pyi (k), vyi (k)]>, the input ui = [uxi , u

y
i ]> and

A =

[
Ā 0
0 Ā

]
, B =

[
B̄ 0
0 B̄

]
, where Ā =

[
1 t
0 1

]
, B̄ =

[
0
1

]
.

We denote pyi,j = pxi − pxj , vyi,j = vxi − vxj , pyi,j = pyi − p
y
j , vyi,j = vxi − vxj and

ei,j = [pyi,j , v
y
i,j , p

y
i,j , v

y
i,j ]
> = x>i − x>j , (18)

and ui,j = [uxi − uxj , u
y
i − u

y
j ]>. The control inputs are given by (2) and Definition

2 with feedback gains

Ǩi,j =

[
kp

x

i,j k
vx

i,j 0 0

0 0 kp
y

i,j k
vy

i,j

]
, (19)

for all (i, j) ∈ N . Once obtained a value for Ǩi,j , we define the nominal selection
Ki,j = Kj,i = 0.5Ǩi,j for all (i, j) ∈ N .

Moreover, the following constraint on the norm of Ǩi,j is imposed

Ǩ>i,jǨi,j ≤ In, (20)

to limit the effect of the control of the ij nominal system on the neighbors. Recall,
in fact, that the perturbation on the neighbors of the agents i and j depends on their
states and on the gains Ki,j and Kj,i.

3.1 Topology preservation constraint

We suppose that the distance between two agents must be smaller than or equal to r
to allow them to communicate. Thus the topology preservation problem consists of
upper-bounding by r the euclidean distance between the connected neighbors. The
constraint on the state of the ij system to preserve is

pyi,j(k)2 + pyi,j(k)2 ≤ r2. (21)

Notice that the effect of the inputs uxi and uyi at time k has no influence on pxi and
pyi at time k+ 1. Thus, any algebraic condition involving the positions pxi , p

y
i of the

systems at k+ 1 would not depend on the control action uxi , u
y
i at time k. From the

computational point of view, every constraint concerning only the agents positions,
would lead to LMI conditions independent on the variable Ǩi,j . Then the results
provided in Theorem 1 are not applicable directly in this case for the state at time k+
1. On the other hand, the controls uxi (k), uyi (k) affect the position (and the velocity)
at time k + 2 and a condition on the feedback gain Ǩi,j to ensure the preservation
of the (i, j) connection at time k + 2 can be posed. The distance constraint can
be imposed on the states at k + 2, as nothing can be done at time k in order to
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prevent its violation at time k + 1. Then a constraint on ei,j(k) can be determined
characterizing the region of the state space such that pyi,j(k)2 + pyi,j(k)2 ≤ r2 and
pyi,j(k + 1)2 + pyi,j(k + 1)2 ≤ r2 in terms of matrix T . Since the former constraint
does not involve the input, only pyi,j(k + 1)2 + pyi,j(k + 1)2 ≤ r2 might be taken
into account for the control design.

Proposition 2. The condition (21) holds at time k + 2 if and only if we have that
‖Tei,j(k + 1)‖2 ≤ r with

T =

[
1 t 0 0
0 0 1 t

]
. (22)

Proof. The region of the space of eij(k) such that the topology constraint (21) is
satisfied at k+ 1 is given by pxij(k+ 1)2 + pyij(k+ 1)2 ≤ r2, which is equivalent to
‖Teij(k)‖2 ≤ r for T as in (22). Hence imposing that the system error state belongs
to such a region at k + 1 implies assuring that the distance between the agents i-th
and j-th is smaller than or equal to r at k+2, preserving the topology at k+2. Then
pxij(k + 2)2 + pyij(k + 2)2 ≤ r2 if and only if

‖Teij(k + 1)‖2 = ‖T (Aeij(k) +Buij(k))‖2 ≤ r,

with T as in (22).

Proposition 2, then, implies that the topology preservation constraint for time k + 2
can be expressed in terms of ei,j(k) and the input ui,j(k). The results presented in
Theorem 1, with T as in (22), allow to characterize the sets of feedback gains en-
suring the satisfaction of the distance constraint at k+2, for every pair of connected
neighbors i and j. Such set would depend on the current state ei,j(k) and on the
gains designed to compensate the errors and enforce the topology preservation.

3.2 Relevant multi-agents applications

Among the local feedback gains which guarantee the connection preservation, dif-
ferent selection criteria can be applied, depending on the collaborative task to be
achieved. Hereafter three popular criteria are illustrated and analysed.

3.2.1 Full state consensus

The first criterion is to select the feedback gain, among those satisfying (10), to
achieve the full state agreement. In other words, the objective in this case is to both
steer all the agents at the same point and align all the velocities without loosing any
connection. One possibility is to compute at any sampling instant the matrix Ǩi,j

minimizing a sum of nominal values of the position distance at k + 2 and of the
speed difference at k + 1. By nominal values we mean the values of positions and
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speeds in absence of the perturbation on the ij system due to the other agents. Then,
given the positive weighting parameters qp, qv ∈ R, the cost to minimize is

Qc(ei,j(k), Ǩi,j) = qp(p
y
i,j(k + 2)2 + pyi,j(k + 2)2)+

+qv(v
y
i,j(k + 1)2 + vyi,j(k + 1)2).

(23)

Proposition 3. Any optimal solution of the convex optimization problem

min
∆,Γ,Λ, Ǩi,j ,M

ei,j(k)>M>Mei,j(k)

s.t. (9), (10), (19),[
In Ǩ>i,j
Ǩi,j Im

]
≥ 0,

(24)

with

M =


qp qpt 0 0
0 qv 0 0
0 0 qp qpt
0 0 0 qv

 (A+BǨi,j), (25)

and T as in (22), minimizes the cost (23) subject to the norm gain constraint (20)
and the distance constraints (21) at k + 2.

3.2.2 Partial state consensus: flocking

An alternative objective, often considered in the framework of decentralized con-
trol is partial state consensus. That is, to steer a part of the state ei,j to zero, for
all (i, j) ∈ N . To preserve the connectivity of G = (V,N ) while speed differ-
ences converge to zero, the cost to minimize is a measure of the difference between
neighbors speeds, for instance

Qf (ei,j(k), Ǩi,j) = vyi,j(k + 1)2 + vyi,j(k + 1)2. (26)

This is achieved by solving a convex optimization problem analogous to (24),
as stated in the proposition below. The proof is avoided since similar to the one of
Proposition 3.

Proposition 4. Any optimal solution of the convex optimization problem (24) with

M =

[
0 1 0 0
0 0 0 1

]
(A+BǨi,j), (27)

and T as in (22), minimizes the cost (26) subject to the norm gain constraint (20)
and the distance constraints (21) at k + 2.

Clearly, changing opportunely the matrix M would permit to regulate different
part of the state of the ij system and also any linear combination of the state.
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3.2.3 Predictive control

Finally, we present another interesting optimization criterion. One of the most pop-
ular control technique suitable for dealing with control in presence of hard con-
straints is the predictive control. These control strategies exploit the prediction of
the system evolution and the receding horizon strategy to react in advance in or-
der to prevent the constraint violations and to avoid the potentially dangerous re-
gions of the state space. Moreover, the control input that would generate the op-
timal trajectory, among the admissible ones, is usually computed and applied. In
general, the longer is the prediction horizon, the higher is the capability of pre-
vent unsafe regions and constraint violations. Based on this idea, we propose to
optimize a measure of the future state position, in order to react in advance and
prevent the states to approach the limits of the distance constraints. In particular
we minimize a measure of the nominal distance between the positions of the i-
th and j-th agents at time k + 3 in function of the input gain at time k, that is
(pyi,j(k + 2) + tvyi,j(k + 1))2 + (pyi,j(k + 2) + tvyi,j(k + 1))2. The control horizon
can be extended to values higher than 3, but the predicted state ei,j(k + N) would
depend on the future inputs and the cost would result in a non-convex function of
Ǩi,j . A simplifying hypothesis can be posed to obtain a suboptimal control strat-
egy but with greater prediction capability. Let us denote the horizon Np ∈ N and
suppose that only the nominal control action ui,j(k) = Ǩi,jei,j(k) is applied, i.e.
ui,j(k + p) = 0 for p ∈ NNp . The minimization of the nominal position at k +Np,
i.e.

Qp(ei,j(k), Ǩi,j) = pyi,j(k +Np)
2 + pyi,j(k +Np)

2, (28)

leads to a suboptimal control with high predictive power.

Proposition 5. Any optimal solution of the convex optimization problem (24) with

M = T + (Np − 1)t

([
0 1 0 0
0 0 0 1

]
+ Ǩi,j

)
, (29)

and T as in (22), minimizes the cost (28) subject to the norm gain constraint (20)
and the distance constraints (21) at k + 2.

The benefits of the prediction-based strategy will be highlighted in the numerical
examples section.

4 Numerical examples

Consider the six interconnected agents with the initial conditions given in [13] and
connected by the minimal robust graph computed in the same work. That is: N =
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}, r = 3.2 and initial conditions:
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x1(0) = [−4 − v0 3 0]
>
, x6(0) = [4 v0 3 0]

>
,

x2(0) = [−2 − v0 2 0]
>
, x5(0) = [2 v0 2 0]

>
,

x3(0) = [−1 − v0 0 0]
>
, x4(0) = [1 v0 0 0]

>
,

where v0 is used as a parameter to analyze the maximal initial speed that may
be dealt with by different control strategy. It is noteworthy that, as shown in [13],
for the classical consensus algorithm the preservation of the minimal robust graph
is guaranteed for a critical speed value vc ' 0.23. Nevertheless, it is numerically
shown that the sufficient condition is conservative since for v0 = 1.5vc (generating
approximately a 4 times higher global velocity disagreement) the robust graph is
not broken. We also note that the classical consensus algorithm is not able to pre-
serve the connectivity when the global disagreement is 5 times superior to the one
guaranteeing the consensus (i.e. v0 > 2.1vc).

In the sequel, we show that our design allows to increase considerably the initial
speed value (and consequently the initial global disagreement) avoiding the loss
of connections. Let us first give the initial error vectors between the states of the
neighbors:

e1,2(0) = [−2 0 1 0]
>
, e5,6(0) = [−2 0 − 1 0]

>
,

e2,3(0) = [−1 0 2 0]
>
, e4,5(0) = [−1 0 − 2 0]

>
,

e3,4(0) = [−2 − 2v0 0 0]
>
.

4.1 Flocking

The control problem formulated in Section 3.2.2 has admissible solutions for v0 =
19vc and the connection between the third and the fourth agent is lost for v0 = 20vc
as shown in Figure 2. It is worth noting that the control acts like springs between
agents’ velocities (compare the bottom of Figures 1, 2 and 3). First, the control
cancels the speed difference between neighbors with opposite velocities creating a
speed disagreement in both symmetric branches of the graph. Next, it cancels the
disagreement between 2-nd and the 3-rd agent and between the 4-th and 5-th one,
mimicking a gossiping procedure where the choice of active communication link
is given by the error between neighbors speeds. Doing so, either the flocking is
reached before the connectivity is lost, or the graph splits into two groups that will
independently agree to two different velocity values.

4.2 Full state consensus

The control problem formulated in Section 3.2.1 with qx = 10, qv = 1 has admis-
sible solutions for v0 = 23vc as shown in Figure 4.
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Fig. 1 Flocking: trajectories and errors of the 12 system.
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Fig. 2 Flocking: errors of the 23 and the 34 systems.
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Fig. 3 Flocking: errors of the 45 and the 56 systems.

4.3 Predictive control strategies

The control problem formulated in Section 3.2.3 with Np = 3 works for v0 =
21vc but the trajectories are far from ideal. The behaviour is largely improved with
Np = 21, see Figure 5 representing the trajectories and the time evolution of the 34
dynamics for v0 = 28vc. Notice how the position error of the critical system, the
34, approaches the bound avoiding the constraint violation, also for an initial speed
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Fig. 4 Consensus: trajectories and errors of the 34 system.

much higher than those used for the other approaches, i.e. v0 = 28vc. Furthermore,
the evolutions and trajectories present a much smoother and regular behaviour. All
these desirable properties are due to the predictive capability of the approach which
permits the control to react to possible violations and to prevent undesired situations
in advance.
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Fig. 5 Predictive control: trajectories and errors of the 34 system.

5 Conclusion and further works

This chapter provides an LMI based methodology to design the controllers that pre-
serve a given network topology in multi-agent applications. Precisely we suppose
that the agents have limited communication capability and they have to stay in a
given range in order to preserve their neighbors. We show that each agent can pre-
serve all its neighbors by applying a controller obtained by solving a specific LMI.
On the other hand, different convex optimization problems have been posed in or-
der to pursue several classical objectives in the multi-agent context, as consensus,
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flocking and predictive control. The numerical simulations show the effectiveness
of the method with respect to other existing techniques.

We note that the main applications provided in the chapter concern fleets of au-
tonomous vehicles. Thus, the size of this associated network does not represent and
obstacle for the numerical treatments by LMIs. Moreover, we can choose the net-
work to be preserved as a very sparse one. Consequently, the number of low order
LMIs to be solved is of the same order as the network size.
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