

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Robotics

Nicolas Marchand Nicolas.Marchand@gipsa-lab.fr

Control Systems Department, gipsa-lab Grenoble, France

ENSE3-ASI

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 1 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION

- Historical perspective
 - First use of the word Robot (means forced labor or serf in Czech) in the play R.U.R. (Rossum's Universal Robots) by Karel Capek (1890-1938) in January 1921.
 - In R.U.R., Capek poses a paradise, where the machines initially bring so many benefits but in the end bring an equal amount of blight in the form of unemployment and social unrest

Metropolis, Fritz Lang, 1927

- Science fiction
 - Often a bad image: men against robots, dystopic society, etc. More and more a good image.

Formal definition (Robot Institute of America)

A reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks

N. Marchand

Introduction

- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Robots have a bad image (1930-1960)

- Robots take human works
- Robots are dangerous since potentially independent and more intelligent than we are

ROBOTS AND THEIR IMAGE

- Robots have a better image (1960-today)
 - Robots can make things that human can not do (space, etc.)
 - Human can do things that robots can not do (we still are clever)
 - Robots can be games
 - Robots can be good or bad

Robotics industry (1/MANY)

• Number of robots for every 10 000 workers:

Robotics N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic mo Dynamical model
- Conclusior

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- 70% of robots in companies with more than 1000 employees
- 17% of robots in companies with less than 300 employees
- In 2002, 95% of robots > 30k€ and 32% of robots > 60k€
- 79% of decrease of the mean price between 1990 and 2002
- Big robots manufacturers: ABB (S), KUKA (G), Fanuc (JP), etc.

N. Marchand

Introduction

- Outline
- Mechanics

Kinematics

- Arm robots Inner-loop Geometrica
- model Kinematic mod Dvnamical
- model
- Conclusior

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Robotics industry (2/Many)

• Where are the robots ?

France:

- 61% in automotive industry
- 14% in chemical industry
- ...
- 4% in electricity industry
- 3% in food industry
- What kind of robots ?

- Industry: ground fixed robots: manipulators, arm robots, ...
- Private individuals: mobile robots: service, games, ...
- Future of robots:
 - Industrial mobile robotics
 - Medical robotics
 - Service robots (growing field)

Robotics industry (3/many)

Robotics

N. Marchand

Introduction

- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

Vacuum cleaner (Kärcher)

Micromanipulator

Surgical robot

Forest robot

Kuka robot for automotive industry

Hollywood robots

N. Marchand (gipsa-lab)

★ ≣ → ■ → Q Q ENSE3-ASI 6 / 109

ROBOTICS INDUSTRY (4/MANY)

Robotics

Past

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model

Future

🔿 Tractica

Total Industrial and Non-Industrial Robotics Revenue, World Markets: 2015-2020

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 7 / 109

ROBOTICS INDUSTRY: UAVS (5/MANY)

UAV's Manufacturer

Robotics N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Workspace and

path planning

servoing

RX90 robot

2016 2015 2014 2013 2012 Année 2011 2010 2009 2008 2007 Nb. RPAS 2006 Nb. fabricants 2005 Nb. pays producteurs 0 500 1000 1500 2000 2500

• UAVs by countries

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 8 / 109

N. Marchand

Introduction

- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

path planning

servoing

RX90 robot

By keywords

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 9 / 109

ROBOTICS INDUSTRY: UAVS (6/MANY)

• Publications indicates future ?

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Basic mechanics for robotics

- Space representation
 - frames, coordinate transformation, etc.

)UTLINE

- Force and torques
- Modelisation
- Control for robots
 - All potential problems:
 - Oscillations, dry friction, saturations, etc.
 - Linear approaches
 - Nonlinear approaches

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

- Outline
- Mechanics basis

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

5 Path planning

- Workspace and obstacles
- Path planning problem formulation
- 6 Mobile robotics
 - Visual servoing
 - Stäubli RX90 robot

OUTLINE

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The **position** of some point *P* in the **fixed** frame $\mathcal{F}(o, \vec{e_x}, \vec{e_y}, \vec{e_z})$ is the vector $p = (x, y, z)^T$

POSITION AND SPEED IN A FIXED FRAME

N. Marchand (gipsa-lab)

ENSE3-ASI 12 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Position and speed in a fixed frame

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The **position** of some point *P* in the **fixed** frame $\mathcal{F}(o, \vec{e_x}, \vec{e_y}, \vec{e_z})$ is the vector $p = (x, y, z)^T$

• The **speed** of *P* in \mathcal{F} is the vector $s = \dot{p} = (\dot{x}, \dot{y}, \dot{z})^T$

ENSE3-ASI 12 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and
obstacles
path planning

Mobile robotics

Visual servoing

RX90 robot

ROTATIONS AND ASSOCIATED TOOLS

• A rotation is represented by a 3×3 matrix R such that $R^T = R^{-1}$ and det R = 1

ENSE3-ASI 13 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ROTATIONS AND ASSOCIATED TOOLS

A rotation is represented by a 3 × 3 matrix R such that R^T = R⁻¹ and det R = 1
A rotation of angle θ around:

ENSE3-ASI 13 / 109

= nar

4 回 > 4 同 > 4 回 > 4 回 > ---

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ROTATIONS AND ASSOCIATED TOOLS

- A rotation is represented by a 3×3 matrix R such that $R^T = R^{-1}$ and det R = 1• A rotation of angle θ around:
 - axis $\vec{e_x}$ is given by:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 13 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ROTATIONS AND ASSOCIATED TOOLS

A rotation is represented by a 3 × 3 matrix R such that R^T = R⁻¹ and det R = 1
A rotation of angle θ around:

• axis $\vec{e_x}$ is given by:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

axis
$$\vec{e_y}$$
 is given by:

•

$$\begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

N. Marchand

Introduction

Outline

Mechanics

- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model
- Dynamical
- model
- Doth ploppi

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ROTATIONS AND ASSOCIATED TOOLS

A rotation is represented by a 3 × 3 matrix R such that R^T = R⁻¹ and det R = 1
A rotation of angle θ around:

• axis $\vec{e_x}$ is given by:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

• axis $\vec{e_z}$ is given by:

$\cos \theta$	0	$\sin \theta$
0	1	0
$-\sin\theta$	0	$\cos \theta$

$\cos\theta$	$-\sin\theta$	0)
$\sin \theta$	$\cos \theta$	0
0	0	1/

4 回 > 4 同 > 4 回 > 4 回 > ---

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Consclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ROTATIONS AND ASSOCIATED TOOLS

A rotation is represented by a 3 × 3 matrix R such that R^T = R⁻¹ and det R = 1
A rotation of angle θ around:

• axis $\vec{e_x}$ is given by:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

٠

$$\begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

axis e_z is given by:

$(\cos\theta)$	$-\sin\theta$	0)
$\sin \theta$	$\cos \theta$	0
(0	0	1/

• a unit vector $\vec{u} = (u_x, u_y, u_z)^T$:

$$\begin{pmatrix} u_x^2 + (1 - u_x^2)c_\theta & u_x u_y (1 - c_\theta) - u_z s_\theta & u_x u_z (1 - c_\theta) + u_y s_\theta \\ u_x u_y (1 - c_\theta) + u_z s_\theta & u_y^2 + (1 - u_y^2)c_\theta & u_y u_z (1 - c_\theta) - u_x s_\theta \\ u_x u_z (1 - c_\theta) - u_y s_\theta & u_y u_z (1 - c_\theta) + u_x s_\theta & u_z^2 + (1 - u_z^2)c_\theta \end{pmatrix}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 13 / 109

= nar

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ROTATIONS AND ASSOCIATED TOOLS

A rotation is represented by a 3 × 3 matrix R such that R^T = R⁻¹ and det R = 1
A rotation of angle θ around:

• axis $\vec{e_x}$ is given by:

• axis $\vec{e_v}$ is given by:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

$$\begin{pmatrix}
\cos\theta & 0 & \sin\theta \\
0 & 1 & 0 \\
-\sin\theta & 0 & \cos\theta
\end{pmatrix}$$

$(\cos\theta)$	$-\sin\theta$	0/
$\sin \theta$	$\cos \theta$	0
0	0	1/

• a unit vector $\vec{u} = (u_x, u_y, u_z)^T$:

$$\begin{pmatrix} u_x^2 + (1 - u_x^2)c_\theta & u_x u_y(1 - c_\theta) - u_z s_\theta & u_x u_z(1 - c_\theta) + u_y s_\theta \\ u_x u_y(1 - c_\theta) + u_z s_\theta & u_y^2 + (1 - u_y^2)c_\theta & u_y u_z(1 - c_\theta) - u_x s_\theta \\ u_x u_z(1 - c_\theta) - u_y s_\theta & u_y u_z(1 - c_\theta) + u_x s_\theta & u_z^2 + (1 - u_z^2)c_\theta \end{pmatrix}$$

• The coordinates q of point Q obtained by rotating P with rotation R is q = Rp

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 13 / 109

= nar

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ROTATIONS AND ASSOCIATED TOOLS

A rotation is represented by a 3 × 3 matrix R such that R^T = R⁻¹ and det R = 1
A rotation of angle θ around:

• axis $\vec{e_x}$ is given by:

• axis $\vec{e_v}$ is given by:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

$$\begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

axis e_z is given by:

$(\cos\theta)$	$-\sin\theta$	0/
$\sin \theta$	$\cos \theta$	0
(0	0	1/

• a unit vector $\vec{u} = (u_x, u_y, u_z)^T$:

$$\begin{pmatrix} u_x^2 + (1 - u_x^2)c_\theta & u_x u_y (1 - c_\theta) - u_z s_\theta & u_x u_z (1 - c_\theta) + u_y s_\theta \\ u_x u_y (1 - c_\theta) + u_z s_\theta & u_y^2 + (1 - u_y^2)c_\theta & u_y u_z (1 - c_\theta) - u_x s_\theta \\ u_x u_z (1 - c_\theta) - u_y s_\theta & u_y u_z (1 - c_\theta) + u_x s_\theta & u_z^2 + (1 - u_z^2)c_\theta \end{pmatrix}$$

• The coordinates q of point Q obtained by rotating P with rotation R is q = Rp

• The rotation resulting from 2 successive rotations R_1 and then R_2 is R_2R_1

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and
obstacles
path planning

Mobile robotics

Visual servoing

RX90 robot

PRODUCTS AND ASSOCIATED TOOLS • The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$

N. Marchand (gipsa-lab)

ENSE3-ASI 14 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Consclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$ • The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1_y} v_{2_z} - v_{1_z} v_{2_y} \\ v_{1_z} v_{2_x} - v_{1_x} v_{2_z} \\ v_{1_x} v_{2_y} - v_{1_y} v_{2_x} \end{pmatrix} \in \mathbb{R}^3$$

N. Marchand (gipsa-lab)

ENSE3-ASI 14 / 109

= nar

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$ • The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1y}v_{2z} - v_{1z}v_{2y} \\ v_{1z}v_{2x} - v_{1x}v_{2z} \\ v_{1x}v_{2y} - v_{1y}v_{2x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

= nar

4 ロ > 4 同 > 4 回 > 4 回 > ---

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$ • The cross product $v_1 \times v_2$ is defined by:

$$v_{1} \times v_{2} := \begin{pmatrix} v_{1y}v_{2z} - v_{1z}v_{2y} \\ v_{1z}v_{2x} - v_{1x}v_{2z} \\ v_{1x}v_{2y} - v_{1y}v_{2x} \end{pmatrix} \in \mathbb{R}^{3}$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

• The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 - M_2M_1$ is called SO(3) and forms an algebra

= nan

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$ • The cross product $v_1 \times v_2$ is defined by:

$$v_{1} \times v_{2} := \begin{pmatrix} v_{1y}v_{2z} - v_{1z}v_{2y} \\ v_{1z}v_{2x} - v_{1x}v_{2z} \\ v_{1x}v_{2y} - v_{1y}v_{2x} \end{pmatrix} \in \mathbb{R}^{3}$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 M_2M_1$ is called SO(3) and forms an algebra
- Skew-symmetric matrices and cross product:

= nan

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$ • The cross product $v_1 \times v_2$ is defined by:

$$v_{1} \times v_{2} := \begin{pmatrix} v_{1y}v_{2z} - v_{1z}v_{2y} \\ v_{1z}v_{2x} - v_{1x}v_{2z} \\ v_{1x}v_{2y} - v_{1y}v_{2x} \end{pmatrix} \in \mathbb{R}^{3}$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 M_2M_1$ is called SO(3) and forms an algebra
- Skew-symmetric matrices and cross product:

$$v^{\times}u = v \times u$$

3

ENSE3-ASI 14 / 109

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$ • The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1y}v_{2z} - v_{1z}v_{2y} \\ v_{1z}v_{2x} - v_{1x}v_{2z} \\ v_{1x}v_{2y} - v_{1y}v_{2x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 M_2M_1$ is called SO(3) and forms an algebra
- Skew-symmetric matrices and cross product:

$$v^{\times}u = v \times u$$

• Skew-symmetric matrices and rotations

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$ • The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1y}v_{2z} - v_{1z}v_{2y} \\ v_{1z}v_{2x} - v_{1x}v_{2z} \\ v_{1x}v_{2y} - v_{1y}v_{2x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 M_2M_1$ is called SO(3) and forms an algebra
- Skew-symmetric matrices and cross product:

$$v^{\times}u = v \times u$$

• Skew-symmetric matrices and rotations

$$u^{\times} \sin \theta + (I - uu^{T}) \cos \theta + uu^{T}$$
 and $\exp((u\theta)^{\times})$
is the rotation of angle θ leaving axis u fixed

N. Marchand (gipsa-lab)

Robotics

स्डिभ्डि २००० ENSE3-ASI 14 / 109

Angles

Attitude:

- N. Marchand
- Introduction
- Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic mo Dynamical
- Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

W.R. Hamilton (1805-1865)

N. Marchand (gipsa-lab)

स≣ २००० ENSE3-ASI 15 / 109

Angles

Robotics

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?

- N. Marchand
- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Dynamical model

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 15 / 109

Angles

• gives the rotation that transforms the reference frame into the body frame

Robotics

Attitude:

N. Marchand

Mechanics

Arm robots Inner-loop Geometrical Kinematic model Dynamical

Workspace and path planning

servoing

RX90 robot

• equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?

W.R. Hamilton (1805-1865)

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 15 / 109

Angles

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation

W.R. Hamilton (1805-1865)

N. Marchand (gipsa-lab)

ENSE3-ASI 15 / 109

N. Marchand

ATTITUDE REPRESENTATION

Angles

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles

W.R. Hamilton (1805-1865)

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 15 / 109

N. Marchand

ATTITUDE REPRESENTATION

Angles

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions

W.R. Hamilton (1805-1865)

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic model
- Dynamical
- model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 15 / 109

N. Marchand

ATTITUDE REPRESENTATION

Angles

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix

W.R. Hamilton (1805-1865)

Mechanics

Kinematics

- Arm robots Inner-loop
- Geometrical
- model
- Kinematic model
- Dynamical
- model
- Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 15 / 109

N. Marchand

ATTITUDE REPRESENTATION

Angles

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...

Mechanics

- Arm robots
- Inner-loop
- Geometrical
- model
- Kinematic model
- Dynamical
- model

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

1

W.R. Hamilton (1805-1865)

N. Marchand (gipsa-lab)

ENSE3-ASI 15 / 109

ATTITUDE REPRESENTATION

Angles

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...

• Euler angles: 3 angles, 27 possible rotations

N. Marchand

Introduction

Robotics

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrica
- Kinematic model
- Dynamical
- model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

W.R. Hamilton (1805-1865)

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 15 / 109

N. Marchand

Mechanics

Arm robots Inner-loop

Dynamical

Kinematic model

Workspace and obstacles path planning

ATTITUDE REPRESENTATION

Angles

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles

W.R. Hamilton (1805-1865)

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Mechanics

Arm robots Inner-loop

Dynamical

ATTITUDE REPRESENTATION

Angles

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

< □ > < 同 > < 三 > < 三 >

W.R. Hamilton (1805-1865)

Path planning

Kinematic model

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Mechanics

Arm robots Inner-loop

Dynamical

Kinematic model

Workspace and obstacles path planning

servoing RX90 robot

ATTITUDE REPRESENTATION

Angles

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

Quaternions

< □ > < 同 > < 三 > < 三 >

W.R. Hamilton (1805-1865)

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Mechanics

Arm robots Inner-loop

Dynamical

Kinematic model

Workspace and obstacles path planning

servoing RX90 robot

ATTITUDE REPRESENTATION

Angles

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

Quaternions

< □ > < 同 > < 三 > < 三 >

W.R. Hamilton (1805-1865)

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Mechanics

Arm robots Inner-loop

Dynamical

ATTITUDE REPRESENTATION

Angles

Attitude:

- equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
- gives the rotation that transforms the reference frame into the body frame
- Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

Quaternions

< □ > < 同 > < 三 > < 三 >

• u fixed by rotation of angle θ

W.R. Hamilton (1805-1865)

Path planning

Kinematic model

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

ATTITUDE REPRESENTATION

Angles

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
 - Many attitude representation
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

Quaternions

- u fixed by rotation of angle θ
- the quaternion is:

$$q = \begin{pmatrix} u_x \sin \theta/2 \\ u_y \sin \theta/2 \\ u_z \sin \theta/2 \\ \cos \theta/2 \end{pmatrix} = \begin{pmatrix} \vec{q} \\ q_0 \end{pmatrix}$$

< □ > < 同 > < 三 > < 三 >

Robotics

- N. Marchand
- Introduction
- Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic model Dynamical
- model
- Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

W.R. Hamilton (1805-1865)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ATTITUDE REPRESENTATION

Angular velocities

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

ENSE3-ASI 16 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ATTITUDE REPRESENTATION

Angular velocities

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

• Caution: Angular velocities are not the time derivatives of Euler angles

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ATTITUDE REPRESENTATION

Angular velocities

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

Caution: Angular velocities are not the time derivatives of Euler angles
Angular velocities are given by:

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ATTITUDE REPRESENTATION

Angular velocities

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

• **Caution:** Angular velocities are not the time derivatives of Euler angles • Angular velocities are given by:

• Rotation matrix:

$$\dot{R} = R\omega^{\times}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 16 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ATTITUDE REPRESENTATION

Angular velocities

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

- **Caution:** Angular velocities are not the time derivatives of Euler angles • Angular velocities are given by:
 - Rotation matrix:

$$\dot{R} = R\omega^{\times}$$

• Quaternions :

$$\dot{\vec{q}} = \frac{1}{2} \Omega(\vec{\omega}) q \quad \text{with} \begin{cases} \Omega(\vec{\omega}) = \begin{pmatrix} 0 & -\vec{\omega}^T \\ \vec{\omega} & -\vec{\omega}^* \end{pmatrix} \\ \Xi(q) = \begin{pmatrix} -\vec{q}^T \\ I_{3\times 3}q_0 + \vec{q}^* \end{pmatrix} \end{cases}$$

- N. Marchand

Mechanics

Arm robots Inner-loop Geometrical Kinematic model Dynamical

Workspace and obstacles path planning

servoing

RX90 robot

MOVING FRAMES

 $= \frac{dU^{r}}{dU^{r}} + \Omega^{\mathcal{F}/\mathcal{M}} \times \vec{U}^{\mathcal{F}}$

P. Varignon (1654-1722)

N. Marchand (gipsa-lab)

Varignon's formula

Robotics

dt

 $d\vec{U}^{\mathcal{M}}$

dt

-ENSE3-ASI 17 / 109

• $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed frame

MOVING FRAMES

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

 \mathcal{M} \mathcal{M}

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 18 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

• $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed frame • $\mathcal{M} := (M, \vec{t}_1, \vec{t}_2, \vec{t}_3)$: mobile frame

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 18 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame
- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$

N. Marchand (gipsa-lab)

ENSE3-ASI 18 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame
- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$
- $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r

N. Marchand (gipsa-lab)

ENSE3-ASI 18 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame
- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$
- $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r

• Velocities:

$$\frac{d\vec{OP}^{\mathcal{F}}}{dt}^{\mathcal{F}} = \frac{d\vec{OM}^{\mathcal{F}}}{dt} + \frac{d\vec{MP}^{\mathcal{M}}}{dt} + \Omega^{\mathcal{M}/\mathcal{F}} \times \vec{MP}$$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

• $\mathcal{F} := (O, \vec{e}_x, \vec{e}_v, \vec{e}_z)$ fixed frame \mathcal{M} • $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame • R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$ • $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r Velocities: Absolute velocity dMP $O^{\mathcal{M}/\mathcal{F}}$ dt

(日) (同) (三) (三)

N. Marchand

Mechanics

Arm robots Inner-loop Kinematic model

Workspace and path planning

servoing

RX90 robot

MOVING FRAMES

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

(日) (同) (三) (三)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

• $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic mo Dynamical model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 19 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame • $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 19 / 109

• $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame • $\mathcal{M} := (\mathcal{M}, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame

• *R*: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mo Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 19 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed frame

- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$
- $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. \mathcal{F}

N. Marchand (gipsa-lab)

ENSE3-ASI 19 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical
- model
- Kinematic model
- Dynamical
- model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame

- $\mathcal{M} := (\mathcal{M}, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$ • $\Omega^{\mathcal{M}/\mathcal{F}}$, angular value its matrix of \mathcal{M}
- $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of $\mathcal M$ w.r.t. $\mathcal F$
- Acceleration:

$$\ddot{P}^{\mathcal{F}} := \frac{d\dot{P}^{\mathcal{F}}}{dt}^{\mathcal{F}} = \frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} + \frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{dt}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 19 / 109

- Robotics
- N. Marchand
- Introduction
- Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed frame • $\mathcal{M} := (M, \vec{t}_1, \vec{t}_2, \vec{t}_3)$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$ • $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. \mathcal{F}
- Acceleration:

$$\ddot{P}^{\mathcal{F}} := \frac{d\dot{P}^{\mathcal{F}}}{dt}^{\mathcal{F}} = \frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} + \frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{dt}$$

•
$$\frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} = \ddot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}}$$
 (Varignon's formula)

$$\mathcal{A}_{i_{3}}^{\omega_{3}} \mathcal{P}_{i_{3}}^{\vec{v}}$$

$$\mathcal{A}_{i_{2}}^{\vec{v}} \mathcal{A}_{i_{3}}^{\vec{v}}$$

$$\mathcal{A}_{i_{2}}^{\vec{v}} \mathcal{A}_{i_{3}}^{\vec{v}}$$

$$\mathcal{A}_{i_{3}}^{\vec{v}} \mathcal{A}_{i_{3}}^{\vec{v}} \mathcal{A}_{i_{3}}^{\vec{v}}$$

$$\mathcal{A}_{i_{3}}^{\vec{v}} \mathcal{A}_{i_{3}}^{\vec{v}} \mathcal{A}_{i_{3}}^{\vec{v$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed frame • $\mathcal{M} := (\mathcal{M}, \vec{t}_1, \vec{t}_2, \vec{t}_3)$: mobile frame • \mathcal{R} : rotation matrix s.t. $\mathcal{M} = \mathcal{RF}$ • $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. \mathcal{F}
- Acceleration

$$\ddot{P}^{\mathcal{F}} := \frac{d\dot{P}^{\mathcal{F}}}{dt}^{\mathcal{F}} = \frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} + \frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{I}}}{dt}$$

•
$$\frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} = \ddot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}} \text{ (Varignon's formula)}$$

•
$$\frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{\dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{F}} = \dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times (\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}})$$

all together:

$$\ddot{P}^{\mathcal{M}} = \ddot{P}^{\mathcal{F}} - 2\Omega \times \dot{P}^{\mathcal{M}} - \dot{\Omega} \times P^{\mathcal{F}} - \Omega \times (\Omega \times P^{\mathcal{F}})$$

ENSE3-ASI 19 / 109

< □ > < 同 > < 三 > < 三 >

 \mathcal{M}

N. Marchand

Mechanics

- Arm robots Inner-loop Kinematic model

obstacles path planning

servoing

RX90 robot

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame • $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame • R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$ • $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. \mathcal{F}
- Acceleration

$$\ddot{P}^{\mathcal{F}} := \frac{d\dot{P}^{\mathcal{F}}}{dt}^{\mathcal{F}} = \frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} + \frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{I}}}{dt}$$

•
$$\frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} = \ddot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}} \text{ (Varignon's formula)}$$
•
$$\frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{\dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}} = \dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{F}} = \frac{\dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{\dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times (\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}})^{\mathcal{M}}$$

all together:

$$\ddot{P}^{\mathcal{M}} = \ddot{P}^{\mathcal{F}} - 2\Omega \times \dot{P}^{\mathcal{M}} - \dot{\Omega} \times P^{\mathcal{F}} - \Omega \times (\Omega \times P^{\mathcal{F}})$$
Coriolis effect

 \mathcal{M}

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed frame • $\mathcal{M} := (\mathcal{M}, \vec{t}_1, \vec{t}_2, \vec{t}_3)$: mobile frame • \mathcal{R} : rotation matrix s.t. $\mathcal{M} = \mathcal{RF}$ • $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. \mathcal{F}
- Acceleration

$$\ddot{P}^{\mathcal{F}} := \frac{d\dot{P}^{\mathcal{F}}}{dt}^{\mathcal{F}} = \frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} + \frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{I}}}{dt}$$

•
$$\frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} = \ddot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}} \text{ (Varignon's formula)}$$
•
$$\frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{\dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{F}} = \frac{\dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{H}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{H}} + \Omega^{\mathcal{M}/\mathcal{F}} \times (\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}})$$

all together:

$$\ddot{P}^{\mathcal{M}} = \ddot{P}^{\mathcal{F}} - 2\Omega \times \dot{P}^{\mathcal{M}} - \dot{\Omega} \times P^{\mathcal{F}} - \Omega \times (\Omega \times P^{\mathcal{F}})$$
Coriolis effect
Euler effect (tangent acceleration)

$$\mathcal{M}_{\vec{l}_{2}}^{\omega_{3}} \mathcal{P}_{\vec{l}_{3}}^{\omega_{3}} \mathcal{P}_{\vec{l}}^{\omega_{3}} \mathcal{P}_{\vec{l}}^{\omega_{3}}^{\omega_{3}} \mathcal{P}$$

 \vec{V}

N. Marchand (gipsa-lab)

< □ > < 同 > < 三 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOVING FRAMES

 \mathcal{M}

< □ > < 同 > < 三 > < 三 >

ENSE3-ASI 19 / 109

- $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed frame • $\mathcal{M} := (\mathcal{M}, \vec{t}_1, \vec{t}_2, \vec{t}_3)$: mobile frame • \mathcal{R} : rotation matrix s.t. $\mathcal{M} = \mathcal{RF}$ • $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. \mathcal{F}
- Acceleration

$$\ddot{P}^{\mathcal{F}} := \frac{d\dot{P}^{\mathcal{F}}}{dt}^{\mathcal{F}} = \frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} + \frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{I}}}{dt}$$

•
$$\frac{\dot{d\dot{P}}^{\mathcal{M}}}{dt}^{\mathcal{F}} = \ddot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}} \text{ (Varignon's formula)}$$
•
$$\frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{\dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{F}} = \frac{\dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{H}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times (\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}})$$

all together:

$$\ddot{P}^{\mathcal{M}} = \ddot{P}^{\mathcal{F}} - 2\Omega \times \dot{P}^{\mathcal{M}} - \dot{\Omega} \times P^{\mathcal{F}} - \Omega \times (\Omega \times P^{\mathcal{F}})$$
• Coriolis effect
• Euler effect (tangent acceleration)

N. Marchand

Forces and torques

• A force ... everybody knows what it is: a vector, denoted $ec{F}$

Outime

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Forces and torques

- A force ... everybody knows what it is: a vector, denoted \vec{F}
- A torque (moment or moment of force):

$$\vec{\tau} = \vec{p} \times \vec{F}$$

N. Marchand

Mechanics

Arm robots Inner-loop

Workspace and path planning

RX90 robot

CONSERVATION OF LINEAR MOMENTUM

Linear Momentum

$$P := \sum_i m_i \vec{v}_i \in \mathbb{R}^3$$

where i denotes the index of the element composing the system, m_i it's mass and v_i it's speed (in a fixed frame)

Single body system:

 $P = M\vec{v}$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

CONSERVATION OF ANGULAR MOMENTUM

Angular Momentum

$$L:=\vec{p}\times P\in\mathbb{R}^3$$

where \vec{p} denotes the position vector and P the linear momentum

Conservation of the angular momentum

$$\sum \vec{\tau} = \frac{dL^{\mathcal{F}}}{dt}$$

• In a moving frame (Varignon's formula):

$$\frac{dL^{\mathcal{F}}}{dt} = \frac{dL^{\mathcal{M}}}{dt} + \Omega \times L$$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

CONSERVATION OF ANGULAR MOMENTUM

Inertia momentum

with $J = \int_{\text{rigid body}} dJ$

$$dJ = r^2 dm$$

where r is the distance of the elementary mass dm to the rotation axis

One has:

Conservation of the angular momentum

$$\sum \vec{\tau} = J \frac{d\Omega^3}{dt}$$

$$Jrac{d\Omega}{dt}^{\mathcal{F}}=Jrac{d\Omega}{dt}^{\mathcal{M}}+\Omega imes L$$

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 23 / 109

I. Newton (1643-1727) ~

How it works ?

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

How it works ?

Robotics

- N. Marchand
- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• 4 fixed rotors with controlled rotation speed *s_i*

< □ > < 同 > < 三 > < 三 >

N. Marchand (gipsa-lab)

Robotics

How it works ?

Robotics

- N. Marchand
- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i

N. Marchand (gipsa-lab)

Robotics

How it works ?

Robotics

- N. Marchand
- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i

< □ > < 同 > < 三 > < 三 >

N. Marchand (gipsa-lab)

Robotics

How it works ?

Robotics

- N. Marchand
- Introductio
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- 4 fixed rotors with controlled rotation speed *s_i*
 - 4 generated forces F_i
 - 4 counter-rotating torques Γ_i
 - Roll movement

< □ > < 同 > < 三 > < 三 >

N. Marchand (gipsa-lab)

Robotics

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

$$\Gamma_r = l(F_4 - F_2)$$

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = I(F_4 - F_2)$

Pitch movement

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = l(F_4 - F_2)$

 Pitch movement generated with a dissymmetry between front and rear forces:

$$\Gamma_p = I(F_1 - F_3)$$

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = l(F_4 - F_2)$

 Pitch movement generated with a dissymmetry between front and rear forces:

$$\Gamma_p = I(F_1 - F_3)$$

Yaw movement

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = l(F_4 - F_2)$

 Pitch movement generated with a dissymmetry between front and rear forces:

$$\Gamma_p = I(F_1 - F_3)$$

• Yaw movement generated with a dissymmetry between front/rear and left/right torques:

$$\Gamma_y = \Gamma_1 + \Gamma_3 - \Gamma_2 - \Gamma_4$$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and	
obstacles	
path planning	

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Example: the X4 helicopter

Building a model (1/3)

• Electrical motor: A 2nd order system with friction and saturation

Robotics

ENSE3-ASI 25 / 109

- N. Marchand
- Introduction
- Outline

Mechanics

- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Building a model (1/3)

• Electrical motor: A 2nd order system with friction and saturation usually *approximated* by a 1^{rst} order system:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\text{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i) \quad i \in \{1, 2, 3, 4\} (1)$$

- s_i: rotation speed
- U_i : voltage applied to the motor; real control variable

 au_{load} : motor load: $au_{\mathsf{load}} = k_{gearbox} \kappa |s_i| s_i$ with κ drag coefficient

- N. Marchand
- Introduction
- Outline

Mechanics

- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

Example: the X4 helicopter

Building a model (1/3)

• Electrical motor: A 2nd order system with friction and saturation usually *approximated* by a 1^{rst} order system:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\text{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i) \quad i \in \{1, 2, 3, 4\} (1)$$

- s_i: rotation speed
- U_i : voltage applied to the motor; real control variable
- au_{load} : motor load: $au_{\mathsf{load}} = k_{\mathsf{gearbox}} \kappa |s_i| s_i$ with κ drag coefficient
- Aerodynamical forces and torques: Very complex models exist

- N. Marchand
- Introduction
- Outline

Mechanics

- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Building a model (1/3)

• Electrical motor: A 2nd order system with friction and saturation usually *approximated* by a 1^{rst} order system:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\text{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i) \quad i \in \{1, 2, 3, 4\} (1)$$

- s_i: rotation speed
- U_i : voltage applied to the motor; real control variable
- au_{load} : motor load: $au_{\mathsf{load}} = k_{gearbox} \kappa |s_i| s_i$ with κ drag coefficient
- Aerodynamical forces and torques: Very complex models exist but overcomplicated for control, better use the *simplified* model:

$$\begin{array}{lll} F_{i} &=& bs_{i}^{2} \\ \Gamma_{r} &=& lb(s_{4}^{2}-s_{2}^{2}) \\ \Gamma_{p} &=& lb(s_{1}^{2}-s_{3}^{2}) \\ \Gamma_{y} &=& \kappa(s_{1}^{2}+s_{3}^{2}-s_{2}^{2}-s_{4}^{2}) \end{array} \qquad (2)$$

b: thrust coefficient, κ : drag coefficient

N. Marchand (gipsa-lab)

Building a model (2/3)

Robotics

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Two frames

- a fixed frame $E(\vec{e}_1, \vec{e}_2, \vec{e}_3)$
- a frame attached to the X4 $T(\vec{t_1}, \vec{t_2}, \vec{t_3})$

N. Marchand (gipsa-lab)

Robotics

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

Example: the X4 helicopter

Building a model (2/3)

- Two frames
 - a fixed frame $E(\vec{e_1}, \vec{e_2}, \vec{e_3})$
 - a frame attached to the X4 $T(\vec{t_1}, \vec{t_2}, \vec{t_3})$
- Frame change
 - a rotation matrix R from T to E

N. Marchand (gipsa-lab)

Robotics

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Building a model (2/3)

• Two frames

- a fixed frame $E(\vec{e_1}, \vec{e_2}, \vec{e_3})$
- a frame attached to the X4 $T(\vec{t_1}, \vec{t_2}, \vec{t_3})$
- Frame change
 - a rotation matrix R from T to E
 - State variables:

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Building a model (2/3)

- Two frames
 - a fixed frame $E(\vec{e_1}, \vec{e_2}, \vec{e_3})$
 - a frame attached to the X4 $T(\vec{t_1}, \vec{t_2}, \vec{t_3})$
- Frame change
 - a rotation matrix R from T to E
 - State variables:
 - Cartesian coordinates (in E)
 - position \vec{p}
 - velocity \vec{v}

N. Marchand

- Introduction
- Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Building a model (2/3)

- Two frames
 - a fixed frame $E(\vec{e_1}, \vec{e_2}, \vec{e_3})$
 - a frame attached to the X4 $T(\vec{t_1}, \vec{t_2}, \vec{t_3})$
- Frame change
 - a rotation matrix R from T to E
 - State variables:
 - Cartesian coordinates (in E)
 - position \vec{p}
 - velocity \vec{v}
 - Attitude coordinates:
 - angular velocity $\vec{\omega}$ in the moving frame T
 - either: Euler angles three successive rotations about \vec{t}_3 , \vec{t}_1 and \vec{t}_3 of angles angles ϕ , θ and ψ giving R
 - or: Quaternion representation $(q_0, \vec{q}) = (\cos \beta/2, \vec{u} \sin \beta/2)$ represent a rotation of angle β about \vec{u}

N. Marchand (gipsa-lab)

Robotics

Building a model (3/3)

Robotics

Cartesian coordinates:

Introduction

Outline

$$\begin{cases} \dot{\vec{p}} = \vec{v} \\ m \vec{v} = -mg \vec{e}_3 + R(\sum_i F_i(s_i) \vec{t}_3) \end{cases}$$
(3)

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic n Dynamical

model

Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 27 / 109

Building a model (3/3)

Robotics

N. Marchand

• Cartesian coordinates:

Introduction

Outline

$$\begin{cases} \vec{p} = \vec{v} \\ m\vec{v} = -mg\vec{e}_3 + R(\sum_i F_i(s_i)\vec{t}_3) \end{cases}$$
(3)

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Attitude:

ENSE3-ASI 27 / 109

< □ > < 同 > < 三 > < 三 > < 三 >

Example: the X4 helicopter Building a model (3/3)

Robotics

N. Marchand

• Cartesian coordinates:

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

$$\begin{cases} \vec{p} = \vec{v} \\ \vec{pv} = -mg\vec{e}_3 + R(\sum_i F_i(s_i)\vec{t}_3) \end{cases}$$
(3)

• Attitude:

• Euler angles formalism:

$$\begin{cases} \dot{R} = R\vec{\omega}^{\times} \\ J\dot{\vec{\omega}} = -\vec{\omega}^{\times}J\vec{\omega} + \Gamma_{\text{tot}} \end{cases} \quad \text{with } \vec{\omega}^{\times} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$
(4)

 $\vec{\omega}^{\,\times}$ is the skew symmetric tensor associated to $\vec{\omega}$

< □ > < 同 > < 三 > < 三 >

Building a model (3/3)

Robotics

N. Marchand

• Cartesian coordinates:

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

$$\begin{cases} \vec{p} = \vec{v} \\ \vec{m} \vec{v} = -mg\vec{e}_3 + R(\sum_i F_i(s_i)\vec{t}_3) \end{cases}$$
(3)

• Attitude:

• Euler angles formalism:

$$\begin{cases} \dot{R} = R\vec{\omega}^{\times} & \text{with } \vec{\omega}^{\times} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$
(4)

 $\vec{\omega}^{\times}$ is the skew symmetric tensor associated to $\vec{\omega}$

• Quaternion formalism:

$$\begin{cases} \dot{\vec{q}} = \frac{1}{2}\Omega(\vec{\omega})q \\ = \frac{1}{2}\Xi(q)\vec{\omega} & \text{with} \begin{cases} \Omega(\vec{\omega}) = \begin{pmatrix} 0 & -\vec{\omega}^{T} \\ \vec{\omega} & -\vec{\omega}^{\times} \end{pmatrix} \\ \Xi(q) = \begin{pmatrix} -\vec{q}^{T} \\ l_{3\times 3}q_{0} + \vec{q}^{\times} \end{pmatrix} \end{cases}$$
(5)

< □ > < 同 > < 三 > < 三 >

Building a model (3/3)

Robotics

N. Marchand

• Cartesian coordinates:

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual

RX90 robot

• Attitude:

whe

• Euler angles formalism:

$$\begin{cases} \dot{R} = R\vec{\omega}^{\times} & \text{with } \vec{\omega}^{\times} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$
(4)

 $\vec{\omega}^{\times}$ is the skew symmetric tensor associated to $\vec{\omega}$

• Quaternion formalism:

$$\operatorname{re} \Gamma_{\operatorname{tot}} = \underbrace{-\sum_{i} I_{r} \vec{\omega}^{\times} \vec{t}_{3} s_{i}}_{\operatorname{gyroscopic torque}} + \Gamma_{pert} + \begin{pmatrix} \Gamma_{r}(s_{2}, s_{4}) \\ \Gamma_{p}(s_{1}, s_{3}) \\ \Gamma_{y}(s_{1}, s_{2}, s_{3}, s_{4}) \\ \Gamma_{p}(s_{1}, s_{3}) \\ \Gamma_{p}(s_{1}, s_{3}, s_{4}, s_{4}) \\ \Gamma_{p}(s_{1}, s_{4}, s_{4}) \\ \Gamma_{p}(s_{1}, s_{4}, s_{4}) \\ \Gamma_{p}(s_{1}, s_{4}, s_{$$

N. Marchand (gipsa-lab)

Robotics

Review of the nonlinearities

Robotics

Mechanics

Arm robots

Inner-loop Geometrical Dynamical

N. Marchand $-\frac{k_{gearbox}\kappa}{J_r}|s_i|s_i+\frac{k_m}{J_rR}\operatorname{sat}_{\bar{U}_i}(U_i)$ $-mg\vec{e}_3 + R\left(\frac{0}{\sum F_i(s_i)}\right)$ тv Ŕ $R\vec{\omega}^{\times}$ $J\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} - \sum_{i}I_{r}\vec{\omega}^{\times}\begin{pmatrix}0\\0\\\sum s_{i}\end{pmatrix} + \begin{pmatrix}\Gamma_{r}(s_{2},s_{4})\\\Gamma_{p}(s_{1},s_{3})\\\Gamma_{y}(s_{1},s_{2},s_{3},s_{4})\end{pmatrix}$

RX90 robot

Workspace and path planning

(日) (同) (三) (三)

Review of the nonlinearities

Robotics

Mechanics

Arm robots Inner-loop

$\dot{s}_{i} = -\frac{k_{m}^{2}}{J_{r}R}s_{i} - \frac{k_{gearbox}\kappa}{J_{r}}|s_{i}|s_{i} + \frac{k_{m}}{J_{r}R}\operatorname{sat}_{\overline{U}_{i}}(U_{i})$ $\dot{\vec{p}} = \vec{v}$ N. Marchand $-mg\vec{e}_3 + R \left(\begin{array}{c} 0 \\ \sum F_i(s_i) \end{array} \right)$ $J\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} - \sum_{i}I_{r}\vec{\omega}^{\times}\begin{pmatrix}\mathbf{0}\\\mathbf{0}\\\sum s_{i}\end{pmatrix} + \begin{pmatrix}\Gamma_{r}(s_{2},s_{4})\\\Gamma_{p}(s_{1},s_{3})\\\Gamma_{y}(s_{1},s_{2},s_{3},s_{4})\end{pmatrix}$

RX90 robot

path planning

In red: the nonlinearities In blue: where the control variables act

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Identification of the parameters

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \overline{U}_i is found on the data-sheet of the motor (damage avoidance)

N. Marchand (gipsa-lab)

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Identification of the parameters

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: b and κ

 $\frac{b}{\kappa}$ and κ measured with specific test beds, depends upon temperature, distance from ground, etc.

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Identification of the parameters

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: b and κ

 $\frac{b}{\kappa}$ and κ measured with specific test beds, depends upon temperature, distance from ground, etc.

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Identification of the parameters

Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: b and κ
- b and κ measured with specific test beds, depends upon temperature, distance from ground, etc.
 - Mechanical parameters:

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Identification of the parameters

Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: b and κ
- b and κ measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

/ length of an arm of the helicopter, easy to measure

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Identification of the parameters

Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: b and κ
- b and κ measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

- I length of an arm of the helicopter, easy to measure
- m total mass of the helicopter, easy to measure

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Identification of the parameters

Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: b and κ
- b and κ measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

- I length of an arm of the helicopter, easy to measure
- m total mass of the helicopter, easy to measure
- J body inertia, hard to have precisely

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the X4 helicopter

Identification of the parameters

Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- *Ū_i* is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: b and κ
- $\frac{b}{\kappa}$ and κ measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

- I length of an arm of the helicopter, easy to measure
- m total mass of the helicopter, easy to measure
- J body inertia, hard to have precisely
- I_r rotor inertia, hard to have precisely

Example: the X4 helicopter

Values of the parameters

• Motor parameters:

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots
- Inner-loop
- Geometrical
- model
- Kinematic model
- Dynamical
- model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

parameter	description	value	unit
k _m	motor constant	$4.3 imes 10^{-3}$	N.m/A
Jr	rotor inertia	$3.4 imes10^{-5}$	J.g.m ²
R	motor resistance	0.67	Ω
k _{gearbox}	gearbox ratio	$2.7 imes10^{-3}$	-
\bar{U}_i	maximal voltage	12	V

Example: the X4 helicopter

Values of the parameters

Robotics

Motor parameters:

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

parameter	description	value	unit
k _m	motor constant	4.3×10^{-3}	N.m/A
J _r	rotor inertia	$3.4 imes 10^{-5}$	J.g.m ²
R	motor resistance	0.67	Ω
k _{gearbox}	gearbox ratio	2.7×10^{-3}	-
\bar{U}_i	maximal voltage	12	V

• Aerodynamical parameters:

parameter	description	value
Ь	thrust coefficient	$3.8 imes10^{-6}$
κ	drag coefficient	$2.9 imes10^{-5}$

N. Marchand (gipsa-lab)

ENSE3-ASI 30 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: the X4 helicopter

Values of the parameters

Robotics

• Motor parameters:

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual

servoing

RX90 robot

parameter	description	value	unit
k _m	motor constant	$4.3 imes 10^{-3}$	N.m/A
Jr	rotor inertia	$3.4 imes10^{-5}$	J.g.m ²
R	motor resistance	0.67	Ω
k _{gearbox}	gearbox ratio	$2.7 imes 10^{-3}$	-
\bar{U}_i	maximal voltage	12	V

• Aerodynamical parameters:

parameter	description	value
Ь	thrust coefficient	$3.8 imes10^{-6}$
κ	drag coefficient	$2.9 imes10^{-5}$

• Body parameters:

parameter	description	value	unit
		$(14.6 \times 10^{-3} 0 0)$	
J	inertia matrix	$0 7.8 \times 10^{-3} 0$	kg.m ²
		$\begin{pmatrix} 0 & 0 & 7.8 \times 10^{-3} \end{pmatrix}$	
т	mass of the UAV	0.458	kg
1	radius of the UAV	22.5	cm
g	gravity	9.81	m/s^2

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

Outline

Mechanics basis

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

- Workspace and obstacles
- Path planning problem formulation
- Mobile robotics
 - Visual servoing

Stäubli RX90 robot

N. Marchand (gipsa-lab)

Robotics

▲ ■ > ■ < < </p> ENSE3-ASI 31 / 109

OUTLINE

 Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints

Robotics

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:

N. Marchand

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Image: wide black Image: wide black

N. Marchand

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

स्ट्रा २२ / 109 ENSE3-ASI 32 / 109

A B > A B > A B >

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 32 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

rotary perpendicular to the arm

Inner-loop

- path planning
- servoing

RX90 robot

Robotics

- N. Marchand

Arm robots

- Geometrical Kinematic model Dynamical

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

• Each possible movement is called a degree of freedom (dof)

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Each possible movement is called a degree of freedom (dof)
- Sometimes movements are coupled (more than 1 dof/articulation)

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Each possible movement is called a degree of freedom (dof)
- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Each possible movement is called a degree of freedom (dof)
- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Each possible movement is called a degree of freedom (dof)
- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm

N. Marchand

Robotics

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Each possible movement is called a degree of freedom (dof)
- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm
 - 3 for the terminal tool

mirouuc

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

- Visual servoing
- RX90 robot

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

• rotary perpendicular to the arm

- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm
 - 3 for the terminal tool
- In the industrial context, a polyvalent robot will have 6 dof

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

- Visual servoing
- RX90 robot

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm
 - 3 for the terminal tool
- In the industrial context, a polyvalent robot will have 6 dof
- 6 dof are sufficient for any position and orientation of the terminal tool in the *reachable space*

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm
 - 3 for the terminal tool
- In the industrial context, a polyvalent robot will have 6 dof
- 6 dof are sufficient for any position and orientation of the terminal tool in the *reachable space*
- Many tasks can be performed with less than 6 dof: "pick and place" needs only 4 dof

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

- Visual servoing
- RX90 robot

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

• Characteristic variables:

Robotics

स्ट्रा २३ में २२ विक स्ट्रा ENSE3-ASI 33 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Characteristic variables:

• Actuator control *u_i* of the joint *i*

N. Marchand (gipsa-lab)

ENSE3-ASI 33 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Characteristic variables:

- Actuator control u_i of the joint i
- Actuator torques C_i of the joint i

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Characteristic variables:

- Actuator control u_i of the joint i
- Actuator torques C_i of the joint i
- Angles θ_i of the joint

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Characteristic variables:

- Actuator control u_i of the joint i
- Actuator torques C_i of the joint i
- Angles θ_i of the joint
- Spatial position X_i of the extremity of the joint

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control u_i of the joint i
 - Actuator torques C_i of the joint i
 - Angles θ_i of the joint
 - Spatial position X_i of the extremity of the joint
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control u_i of the joint i
 - Actuator torques C_i of the joint i
 - Angles θ_i of the joint
 - Spatial position X_i of the extremity of the joint
- Controlling a robot is equivalent to mastering the relation

• Actuator's dynamics
$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftarrows X_i$$

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control u_i of the joint i
 - Actuator torques C_i of the joint i
 - Angles θ_i of the joint
 - Spatial position X_i of the extremity of the joint
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$
• Actuator's dynamics
• Robot's dynamics

ENSE3-ASI 33 / 109

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

Outline

Mechanics basis

Kinematics and dynamics of robots

Arm robots

Inner-loop

- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

- Workspace and obstacles
- Path planning problem formulation
- Mobile robotics
 - Visual servoing

Stäubli RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 34 / 109

OUTLINE

Robotics

N. Marchand

• Inner control loop:

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 35 / 109

Robotics

N. Marchand • Inner control loop:

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Enables to force θ to follow the reference θ_r

Robotics

N. Marchand • Inner control loop:

Introduction

- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Enables to force θ to follow the reference θ_r
- The actuator is usually a first (electric) or second order system (pneumatic)

Robotics

N. Marchand • Inner control loop:

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Enables to force θ to follow the reference θ_r
- The actuator is usually a first (electric) or second order system (pneumatic)
- Usually controlled with a PID controller with

Robotics

N. Marchand • Inner control loop:

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Enables to force θ to follow the reference θ_r
- The actuator is usually a first (electric) or second order system (pneumatic)
- Usually controlled with a PID controller with
 - filtered derivative action

Robotics

N. Marchand • Inner control loop:

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Enables to force θ to follow the reference θ_r
- The actuator is usually a first (electric) or second order system (pneumatic)
- Usually controlled with a PID controller with
 - filtered derivative action
 - anti-windup to tackle saturations

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• We go back to the X4 example and focus on the rotors:

INNER CONTROL LOOP Anti-windup PID

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

< □ > < 同 > < 三 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

- Inner-loop
- Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• We go back to the X4 example and focus on the rotors:

INNER CONTROL LOOP Anti-windup PID

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{\frac{1}{b}F_i^d}$$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

- Inner-loop
- Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INNER CONTROL LOOP Anti-windup PID

• We go back to the X4 example and focus on the rotors:

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{rac{1}{b}F_i^d}$$

• A usual way to control the electrical motor consist in

< □ > < 同 > < 三 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

- Inner-loop
- Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• We go back to the X4 example and focus on the rotors:

INNER CONTROL LOOP Anti-windup PID

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{rac{1}{b}F_i^d}$$

A usual way to control the electrical motor consist in
 taking τ_{load} as un unknown load

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

- Inner-loop
- Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• We go back to the X4 example and focus on the rotors:

INNER CONTROL LOOP Anti-windup PID

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{rac{1}{b}F_i^d}$$

- A usual way to control the electrical motor consist in
 - taking $\tau_{\rm load}$ as un unknown load
 - neglecting the voltage limitations \bar{U}_i

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The so obtained system is linear

$$\frac{s_i(s)}{U_i(s)} = \frac{\frac{1}{k_m}}{1 + \frac{J_r R}{k_m^2}s} = \frac{G}{1 + \tau s}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 37 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The so obtained system is linear

$$rac{S_i(s)}{U_i(s)} = rac{rac{1}{k_m}}{1+rac{J_rR}{k_m^2}s} = rac{G}{1+ au s}$$

• Define a **PI controller** for it:

$$C(s) = K_p + \frac{K_i}{s}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 37 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The so obtained system is linear

$$\frac{s_i(s)}{U_i(s)} = \frac{\frac{1}{k_m}}{1 + \frac{J_r R}{k_m^2} s} = \frac{G}{1 + \tau s}$$

• Define a **PI controller** for it:

$$C(s) = K_p + \frac{K_i}{s}$$

• Taking $K_i = \frac{1}{\tau_{CL}G}$ and $K_p = \tau K_i$, the closed loop system is: $\frac{s_i(s)}{U_i(s)} = \frac{1}{1 + \tau_{CL}s}$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Make a step that **compensates the weight**, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

N. Marchand (gipsa-lab)

▲ 王 → 王 → Q ↔ ENSE3-ASI 38 / 109

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclucion

Path planning

Workspace and obstacles path planning

Mobile

Visual

servoing

RX90 robot

• Make a step that **compensates the weight**, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

• Taking $\tau_{CL} = 50$ ms, one gets without saturations

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 38 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

Visual

servoing

RX90 robot

• Make a step that compensates the weight, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

• Taking $\tau_{CL} = 50$ ms, one gets with saturations

N. Marchand (gipsa-lab)

Anti-windup PID

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The result could be worse:

N. Marchand (gipsa-lab)

स≣ २००० ENSE3-ASI 39 / 109

Anti-windup PID

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop
- Geometrical model Kinematic model Dynamical model
- Path planning
- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• For $u \in [-1.2, 1.2]$, the closed-loop behavior is:

• The result could be worse:

< □ > < 同 > < 三 > < 三 >

Anti-windup PID

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop
- Geometrical model Kinematic model Dynamical model
- Path planning
- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• The result could be worse:

• For $u \in [-1.2, 1.2]$, the closed-loop behavior is:

< □ > < 同 > < 三 > < 三 >

Anti-windup PID

Robotics

- N. Marchand
- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop
- Geometrical model Kinematic model Dynamical model
- Path planning
- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• The result could be worse:

• For $u \in [-1.2, 1.2]$, the closed-loop behavior is:

 Saturations may lead to instability especially in the presence of integrators in the loop

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Consider a linear system with a PID controller:

N. Marchand (gipsa-lab)

ENSE3-ASI 40 / 109

< □ > < 同 > < 三 > < 三 >

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Consider a linear system with a PID controller:

N. Marchand (gipsa-lab)

ENSE3-ASI 40 / 109

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Consider a linear system with a PID controller:

• The instability comes from the integration of the error

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Consider a linear system with a PID controller:

- The instability comes from the **integration** of the error
- Key idea: soften the integral effect when the control is saturated

Anti-windup PID

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Structure of the PID controller with anti-windup:

N. Marchand (gipsa-lab)

ENSE3-ASI 41 / 109

< □ > < 同 > < 三 > < 三 >

Anti-windup PID

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Structure of the PID controller with anti-windup:

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 41 / 109

< □ > < 同 > < 三 > < 三 >

Anti-windup PID

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Structure of the PID controller with anti-windup:

• If $u = \bar{u}$, that is if u is not saturated, then the PID controller with anti-windup is identical to the classical PID controller

Anti-windup PID

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Structure of the PID controller with anti-windup:

- If $u = \bar{u}$, that is if u is not saturated, then the PID controller with anti-windup is identical to the classical PID controller
- If u is saturated $(u \neq \bar{u})$, K_s tunes the reduction of the integral effect of the PID

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Make a step that compensates the weight, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

N. Marchand (gipsa-lab)

▲ ■ → ■ → Q ↔ ENSE3-ASI 42 / 109

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

Visual

servoing

RX90 robot

• Make a step that compensates the weight, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

• Taking $\tau_{CL} = 50$ ms, one gets without anti-windup

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual

servoing

RX90 robot

• Make a step that compensates the weight, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

• Taking $\tau_{CL} = 50$ ms, one gets with anti-windup

N. Marchand (gipsa-lab)

Towards gain scheduling

• Take again $\tau_{CL} = 50$ ms and a PI controller tuned at s_i^d

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

N. Marchand

• Take again $\tau_{CL} = 50$ ms and a PI controller tuned at s_i^d

INNER CONTROL LOOP Towards gain scheduling

• Make speed steps of different level

600 400 200 Si -200 2 4 6 8 10 'n 20 10 Ui -10 -20 2 4 í٥ 6 8 10 time

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 43 / 109

< □ > < 同 > < 三 > < 三 >

N. Marchand

• Take again $\tau_{CL} = 50$ ms and a PI controller tuned at s_i^d

INNER CONTROL LOOP Towards gain scheduling

• Make speed steps of different level

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 43 / 109

Towards gain scheduling • Take again $\tau_{CL} = 50$ ms and a PI controller tuned at the current s_i

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 44 / 109

Towards gain scheduling

Robotics

- Take again $\tau_{CL} = 50$ ms and a PI controller tuned at the current s_i
- Make speed steps of different level

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Towards gain scheduling

Robotics

Arm robots

Kinematic model

- Take again $\tau_{CL} = 50$ ms and a PI controller tuned at the current s_i
- Make speed steps of different level

- The rotors are now well controlled
- servoing RX90 robot

path planning

N. Marchand (gipsa-lab)

-

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

Outline

Mechanics basis

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
 - Kinematic model
- Dynamical model
- Conclusion

Path planning

- Workspace and obstacles
- Path planning problem formulation
- Mobile robotics
 - Visual servoing

Stäubli RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 45 / 109

OUTLINE

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

• Characteristic variables:

Robotics

स≣ स्टि ENSE3-ASI 46 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Characteristic variables:

• Actuator control *u_i*

N. Marchand (gipsa-lab)

ENSE3-ASI 46 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Characteristic variables:

- Actuator control *u_i*
- Actuator torques C_i

ENSE3-ASI 46 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Characteristic variables:

- Actuator control *u_i*
- Actuator torques C_i
- Angles θ_i

N. Marchand (gipsa-lab)

ENSE3-ASI 46 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Characteristic variables:

- Actuator control *u_i*
- Actuator torques C_i
- Angles θ_i
- Spatial position X_i

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop Geometrical

model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control *u_i*
 - Actuator torques C_i
 - Angles θ_i
 - Spatial position X_i
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftarrows X_i$$

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop Geometrical

model

Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control *u_i*
 - Actuator torques C_i
 - Angles θ_i
 - Spatial position X_i
- Controlling a robot is equivalent to mastering the relation

• Actuator dynamics
$$C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$

N. Marchand

- Arm robots
- Inner-loop Geometrical
- model

- path planning

- RX90 robot

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control u_i
 - Actuator torques C_i
 - Angles θ_i

Actuator

- Spatial position X_i
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$
Actuator dynamics
Robot dynamics

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

GEOMETRICAL MODEL OF ROBOTS

• Consist in finding the relations $X_i = f_i(\theta_i)$

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

- Visual servoing
- RX90 robot

▲ ■ → ■ → Q ENSE3-ASI 47 / 109

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

• Consist in finding the relations $X_i = f_i(\theta_i)$

Sometimes called "forward kinematics"

N. Marchand (gipsa-lab)

▲ ■ → ■ → Q ENSE3-ASI 47 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the $\theta_i^{r'}$'s using f^{-1} (inversion)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical

model Kinematic mo Dynamical

model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:

A B > A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B
 B > A
 B > A
 B
 B > A
 B > A
 B > A
 B
 B > A
 B
 B > A
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B > A
 B
 B > A
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B > A
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B
 B > A
 B > A
 B
 B > A
 B > A
 B > A
 B
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the $\theta_i^{r's}$ using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise

A B > A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the $\theta_i^{r'}$'s using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop

Geometrical

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible

A B > A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop

ENSE3-ASI 47 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop
 - few flexibility of the arms (not for spatial robotic arms !)

ENSE3-ASI 47 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop
 - few flexibility of the arms (not for spatial robotic arms !)

ENSE3-ASI 47 / 109

• Sufficiently simple model to be online inverted

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the $\theta_i^{r'}$'s using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop
 - few flexibility of the arms (not for spatial robotic arms !)
 - Sufficiently simple model to be online inverted
 - The model must be invertible

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives X_n = f(θ_i,...,θ_n), the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop
 - few flexibility of the arms (not for spatial robotic arms !)
 - Sufficiently simple model to be online inverted
 - The model must be invertible
- Despite the limitations, this approach is widely used (oversized robots)

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical

model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)

< □ > < 同 > < 三 > < 三 >

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model

model Kinematic mod Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- Orientation: for any \vec{v}

< □ > < 同 > < 三 > < 三 >

ENSE3-ASI 48 / 109

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical

model

Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- Orientation: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$

< □ > < 同 > < 三 > < 三 >

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical

model

Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}

•
$$\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$$

• $\vec{v}(\mathcal{R}_i) = \prod_{k=1}^i R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$

< □ > < 同 > < 三 > < 三 >

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical

model

Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$ • $\vec{v}(\mathcal{R}_i) = \prod_{k=1}^i R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$
- **Position**: for any point C

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical

model

Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$ • $\vec{v}(\mathcal{R}_i) = \prod_{k=1}^i R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$
- **Position**: for any point *C*

•
$$\overrightarrow{O_0C}(\mathcal{R}_0) = \overrightarrow{O_0O_i}(\mathcal{R}_0) + \overrightarrow{O_iC}(\mathcal{R}_0) = \overrightarrow{O_0O_i}(\mathcal{R}_0) + R_i^0 \overrightarrow{O_iC}(\mathcal{R}_i)$$

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$ • $\vec{v}(\mathcal{R}_i) = \prod_{i=1}^{i} R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$
- **Position**: for any point *C*
 - $\overline{O_0C}(\mathcal{R}_0) = \overline{O_0C}_i(\mathcal{R}_0) + \overline{O_iC}(\mathcal{R}_0) = \overline{O_0C}_i(\mathcal{R}_0) + R_i^0 \overline{O_iC}(\mathcal{R}_i)$ • $\overline{O_0C}(\mathcal{R}_0) = \overline{O_0C}_i(\mathcal{R}_0) + R_1^0 \overline{O_1C}(\mathcal{R}_1) + \dots + R_{i-1}^0 \overline{O_{i-1}C}_i(\mathcal{R}_{i-1}) + R_i^0 \overline{O_iC}(\mathcal{R}_i)$

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 48 / 109

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical

model

Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = \underset{i}{R_{i-1}^i} \vec{v}(\mathcal{R}_{i-1})$
 - $\vec{v}(\mathcal{R}_i) = \prod_{k=1}^{'} R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$
- **Position**: for any point *C*
 - $\overrightarrow{O_0C}(\mathcal{R}_0) = \overrightarrow{O_0O_i}(\mathcal{R}_0) + \overrightarrow{O_iC}(\mathcal{R}_0) = \overrightarrow{O_0O_i}(\mathcal{R}_0) + \mathcal{R}_i^0\overrightarrow{O_iC}(\mathcal{R}_i)$
 - $\overrightarrow{O_0C}(\mathcal{R}_0) = \overrightarrow{O_0O_1}(\mathcal{R}_0) + R_1^0 \overrightarrow{O_1O_2}(\mathcal{R}_1) + \dots + R_{i-1}^0 \overrightarrow{O_{i-1}O_i}(\mathcal{R}_{i-1}) + R_i^0 \overrightarrow{O_iC}(\mathcal{R}_i)$
- where R_i^{i+1} is the rotation matrix from \mathcal{R}_i to \mathcal{R}_{i+1} :

Robotics

ENSE3-ASI 48 / 109

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical model

Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$
 - $\vec{v}(\mathcal{R}_i) = \prod_{k=1}^{i} R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$
- **Position**: for any point *C*
 - $\overrightarrow{O_0C}(\mathcal{R}_0) = \overrightarrow{O_0O'}(\mathcal{R}_0) + \overrightarrow{O_iC}(\mathcal{R}_0) = \overrightarrow{O_0O'}(\mathcal{R}_0) + \mathcal{R}_i^0 \overrightarrow{O_iC}(\mathcal{R}_i)$ • $\overrightarrow{O_0C}(\mathcal{R}_0) = \overrightarrow{O_0O'}(\mathcal{R}_0) + \mathcal{R}_1^0 \overrightarrow{O_1C}(\mathcal{R}_1) + \dots + \mathcal{R}_{i-1}^0 \overrightarrow{O_{i-1}O}(\mathcal{R}_{i-1}) + \mathcal{R}_i^0 \overrightarrow{O_iC}(\mathcal{R}_i)$
- where R_i^{i+1} is the rotation matrix from \mathcal{R}_i to \mathcal{R}_{i+1} :

•
$$R_i^{i+1} = R_{i+1}^{i}^T$$
, $\det R_i^{i+1} = 1$

Robotics

ENSE3-ASI 48 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Easy way to compute the geometrical model: homogeneous coordinates

COMPUTATION OF THE GEOMETRICAL MODEL Combination of rotations and translations

N. Marchand (gipsa-lab)

▲ ■ → ■ → Q ENSE3-ASI 49 / 109

A B > A B > A B >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

COMPUTATION OF THE GEOMETRICAL MODEL Combination of rotations and translations

- Easy way to compute the geometrical model: homogeneous coordinates
- Let $\vec{v} := \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$, then it is equivalent to the 4-dimension vector \vec{V} with $\omega = 1$: $\begin{pmatrix} v_1 \omega \\ v_2 \end{pmatrix}$

$$V = \begin{pmatrix} v_2 \omega \\ v_3 \omega \\ \omega \end{pmatrix}$$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

COMPUTATION OF THE GEOMETRICAL MODEL Combination of rotations and translations

- Easy way to compute the geometrical model: homogeneous coordinates
- Let $\vec{v} := \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$, then it is equivalent to the 4-dimension vector \vec{V} with $\omega = 1$: $V = \begin{pmatrix} v_1 \omega \\ v_2 \omega \\ v_3 \omega \\ \omega \end{pmatrix}$

• **Translation**: a translation of vector $\begin{pmatrix} a & b & c \end{pmatrix}$ is given by:

$$\mathsf{Trans} = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

< ロ > < 同 > < 三 > < 三 > 、< 三 > 、<

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop Geometrical

model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

COMPUTATION OF THE GEOMETRICAL MODEL Combination of rotations and translations

- Easy way to compute the geometrical model: homogeneous coordinates
- Let $\vec{v} := \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$, then it is equivalent to the 4-dimension vector \vec{V} with $\omega = 1$: $V = \begin{pmatrix} v_1 \omega \\ v_2 \omega \\ v_3 \omega \\ \omega \end{pmatrix}$

• **Translation**: a translation of vector $\begin{pmatrix} a & b & c \end{pmatrix}$ is given by:

$$\mathsf{Trans} = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathsf{Rot} = \begin{pmatrix} R & \mathsf{0}_{3 \times 1} \\ \mathsf{0}_{1 \times 3} & 1 \end{pmatrix}$$

Note that still
$$R^{-1}=R^{\mathcal{T}}$$
 and $det(R)=1$

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 49 / 109

Denavit-Hartenberg's convention

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Consider two successive articulations

ENSE3-ASI 50 / 109

< □ > < 同 > < 三 > < 三 >

Denavit-Hartenberg's convention

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:

Denavit-Hartenberg's convention

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}

Denavit-Hartenberg's convention

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}
 - One translation along z_k of distance d_{k+1}

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 50 / 109

イロト イ押ト イヨト イヨト

Denavit-Hartenberg's convention

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}
 - One translation along z_k of distance d_{k+1}
 - One translation along x_{k+1} of distance a_{k+1}

イロト イ押ト イヨト イヨト

Denavit-Hartenberg's convention

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}
 - One translation along z_k of distance d_{k+1}
 - One translation along x_{k+1} of distance a_{k+1}
 - One rotation around x_{k+1} of angle α_{k+1}

Denavit-Hartenberg's convention

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}
 - One translation along z_k of distance d_{k+1}
 - One translation along x_{k+1} of distance a_{k+1}
 - One rotation around x_{k+1} of angle α_{k+1}
- The DH parametrization always exists and is unique

N. Marchand (gipsa-lab)

ENSE3-ASI 50 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

N. Marchand (gipsa-lab)

N. Marchand

Introductior

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

• θ_i as a function of X^r is often called "inverse kinematics"

N. Marchand (gipsa-lab)

ENSE3-ASI 51 / 109

< □ > < 同 > < 三 > < 三 > < 三 >

- N. Marchand
- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots
- Inner-loop Geometrical

model

Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)

- N. Marchand
- Introductior
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*

- N. Marchand
- Introductior
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model Dynamical model Conclusion
- Path planning
- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about resolvable robots
 - Can be inverted using a optimization procedure

- N. Marchand
- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop Geometrical model
- model Kinematic n
- Model Conclusion
- Path planning
- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r

- N. Marchand
- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop
- Geometrical
- Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about resolvable robots
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- **Drawbacks:** the actuators are in closed loop but the robot is in open-loop

- N. Marchand
- Introductior
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop
- Geometrical
- Kinematic mode Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- **Drawbacks:** the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?

- N. Marchand
- Introductior
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop Geometrical model
- Kinematic mode Dynamical model Conclusion
- Path planning
- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- **Drawbacks:** the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?
 - the trajectory is not well defined (obstacle avoidance, etc.)

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- N. Marchand
- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop Geometrical model
- Kinematic mod Dynamical model Conclusion
- Path planning
- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- Drawbacks: the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?
 - the trajectory is not well defined (obstacle avoidance, etc.)
 - dry friction if multiple X^d

- N. Marchand
- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop Geometrical
- model
- Kinematic mod Dynamical model Conclusion
- Path planning
- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- **Drawbacks:** the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?
 - the trajectory is not well defined (obstacle avoidance, etc.)
 - dry friction if multiple X^d
 - what about the influence of the weight (that depends upon the configuration)

- N. Marchand
- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots
- Inner-loop Geometrical model
- Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- Drawbacks: the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?
 - the trajectory is not well defined (obstacle avoidance, etc.)
 - dry friction if multiple X^d
 - what about the influence of the weight (that depends upon the configuration)
 - inertia may cause overshoot or oscillations

convention

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 52 / 109

Exercise

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Compute the matrix transformation of the Denavit-Hartenberg's convention

• One rotation around z_k of angle θ_{k+1} :

$$R_1 = \begin{pmatrix} c\theta_{k+1} & -s\theta_{k+1} & 0 & 0\\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 52 / 109

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Compute the matrix transformation of the Denavit-Hartenberg's convention

Exercise

- One rotation around z_k of angle θ_{k+1} :
 - One translation along Z_k of distance d_{k+1} $T_1 = \begin{pmatrix} c\theta_{k+1} & -s\theta_{k+1} & 0 & 0 \\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Exercise

- Compute the matrix transformation of the Denavit-Hartenberg's convention
 - One rotation around z_k of angle θ_{k+1} :
 - $R_{1} = \begin{pmatrix} zy_{k+1} & -sy_{k+1} & 0 & 0\\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$ • One translation along z_{k} of distance d_{k+1} $T_{1} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & d_{k+1}\\ 0 & 0 & 1 & 1 \end{pmatrix}$ • One translation along x_{k+1} of distance a_{k+1} $T_{2} = \begin{pmatrix} 1 & 0 & 0 & a_{k+1}\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Compute the matrix transformation of the Denavit-Hartenberg's convention

Exercise

• One rotation around z_k of angle θ_{k+1} :

 $R_1 = \begin{pmatrix} c\sigma_{k+1} & -s\sigma_{k+1} & 0 & 0\\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$ One translation along z_k of distance d_{k+1} $T_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{k+1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$ • One translation along x_{k+1} of distance a_{k+1} • One rotation around x_{k+1} of angle α_{k+1} $R_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{k+1} & -s\alpha_{k+1} & 0 \\ 0 & s\alpha_{k+1} & c\alpha_{k+1} & 0 \\ 0 & c\alpha_{k+1} & c\alpha_{k+1} & c\alpha_{k+1} & 0 \\ 0 & c\alpha_{k+1} & c\alpha_{k+1} & c\alpha_{k+1} & 0 \\ 0 & c\alpha_{k+1} & c\alpha_{k+1} & c\alpha_{k+1} & 0 \\ 0 & c\alpha_{k+1} & c\alpha_{k+1} & c\alpha_{k+1} & c\alpha_{k+1} & 0 \\ 0 & c\alpha_{k+1} & c\alpha$

・ロン ・伺い ・ヨン ・ヨン - ヨ

ENSE3-ASI 52 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

e matrix transformation of the Denavit-Ha

• Compute the matrix transformation of the Denavit-Hartenberg's convention

Exercise

• One rotation around z_k of angle θ_{k+1} :

 $R_1 = \begin{pmatrix} c\sigma_{k+1} & -s\sigma_{k+1} & 0 & 0\\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$ One translation along z_k of distance d_{k+1} $T_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{k+1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$ One translation along x_{k+1} of distance a_{k+1} $T_2 = \begin{pmatrix} 1 & 0 & 0 & a_{k+1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ • One rotation around x_{k+1} of angle α_{k+1} $R_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{k+1} & -s\alpha_{k+1} & 0 \\ 0 & s\alpha_{k+1} & c\alpha_{k+1} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

• The matrix transformation of the Denavit-Hartenberg's convention is: $R_2 \cdot T_2 \cdot T_1 \cdot R_1$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrica

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

Outline

Mechanics basis

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model

Kinematic model

- Dynamical model
- Conclusion

Path planning

- Workspace and obstacles
- Path planning problem formulation
- Mobile robotics
 - Visual servoing

Stäubli RX90 robot

OUTLINE

KINEMATIC MODEL OF ROBOTS

Robotics	• Express the infinitesimal mouvement dX as a function of speed of	the actuators	$\frac{d\theta}{dt}$
N. Marchand			
Introduction			
Outline			
Mechanics			
Kinematics Arm robots Inner-Joop Geometrical model Kinematic model Dynamical model Conclusion			
Path planning Workspace and obstacles path planning			
Mobile robotics			
Visual servoing			
RX90 robot			
			- 6

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"

N. Marchand (gipsa-lab)

ENSE3-ASI 54 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables

N. Marchand (gipsa-lab)

ENSE3-ASI 54 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrica

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

N. Marchand (gipsa-lab)

A B > A B > A B >

N. Marchand

Arm robots Inner-loop

Kinematic model

path planning

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{1}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial a}$ is called the *Jacobian* of the robot

ENSE3-ASI 54 / 109

dθ

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

• J represents the instantaneous transformation between a vector of joint velocities and the linear and angular velocities of the end-effector

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \dots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

- J represents the instantaneous transformation between a vector of joint velocities and the linear and angular velocities of the end-effector
- J can be decomposed into J_v and J_ω so that:

$$\begin{aligned} \dot{x}_n^{\mathcal{R}_f} &= J_v \dot{\theta} \\ \omega_n^{\mathcal{R}_f} &= J_\omega \dot{\theta} \end{aligned}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 54 / 109

N. Marchand

Arm robots Inner-loop Geometrical

Kinematic model

path planning

RX90 robot

KINEMATIC MODEL OF ROBOTS

 $d\theta$ • Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{1}{dt}$

- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

- J represents the instantaneous transformation between a vector of joint velocities and the linear and angular velocities of the end-effector
- J can be decomposed into J_v and J_ω so that:

$$\begin{aligned} \dot{x}_n^{\mathcal{R}_f} &= J_\nu \dot{\theta} \\ \omega_n^{\mathcal{R}_f} &= J_\omega \dot{\theta} \end{aligned}$$

 The kinematic model can also be obtained using the composition of speed and decomposing the Denavit-Hartenberg's parametrization:

$$R(z,\theta)T(z,d)T(x^+,a)R(x^+,\alpha)$$

N. Marchand (gipsa-lab)

ENSE3-ASI 54 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \dots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

- J represents the instantaneous transformation between a vector of joint velocities and the linear and angular velocities of the end-effector
- J can be decomposed into J_v and J_ω so that:

$$\begin{aligned} \dot{x}_n^{\mathcal{R}_f} &= J_v \dot{\theta} \\ \omega_n^{\mathcal{R}_f} &= J_\omega \dot{\theta} \end{aligned}$$

• The kinematic model can also be obtained using the composition of speed and decomposing the Denavit-Hartenberg's parametrization:

$$R(z,\theta)T(z,d)T(x^+,a)R(x^+,\alpha)$$

• Fastidious in many cases but systematic ! See books for that

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 54 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

• Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)

N. Marchand (gipsa-lab)

▲ ■ → ■ → Q
ENSE3-ASI 55 / 109

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometric

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

• Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)

• As for geometrical model, the dynamics has to be neglected

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrica

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrica

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - J is square and full rank: miracle !

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - J is square and full rank: miracle !
 - J is square but for some articulation position, det J = 0 (singularities), the singularities are usually avoided

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrica

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - J is square and full rank: miracle !
 - J is square but for some articulation position, det J = 0 (singularities), the singularities are usually avoided
 - *J* has more columns than rows: add a criterium to find the optimal path

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - J is square and full rank: miracle !
 - J is square but for some articulation position, det J = 0 (singularities), the singularities are usually avoided
 - J has more columns than rows: add a criterium to find the optimal path
 - *J* has more rows than columns: impossible configurations of nonholonomic constraints, nonlinear control theory to solve this problem

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - J is square and full rank: miracle !
 - J is square but for some articulation position, det J = 0 (singularities), the singularities are usually avoided
 - *J* has more columns than rows: add a criterium to find the optimal path
 - J has more rows than columns: impossible configurations of nonholonomic constraints, nonlinear control theory to solve this problem

• The kinematic model is a state space representation of a controlled system

Example of kinematic model

• Example: the car in the plane

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots
- Inner-loop
- Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 56 / 109

Example of kinematic model

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop
- Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example: the car in the plane Characterizing variables (state variables): x, y and θ

N. Marchand (gipsa-lab)

ENSE3-ASI 56 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots

Inner-loop

Geometrica

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Example: the car in the plane

- Characterizing variables (state variables): x, y and θ
- Control variables: speed of each wheels V_r and V_l

N. Marchand (gipsa-lab)

ENSE3-ASI 56 / 109

+ => + # + => + =

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrica

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Example: the car in the plane

- Characterizing variables (state variables): x, y and θ
- Control variables: speed of each wheels *V_r* and *V_l*
- The kinematic model is given by the relation between \dot{x} , \dot{y} , $\dot{\theta}$ and the controls V_r and V_l

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometric

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Example: the car in the plane

- Characterizing variables (state variables): x, y and θ
- Control variables: speed of each wheels *V_r* and *V_l*
- The kinematic model is given by the relation between \dot{x} , \dot{y} , $\dot{\theta}$ and the controls V_r and V_l
- What is the kinematic model of the car ?

・ロト ・ 同 ト ・ 三 ト ・ 三

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometric

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Example: the car in the plane

- Characterizing variables (state variables): x, y and θ
- Control variables: speed of each wheels V_r and V_l
- The kinematic model is given by the relation between \dot{x} , \dot{y} , $\dot{\theta}$ and the controls V_r and V_l
- What is the kinematic model of the car ?
- What is the expression of the Jacobian of this robot ?

イロト イ押ト イヨト イヨト

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometric

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Example of kinematic model

- Example: the car in the plane
 - Characterizing variables (state variables): x, y and θ
 - Control variables: speed of each wheels *V_r* and *V_l*
 - The kinematic model is given by the relation between \dot{x} , \dot{y} , $\dot{\theta}$ and the controls V_r and V_l
 - What is the kinematic model of the car ?
 - What is the expression of the Jacobian of this robot ?
 - Is this system underactuated or overactuated ? Explain why $\cos \theta$ $J = \frac{1}{2} \begin{pmatrix} \sin \theta & \sin \theta \\ -\frac{2}{2} & \frac{2}{2} \end{pmatrix}$

$$\dot{x} = \frac{V_l + V_r}{2} \cos \theta$$
$$\dot{y} = \frac{V_l + V_r}{2} \sin \theta$$
$$\dot{\theta} = \frac{V_r - V_l}{d}$$

Relation between workspace forces and joint torques

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The workspace forces and joint torques are linked with the relation:

$$\tau = J_v^T F$$

< □ > < 同 > < 三 > < 三 >

ENSE3-ASI 57 / 109

Relation between workspace forces and joint torques

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The workspace forces and joint torques are linked with the relation:

$$\tau = J_v^T F$$

• the Jacobian must be derived at each origin O_i of each link frame

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

When a robot is given by its kinematic model $\dot{X}=J\dot{ heta}$

- J is usually $n \times p$ with $X \in \mathbb{R}^n$ and $\theta \in \mathbb{R}^p$
- r = p n is called the kinematic redundancy number

Kinematic redundancy

- When r < 0, the robot is underactuated, usually the case with mobile robots ⇒ advanced control
- When r > 0, the robot is overactuated. It has redundancy.

For a robot with redundancy, one can write:

• $J = \begin{pmatrix} J_n & J_{p-n} \end{pmatrix}$ with J_n invertible

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Inner-Ioop

Geometric

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Control with J^t Take a robot given by its kinematic model $\dot{X} = J\dot{\theta}$

Control through the kinematic equation

- Control with J^t
 - Apply a fictive force $F = K(X X_d)$ with K positive and symmetric
 - Take $\dot{\theta} = J^t F = J^t K(X X_d) = J^t Ke$
 - Then the elastic potential $\Phi(e) = \frac{1}{2}e^t K e$ is such that

$$\dot{\Phi}(e) = -e^t K J J^t K e < 0$$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

N. Marchand

Introductior

Outline

Mechanics

Kinematics

- Arm robots Inner-loop
- Geometrica

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Control with J^+ Take a robot given by its kinematic model $\dot{X} = J\dot{\theta}$

Control through the kinematic equation

- Control with $J^+ := J^t (JJ^t)^{-1}$
 - J⁺ is the Moore-Penrose pseudo-inverse (pinv in Matlab)
 - Can be obtained through SVD decomposition. J = UΔV^t, Δ diagonal ⇒ J⁺ = VΔ⁺U^t, Δ⁺ is the inverse of the nonzero coefficient of Δ
 - Taking $\dot{\theta} = J^+ \dot{X}$ minimizes the energy $\dot{\theta}^t \dot{\theta}$
 - Taking $\dot{\theta} = J_M^+ \dot{X}$ with $J_M^+ := M^{-1} J^t (JM^{-1} J^t)^{-1}$ minimizes the kinetic energy $T = \frac{1}{2} \dot{\theta}^t M(\theta) \dot{\theta}$

A B > A B > A B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic mode

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

Outline

Mechanics basis

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

- Workspace and obstacles
- Path planning problem formulation
- Mobile robotics
 - Visual servoing

Stäubli RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 61 / 109

OUTLINE

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic m

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODEL OF ROBOTS

• Express the accelerations of movement as a function of the actuation variables

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical

model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ENSE3-ASI 62 / 109

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model
- Kinematic model Dynamical
- model

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand (gipsa-lab)

ENSE3-ASI 62 / 109

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic model
- Dynamical model

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:

N. Marchand (gipsa-lab)

ENSE3-ASI 62 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:
 - based on relative speed of the \neq parts of the robot

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model

Kinematic model

Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:
 - based on relative speed of the \neq parts of the robot
 - thanks to inner-loops that can render parts instantaneous w.r.t. other parts of the robot

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model
- Kinematic model
- Dynamical model

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:
 - based on relative speed of the \neq parts of the robot
 - thanks to inner-loops that can render parts instantaneous w.r.t. other parts of the robot
- Almost never used for arm-robots

< ロ > < 四 > < 回 > < 回 > < 回 > .

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model
- Kinematic model
- Dynamical model

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing
- RX90 robot

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:
 - based on relative speed of the \neq parts of the robot
 - thanks to inner-loops that can render parts instantaneous w.r.t. other parts of the robot
- Almost never used for arm-robots
- Widely used for flying or diving robots (UAVs, AUVs, etc.) or walking robots

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

 $D(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = r$

N. Marchand (gipsa-lab)

ENSE3-ASI 63 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic m

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

• Obtained thanks to the Euler-Lagrange formalism

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical

model

Kinematic mode Dynamical

model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

- Obtained thanks to the Euler-Lagrange formalism
- q are the generalized coordinates

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop
- Geometrica
- model
- Kinematic model

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

- Obtained thanks to the Euler-Lagrange formalism
- q are the generalized coordinates

•
$$C(q,\dot{q})\dot{q} = \sum_{i}\sum_{j}c_{ij}(q)\dot{q}_{i}\dot{q}_{j}$$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop
- Geometrica
- model
- Kinematic model

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

- Obtained thanks to the Euler-Lagrange formalism
 a set the second instance.
- q are the generalized coordinates

•
$$C(q,\dot{q})\dot{q} = \sum_{i}\sum_{j}c_{ij}(q)\dot{q}_{i}\dot{q}_{j}$$

• Centrifugal effect when i = j (term in \dot{q}_i^2)

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop
- Coometrice
- model
- Kinematic model

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

- Obtained thanks to the Euler-Lagrange formalism
- q are the generalized coordinates

•
$$C(q,\dot{q})\dot{q} = \sum_{i}\sum_{j}c_{ij}(q)\dot{q}_{i}\dot{q}_{j}$$

- Centrifugal effect when i = j (term in \dot{q}_i^2)
- Coriolis effect when $i \neq j$ (terms in $\dot{q}_i \dot{q}_j$)

N. Marchand

Introductio

Outline

Mechanics

Kinematics

- Arm robots Inner-loop
- Geometrical
- model

Kinematic model

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

- Obtained thanks to the Euler-Lagrange formalism
- q are the generalized coordinates

•
$$C(q,\dot{q})\dot{q} = \sum_{i}\sum_{j}c_{ij}(q)\dot{q}_{i}\dot{q}_{j}$$

- Centrifugal effect when i = j (term in \dot{q}_i^2)
- Coriolis effect when $i \neq j$ (terms in $\dot{q}_i \dot{q}_j$)
- An important literature on the control of this type of systems can be found

A B > A B > A B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical

model

Kinematic model

Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS flying and diving robots

• The dynamical equations are of the form:

$$\vec{\vec{p}} = \vec{v}$$

$$m\vec{\vec{v}} = -mg\vec{e}_3 + R\begin{pmatrix}F_x\\F_y\\F_z\end{pmatrix}$$

$$\vec{R} = R\vec{\omega}^{\times}$$

$$J\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} + \begin{pmatrix}\Gamma_r\\\Gamma_p\\\Gamma_y\end{pmatrix}$$

N. Marchand (gipsa-lab)

ENSE3-ASI 64 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop

Geometrical

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DYNAMICAL MODELS OF ROBOTS flying and diving robots

• The dynamical equations are of the form:

$$\vec{p} = \vec{v}$$

$$m\vec{v} = -mg\vec{e}_3 + R\begin{pmatrix}F_x\\F_y\\F_z\end{pmatrix}$$

$$\vec{R} = R\vec{\omega}^{\times}$$

$$J\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} + \begin{pmatrix}\Gamma_r\\\Gamma_p\\\Gamma_y\end{pmatrix}$$

• The number of available controls depends upon the system

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 64 / 109

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

Outline

Mechanics basis

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

- Workspace and obstacles
- Path planning problem formulation
- Mobile robotics
 - Visual servoing

Stäubli RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 65 / 109

OUTLINE

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DIFFERENT MODELS OF ROBOTS

• Geometrical model (or forward kinematic model):

Position of the robot = f(position of the actuators)

N. Marchand (gipsa-lab)

▲ ■ → ■ → Q
ENSE3-ASI 66 / 109

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DIFFERENT MODELS OF ROBOTS

• Geometrical model (or forward kinematic model):

Position of the robot = f(position of the actuators)

• Inverse geometrical model (or inverse kinematic model):

Position of the actuators = f(position of the robot)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DIFFERENT MODELS OF ROBOTS

• Geometrical model (or forward kinematic model):

Position of the robot = f(position of the actuators)

Inverse geometrical model (or inverse kinematic model):
 Position of the actuators = f(position of the robot)

• Kinematic model (state space representation) (or

Speed of the robot = f(position, actuation speed)

velocity kinematic model):

I AAA

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

DIFFERENT MODELS OF ROBOTS

• Geometrical model (or forward kinematic model):

Position of the robot = f(position of the actuators)

Inverse geometrical model (or inverse kinematic model):
 Position of the actuators = f(position of the robot)

• Kinematic model (state space representation) (or velocity kinematic model):

Speed of the robot = f(position, actuation speed)

• Dynamical model (state space representation):

Robot acceleration = f(position and speed, forces/torques)

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

- Outline
- Mechanics basis

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

5 Path planning

• Workspace and obstacles

- Path planning problem formulation
- Mobile robotics
- Visual servoing

Stäubli RX90 robot

OUTLINE

PATH PLANNING

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

NA 1.1

robotics

Visual servoing

RX90 robot

• Need to choose a path for the end effector that avoids

N. Marchand (gipsa-lab)

ENSE3-ASI 68 / 109

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PATH PLANNING

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

Visual servoing

RX90 robot

Need to choose a path for the end effector that avoids
 collisions

N. Marchand (gipsa-lab)

PATH PLANNING

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots
Inner-loop
Geometrical model
Kinematic model
Dynamical model
Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Need to choose a path for the end effector that avoids

- collisions
- singularities of the robot

N. Marchand (gipsa-lab)

ENSE3-ASI 68 / 109

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

RX90 robot

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space
 - The complexity of obstacle avoidance grows exponentially with the number of DOF

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

robotics

Visual servoing

RX90 robot

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space
 - The complexity of obstacle avoidance grows exponentially with the number of DOF
 - The method used are (usually):

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space
 - The complexity of obstacle avoidance grows exponentially with the number of DOF
- The method used are (usually):
 - Potential field: renders the obstacle repulsive

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space
 - The complexity of obstacle avoidance grows exponentially with the number of DOF
- The method used are (usually):
 - Potential field: renders the obstacle repulsive
 - Gradient descent or Probabilistic roadmaps to generate the path

WORKSPACE AND OBSTACLES

Robotics

N. Marchand

Introductior

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The workspace is the volume *W* the end effector can reach. Usually divided into:

N. Marchand (gipsa-lab)

ENSE3-ASI 69 / 109

WORKSPACE AND OBSTACLES

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- The workspace is the volume *W* the end effector can reach. Usually divided into:
 - Reachable

N. Marchand (gipsa-lab)

ENSE3-ASI 69 / 109

WORKSPACE AND OBSTACLES

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

parn planning

robotics

Visual servoin

RX90 robot

- The workspace is the volume *W* the end effector can reach. Usually divided into:
 - Reachable
 - Dexterous

N. Marchand (gipsa-lab)

ENSE3-ASI 69 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

parti planing

robotics

Visual servoina

RX90 robot

• The workspace is the volume *W* the end effector can reach. Usually divided into:

WORKSPACE AND OBSTACLES

- Reachable
- Dexterous
- The "configuration" is the "location" of all points of the robot

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The workspace is the volume *W* the end effector can reach. Usually divided into:

WORKSPACE AND OBSTACLES

- Reachable
- Dexterous
- The "configuration" is the "location" of all points of the robot
 - Configuration answers the question: where is the robot

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• The workspace is the volume *W* the end effector can reach. Usually divided into:

WORKSPACE AND OBSTACLES

- Reachable
- Dexterous
- The "configuration" is the "location" of all points of the robot
 - Configuration answers the question: where is the robot
 - The configuration can be adapted to the problem: from the set of all points of the robot to the sole the effector

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

RX90 robot

• The workspace is the volume *W* the end effector can reach. Usually divided into:

WORKSPACE AND OBSTACLES

- Reachable
- Dexterous
- The "configuration" is the "location" of all points of the robot
 - Configuration answers the question: where is the robot
 - The configuration can be adapted to the problem: from the set of all points of the robot to the sole the effector
 - The θ_i 's are sufficient to characterize the configuration of an arm robot for arm robots

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

WORKSPACE AND OBSTACLES

- The workspace is the volume *W* the end effector can reach. Usually divided into:
 - Reachable
 - Dexterous
- The "configuration" is the "location" of all points of the robot
 - Configuration answers the question: where is the robot
 - The configuration can be adapted to the problem: from the set of all points of the robot to the sole the effector
 - The θ_i 's are sufficient to characterize the configuration of an arm robot for arm robots
- The set of θ_i 's corresponding to a possible configuration is noted Q

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Obstacles are denotes O_i and the set of obstacle is $O = \cup O_i$

WORKSPACE AND OBSTACLES

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 70 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

WORKSPACE AND OBSTACLES

- Obstacles are denotes O_i and the set of obstacle is $O = \cup O_i$
- Let $\theta \in Q$ and $C(\theta)$ denote the corresponding configuration

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

pacir plaining

robotics

Visual servoing

RX90 robot

WORKSPACE AND OBSTACLES

- Obstacles are denotes O_i and the set of obstacle is $O = \cup O_i$
- Let $\theta \in Q$ and $C(\theta)$ denote the corresponding configuration
 - Then the workspace can be divided into:

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

RX90 robot

WORKSPACE AND OBSTACLES

- Obstacles are denotes O_i and the set of obstacle is $O = \cup O_i$
- Let $\theta \in Q$ and $C(\theta)$ denote the corresponding configuration
 - Then the workspace can be divided into:
 - the collision-free configuration subspace $Q_f = \{\theta \in Q | C(\theta) \cap O = \emptyset\}$

A B > A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

RX90 robot

• Obstacles are denotes O_i and the set of obstacle is $O = \bigcup O_i$

WORKSPACE AND OBSTACLES

- Let $\theta \in Q$ and $C(\theta)$ denote the corresponding configuration
 - Then the workspace can be divided into:
 - the collision-free configuration subspace $Q_f = \{\theta \in Q | C(\theta) \cap O = \emptyset\}$
 - the collision configuration subspace
 - $Q_c = \{ heta \in Q | C(heta) \cap O
 eq \emptyset \}$

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

NA . I. 11.

robotics

Visual servoing

RX90 robot

EXAMPLE: THE CAR

N. Marchand (gipsa-lab)

स≣ २००० ENSE3-ASI 71 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

EXAMPLE: THE CAR

N. Marchand (gipsa-lab)

Robotics

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

EXAMPLE: THE CAR

• The collision configuration subspace is the convex hull in which the robot and an obstacle make vertex to vertex contact

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

RX90 robot

EXAMPLE: THE CAR

- The collision configuration subspace is the convex hull in which the robot and an obstacle make vertex to vertex contact
- Can be much more complicate to obtain

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

RX90 robot

EXAMPLE: THE CAR

- The collision configuration subspace is the convex hull in which the robot and an obstacle make vertex to vertex contact
- Can be much more complicate to obtain
- Numerical simulation can easily solve this problem (systematic simulation)

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 71 / 109

EXAMPLE: ARM ROBOT

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Introduction

Outline

Mechanics basis

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

6 Path planning

- Workspace and obstacles
- Path planning problem formulation
- Mobile robotics
- Visual servoing

Stäubli RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 73 / 109

OUTLINE

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model

Dynamical

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

A RECALL ON GRADIENT DESCENT • $F(x, y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$

ENSE3-ASI 74 / 109

4 回 > 4 同 > 4 回 > 4 回 > ---

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

•
$$F(x,y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$$

• $z := (x,y), F(x,y) = F(z)$

N. Marchand (gipsa-lab)

ENSE3-ASI 74 / 109

E DQC

・ロン ・四 ・ ・ ヨン ・ ヨン …

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT

$$F(x,y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$$

$$F(x,y) = F(z)$$

• Aim: finding z^* such that $F(z^*)$ is minimum

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

patn plannir

Nobile robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT

$$F(x, y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$$

$$F(x, y) = F(x)$$

• Aim: finding z^* such that $F(z^*)$ is minimum

• Maximum/minimum obtained iteratively by :

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

N. Marchand (gipsa-lab)

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

patn plannir

Mobile robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT

$$F(x,y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$$

$$F(x,y) = F(z)$$

• Aim: finding z^* such that $F(z^*)$ is minimum

• Maximum/minimum obtained iteratively by :

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT

About the stop criteria

• Many solutions to stop the iteration

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

N. Marchand (gipsa-lab)

ENSE3-ASI 75 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT About the stop criteria

• Many solutions to stop the iteration

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

Better from the criteria point of view:
 stops if F(z_{k+1}) > F(z_k)

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT About the stop criteria

• Many solutions to stop the iteration

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

- Better from the criteria point of view: stops if $F(z_{k+1}) > F(z_k)$
- No more improvement in the criteria: stops if |F(z_{k+1}) - F(z_k)| < ε

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT About the stop criteria

• Many solutions to stop the iteration

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

- Better from the criteria point of view: stops if $F(z_{k+1}) > F(z_k)$
- No more improvement in the criteria: stops if |F(z_{k+1}) - F(z_k)| < ε
- No more slope (almost the same as previous condition) stops if $||\nabla F(z_k)|| < \varepsilon$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

A RECALL ON GRADIENT DESCENT

About the step size γ

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

$\bullet\,$ On the step size $\gamma\,$

ENSE3-ASI 76 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Consclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT About the step size γ

- On the step size γ
- Newton-Euler method: H, Hessian of F

$$z_{k+1} = z_k - \nabla F(z_k) H(x_k)^{-1}$$

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

A RECALL ON GRADIENT DESCENT About the step size γ

- On the step size γ
- Newton-Euler method: H, Hessian of F

$$z_{k+1} = z_k - \nabla F(z_k) H(x_k)^{-1}$$

• Quasi-Newton method:

$$z_{k+1} = z_k - \rho_k B_k \nabla F(z_k)$$

B_k: approximation of the Hessian
http://en.wikipedia.org/wiki/Quasi-Newton_method)

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

PATH PLANNING PROBLEM FORMULATION

• Want to go from one configuration θ_0 (position) to another one θ_f

N. Marchand (gipsa-lab)

ENSE3-ASI 77 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoin

RX90 robot

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma:[0,1]
 ightarrow Q_f$ such that

N. Marchand (gipsa-lab)

ENSE3-ASI 77 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoin

RX90 robot

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that

•
$$\gamma(0) = heta_0$$
 and $\gamma(1) = heta_f$

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

- Introductior
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that

•
$$\gamma(0) = \theta_0$$
 and $\gamma(1) = \theta_0$

• γ will represent a configuration between the initial configuration and the final

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion
- Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that

•
$$\gamma(0) = \theta_0$$
 and $\gamma(1) = \theta_f$

- $\bullet~\gamma$ will represent a configuration between the initial configuration and the final
- The aim will be to fin successive γ that remain in Q_f : $\tau \to \gamma(\tau)$ is a path from θ_0 to θ_f

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model
- Conclusior

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma: [0,1]
 ightarrow Q_{f}$ such that

•
$$\gamma(0) = heta_0$$
 and $\gamma(1) = heta_t$

- $\bullet ~\gamma$ will represent a configuration between the initial configuration and the final
- The aim will be to fin successive γ that remain in Q_f :

 $au
ightarrow \gamma(au)$ is a path from $heta_0$ to $heta_f$

• We define a potential field (criterium):

$$U(\theta) = U_{att}(\theta) + U_{rep}(\theta)$$

The aim will be to minimize the criterium

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 77 / 109

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma: [0,1]
 ightarrow {\it Q}_{\it f}$ such that

•
$$\gamma(0) = heta_0$$
 and $\gamma(1) = heta_t$

- $\bullet~\gamma$ will represent a configuration between the initial configuration and the final
- The aim will be to fin successive γ that remain in Q_f :

 $au
ightarrow \gamma(au)$ is a path from $heta_0$ to $heta_f$

• We define a potential field (criterium):

$$U(\theta) = U_{att}(\theta) + U_{rep}(\theta)$$

• $U_{att}(\theta)$ will attract γ to θ_f : the goal configuration

The aim will be to minimize the criterium

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 77 / 109

N. Marchand

- Introduction
- Outline
- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model
- Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma: [0,1]
 ightarrow {\it Q}_{\it f}$ such that

•
$$\gamma(0) = heta_0$$
 and $\gamma(1) = heta_t$

- $\bullet ~\gamma$ will represent a configuration between the initial configuration and the final
- The aim will be to fin successive γ that remain in Q_f :

 $au
ightarrow \gamma(au)$ is a path from $heta_0$ to $heta_f$

• We define a potential field (criterium):

$$U(\theta) = U_{att}(\theta) + U_{rep}(\theta)$$

- U_{att}(θ) will attract γ to θ_f: the goal configuration
 U_{rep}(θ) will repulse the system away from obstacle
- The aim will be to minimize the criterium

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 77 / 109

SIMPLE EXEMPLE OF OBJECTIVE FUNCTION

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Take $U_{att}(\theta) = ||\theta - \theta_f||$: U_{att} is the distance to the final destination

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

SIMPLE EXEMPLE OF OBJECTIVE FUNCTION

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Take $U_{att}(\theta) = ||\theta - \theta_f||$: U_{att} is the distance to the final destination

• Take $U_{rep}(\theta) = \frac{1}{d(\theta, Q_c)}$: U_{rep} is infinite if there is a risk of obstacle

ATTRACTIVE/REPULSIVE FIELDS

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Trying to minimize or maximize the distance is not necessary appropriate

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Trying to minimize or maximize the distance is not necessary appropriate

ATTRACTIVE/REPULSIVE FIELDS

• Inappropriate criterium may:

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

Trying to minimize or maximize the distance is not necessary appropriate

ATTRACTIVE/REPULSIVE FIELDS

• Inappropriate criterium may:

• generate local minima

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Trying to minimize or maximize the distance is not necessary appropriate

ATTRACTIVE/REPULSIVE FIELDS

- Inappropriate criterium may:
 - generate local minima
 - be delicate to minimize

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

robotics

Visual servoing

RX90 robot

• Trying to minimize or maximize the distance is not necessary appropriate

ATTRACTIVE/REPULSIVE FIELDS

- Inappropriate criterium may:
 - generate local minima
 - be delicate to minimize
 - have singularities

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Trying to minimize or maximize the distance is not necessary appropriate

ATTRACTIVE/REPULSIVE FIELDS

- Inappropriate criterium may:
 - generate local minima
 - be delicate to minimize
 - have singularities
- The main problem consist in finding a criterium that will be convex (or close to)

MANIPULATOR ROBOTS

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots
Inner-loop
Geometrical model
Kinematic mode
Dynamical
model
Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• We define a potential field for each articulation

N. Marchand (gipsa-lab)

ENSE3-ASI 80 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• We define a potential field for each articulation

• The attractive field is a monotonically increasing function of the distance of the *i*th frame to the goal position

MANIPULATOR ROBOTS

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

robotics

Visual servoing

RX90 robot

• We define a potential field for each articulation

• The attractive field is a monotonically increasing function of the distance of the *i*th frame to the goal position

MANIPULATOR ROBOTS

• The attractive field applies a fictitious force that push the manipulator into its goal position

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• We define a potential field for each articulation

• The attractive field is a monotonically increasing function of the distance of the *i*th frame to the goal position

MANIPULATOR ROBOTS

- The attractive field applies a fictitious force that push the manipulator into its goal position
- The repulsive field will create a fictitious force that will prevent collisions by repelling the robot from the obstacles

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

ATTRACTIVE FIELDS

• Simple potential field: conic well potential

$$U_{att_i}(\theta) = \zeta_i ||O_i(\theta) - O_i(\theta_f)||$$

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

ATTRACTIVE FIELDS

• Simple potential field: *conic well potential*

$$U_{att_i}(heta) = \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\zeta_i \nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i \frac{O_i(\theta) - O_i(\theta_f)}{||O_i(\theta) - O_i(\theta_f)||}$$

< □ > < 同 > < 三 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ATTRACTIVE FIELDS

• Simple potential field: *conic well potential*

$$U_{\mathsf{att}_i}(heta) = \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\zeta_i \nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i \frac{O_i(\theta) - O_i(\theta_f)}{||O_i(\theta) - O_i(\theta_f)||}$$

• it is a ζ_i -norm vector pointing to the objective

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

ATTRACTIVE FIELDS

• Simple potential field: *conic well potential*

$$U_{\mathsf{att}_i}(heta) = \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|$$

• The corresponding force is:

$$F_{att_i}(heta) = -\zeta_i
abla ||O_i(heta) - O_i(heta_f)|| = -\zeta_i rac{O_i(heta) - O_i(heta_f)}{||O_i(heta) - O_i(heta_f)||}$$

• it is a ζ_i -norm vector pointing to the objective

• has a singularity at the objective

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Simple potential field: *conic well potential*

$$U_{\mathsf{att}_i}(heta) = \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|$$

ATTRACTIVE FIELDS

• The corresponding force is:

$$F_{att_i}(\theta) = -\zeta_i \nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i \frac{O_i(\theta) - O_i(\theta_f)}{||O_i(\theta) - O_i(\theta_f)||}$$

• it is a ζ_i -norm vector pointing to the objective

- has a singularity at the objective
- ζ_i is a ponderation between articulations

ATTRACTIVE FIELDS

 $U_{\mathsf{att}_i}(\theta) = rac{1}{2} \zeta_i ||O_i(\theta) - O_i(\theta_f)||^2$

Robotics

• Instead we use: parabolic well potential

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Dynamical model

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual

RX90 robot

N. Marchand (gipsa-lab)

▲ ■ → ■ → Q ENSE3-ASI 82 / 109

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

• Instead we use: *parabolic well potential*

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

ATTRACTIVE FIELDS

outine

wechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

N. Marchand (gipsa-lab)

ENSE3-ASI 82 / 109

Arm robots Inner-loop Geometrical model Kinematic model

Dynamical

Workspace and obstacles path planning • Instead we use: *parabolic well potential*

$$U_{\mathsf{att}_i}(heta) = rac{1}{2} \zeta_i \, || \mathit{O}_i(heta) - \mathit{O}_i(heta_f) ||^2$$

ATTRACTIVE FIELDS

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

• this force is defined everywhere

RX90 robot

N. Marchand (gipsa-lab)

Arm robots Inner-loop

path planning

RX90 robot

• Instead we use: *parabolic well potential*

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

ATTRACTIVE FIELDS

• The corresponding force is:

 $F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$

- this force is defined everywhere
- Or the hybrid potential:

N. Marchand (gipsa-lab)

• Instead we use: *parabolic well potential*

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

ATTRACTIVE FIELDS

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

- this force is defined everywhere
- Or the hybrid potential:

•
$$U_{att_i}(\theta) = rac{1}{2}\zeta_i \left|\left|O_i(\theta) - O_i(\theta_f)\right|\right|^2$$
 if $\left|\left|O_i(\theta) - O_i(\theta_f)\right|\right| \le d$

. . .

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

< □ > < 同 > < 三 > < 三 >

• Instead we use: *parabolic well potential*

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

ATTRACTIVE FIELDS

• The corresponding force is:

 $F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$

- this force is defined everywhere
- Or the hybrid potential:

• $U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) - O_i(\theta_f)||^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$ • $U_{att_i}(\theta) = -d\zeta_i ||O_i(\theta) - O_i(\theta_f)|| - \frac{1}{2}\zeta_i d^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$

Acchanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Instead we use: *parabolic well potential*

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

ATTRACTIVE FIELDS

• The corresponding force is:

 $F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$

- this force is defined everywhere
- Or the hybrid potential:

• $U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) - O_i(\theta_f)||^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$ • $U_{att_i}(\theta) = -d\zeta_i ||O_i(\theta) - O_i(\theta_f)|| - \frac{1}{2}\zeta_i d^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$ • The corresponding force is:

Outline

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic moo Dynamical model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Instead we use: *parabolic well potential*

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

ATTRACTIVE FIELDS

• The corresponding force is:

 $F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$

- this force is defined everywhere
- Or the hybrid potential:

Path planning

Arm robots Inner-loop

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• $U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) - O_i(\theta_f)||^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$ • $U_{att_i}(\theta) = -d\zeta_i ||O_i(\theta) - O_i(\theta_f)|| - \frac{1}{2}\zeta_i d^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$

• The corresponding force is:

•
$$F_{att_i}(\theta) = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$
 if $||O_i(\theta) - O_i(\theta_f)|| \le d$

• Instead we use: *parabolic well potential*

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

ATTRACTIVE FIELDS

• The corresponding force is:

 $F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$

- this force is defined everywhere
- Or the hybrid potential:

• $U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) - O_i(\theta_f)||^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$ • $U_{att_i}(\theta) = -d\zeta_i ||O_i(\theta) - O_i(\theta_f)|| - \frac{1}{2}\zeta_i d^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$ • The corresponding force is:

•
$$F_{att_i}(\theta) = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$
 if $||O_i(\theta) - O_i(\theta_f)|| \le d$
• $F_{att_i}(\theta) = -d\zeta_i \frac{O_i(\theta) - O_i(\theta_f)}{||O_i(\theta) - O_i(\theta_f)||}$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$

Aechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual

RX90 robot

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 82 / 109

REPULSIVE FIELDS

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

• Again, one repulsive field by articulation is given

A B > A B > A B >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Again, one repulsive field by articulation is given

REPULSIVE FIELDS

• Should strongly repel the robot close to obstacles

N. Marchand (gipsa-lab)

ENSE3-ASI 83 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoin

RX90 robot

• Again, one repulsive field by articulation is given

Repulsive Fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle

N. Marchand

Introductior

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Again, one repulsive field by articulation is given

Repulsive Fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence ρ_i

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Again, one repulsive field by articulation is given

Repulsive Fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence ρ_i
- Define the repulsive field:

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Again, one repulsive field by articulation is given

Repulsive fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence ρ_i
- Define the repulsive field:

• $U_{rep_i}(heta) = 0$ if $d(heta, O) <
ho_i$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

robotics

Visual servoing

RX90 robot

• Again, one repulsive field by articulation is given

Repulsive Fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence ρ_i
- Define the repulsive field:

•
$$U_{rep_i}(\theta) = 0$$
 if $d(\theta, O) < \rho_i$
• $U_{rep_i}(\theta) = \frac{\zeta_i}{2} \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right)^2$ if $d(\theta, O) \ge \rho_i$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Again, one repulsive field by articulation is given

Repulsive fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence ρ_i
- Define the repulsive field:

•
$$U_{rep_i}(\theta) = 0$$
 if $d(\theta, O) < \rho_i$
• $U_{rep_i}(\theta) = \frac{\zeta_i}{2} \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right)^2$ if $d(\theta, O) \ge \rho_i$

• The corresponding fictive force is:

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Again, one repulsive field by articulation is given

Repulsive fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence ρ_i
- Define the repulsive field:

•
$$U_{rep_i}(\theta) = 0$$
 if $d(\theta, O) < \rho_i$
• $U_{rep_i}(\theta) = \frac{\zeta_i}{2} \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right)^2$ if $d(\theta, O) \ge \rho_i$

• The corresponding fictive force is:

•
$$F_{rep_i}(\theta) = 0$$
 if $d(\theta, O) < \rho_i$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Again, one repulsive field by articulation is given

Repulsive fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence ρ_i
- Define the repulsive field:

•
$$U_{rep_i}(\theta) = 0$$
 if $d(\theta, O) < \rho_i$
• $U_{rep_i}(\theta) = \frac{\zeta_i}{2} \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right)^2$ if $d(\theta, O) \ge \rho_i$

• The corresponding fictive force is:

•
$$F_{rep_i}(\theta) = 0$$
 if $d(\theta, O) < \rho_i$
• $F_{rep_i}(\theta) = -\zeta_i \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right) d(\theta, O)^{-2} \nabla d(\theta, O)$ if $d(\theta, O) \ge \rho_i$

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• The total joint torques acting on a robot is the sum of the torques from all attractive and repulsive potentials:

FROM ATTRACTIVE/REPULSIVE FORCES TO ACTUATOR TORQUES

$$au(heta) = \sum_{i} J_{O_i}^{T}(heta) \left(F_{\textit{att}_i}(heta) + F_{\textit{rep}_i}(heta)
ight)$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm

GRADIENT DESCENT

N. Marchand (gipsa-lab)

ENSE3-ASI 85 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm

GRADIENT DESCENT

First, determine your initial configuration

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

GRADIENT DESCENT

- Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 - First, determine your initial configuration
 - Second, given a desired point in the workspace, calculate the final configuration using the inverse kinematics: Use this to create an attractive potential field

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

GRADIENT DESCENT

- Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 - First, determine your initial configuration
 - Second, given a desired point in the workspace, calculate the final configuration using the inverse kinematics: Use this to create an attractive potential field
 - Ocate obstacles in the workspace: Create a repulsive potential field

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

GRADIENT DESCENT

- Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 - First, determine your initial configuration
 - Second, given a desired point in the workspace, calculate the final configuration using the inverse kinematics: Use this to create an attractive potential field
 - Ocate obstacles in the workspace: Create a repulsive potential field
 - 9 Sum the joint torques in the configuration space

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

GRADIENT DESCENT

- Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 - First, determine your initial configuration
 - Second, given a desired point in the workspace, calculate the final configuration using the inverse kinematics: Use this to create an attractive potential field
 - Ocate obstacles in the workspace: Create a repulsive potential field
 - Sum the joint torques in the configuration space
 - Use gradient descent to reach your target configuration

N. Marchand

Introduction

- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

- $\bullet \quad i=0, \ \theta[0]=\theta_0$
- (2) if $||\theta[i] \theta_f|| > \varepsilon$, then:
 - $\theta[i+1] =$ $\theta[i] + \alpha[i] \frac{\tau(\theta[i])}{||\tau(\theta[i])||}$ • i = i+1
 - goto 2

else:

• return $\theta[0], \ldots, \theta[i]$

- Many other algorithm are possible
 - steepest descent (gradient) (Euler)
 - Newton
 - ... see optimization books
- the θ[0],...,θ[i] are the successive configuration to track = path
- It is possible to add random to escape local minima

GRADIENT DESCENT

PROBABILISTIC ROADMAP

Robotics

N. Marchand

Introduction

Outline

• Randomly sample the configuration space

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

ENSE3-ASI 87 / 109

PROBABILISTIC ROADMAP

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

- Randomly sample the configuration space
- Enables to roughly separate Q_f from O

< □ > < 同 > < 三 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

• Randomly sample the configuration space

PROBABILISTIC ROADMAP

- Enables to roughly separate Q_f from O
- Discards the points "too close" from O

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile

robotics

Visual servoing

RX90 robot

• Randomly sample the configuration space

- Enables to roughly separate Q_f from O
- Discards the points "too close" from O
- Connect using straight line segments that do not intersect obstacles

PROBABILISTIC ROADMAP

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Randomly sample the configuration space

- Enables to roughly separate Q_f from O
- Discards the points "too close" from O
- Connect using straight line segments that do not intersect obstacles

PROBABILISTIC ROADMAP

• Eventually resample until Q_f is sufficiently covered

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Randomly sample the configuration space

- Enables to roughly separate Q_f from O
- Discards the points "too close" from O
- Connect using straight line segments that do not intersect obstacles

PROBABILISTIC ROADMAP

- Eventually resample until Q_f is sufficiently covered
- Chose the path in the connected space

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

SOME FINAL REMARKS

• All the previous methods assume an a priori knowledge of the environnement

N. Marchand (gipsa-lab)

▲ ■ → ■ → Q
ENSE3-ASI 88 / 109

A B > A B > A B >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

Some final remarks

- All the previous methods assume an a priori knowledge of the environnement
- Predictive control can also be used to handle constraints "on line"

N. Marchand (gipsa-lab)

ENSE3-ASI 88 / 109

N. Marchand

Introduction

Outline

- Mechanics
- Kinematics
- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

RX90 robot

Some final remarks

- All the previous methods assume an a priori knowledge of the environnement
- Predictive control can also be used to handle constraints "on line"
- Adding fictive force is a very power tool also widely used in formation control or robotics with communication constraints (mainly range)

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Born in the 50s, aiming to autonomously moving robots

Grey Walter's "Turtle" (machina speculatrix): attracted by light

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Born in the 50s, aiming to autonomous mobile robots

John Hopkins Univ. "Beast" robot: first use of transistor based sensing (ultrasound and photodiodes)

< □ > < 同 > < 三 > < 三 >

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Born in the 50s, aiming to autonomous mobile robots

Shakey robot from Stanford Univ.

Robotics

Robotics

N. Marchand

Introduction

- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Bio inspired locomotion: first biped robot

Honda E0 first biped robot (1986)

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 92 / 109

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

• Bio inspired locomotion: first biped walk

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Rabbit robot CNRS-Grenoble (2004)

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 93 / 109

Robotics

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Bio inspired locomotion: more about mobility

Boston Dynamics (SoftBank)

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 94 / 109

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• SLAM: Simultaneous localization and mapping

MOBILE ROBOTICS

https://github.com/erik-nelson/blam

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 95 / 109

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• SLAM: Simultaneous localization and mapping

N. Marchand (gipsa-lab)

ENSE3-ASI 96 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

MOBILE ROBOTICS

• Aerial robotics

N. Marchand (gipsa-lab)

Robotics

स≣ स्टि ENSE3-ASI 97 / 109

MOBILE ROBOTICS

Robotics

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Bionics

N. Marchand (gipsa-lab)

स≣ २००० ENSE3-ASI 98 / 109

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mod Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

• An arm robot equipped with a camera

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration

N. Marchand (gipsa-lab)

ENSE3-ASI 99 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration
- The configuration is defined by a *final* image feature to reach

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration
- The configuration is defined by a *final* image feature to reach
- Two possible configurations

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration
- The configuration is defined by a *final* image feature to reach
- Two possible configurations
- Eye in hand configuration

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration
- The configuration is defined by a *final* image feature to reach
- Two possible configurations
- Eye in hand configuration

• Eye to hand configuration

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 99 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING The key points

- Being able to extract feature from the image: "recognize" points of the object
- Being able to characterize the relation between the robot movement and the image changes

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 100 / 109

3

A B > A B > A B >

Image based visual servoing

THE INTERACTION MATRIX

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

The interaction matrix links the mouvement of O_c (lateral and rotational) to the movement of the feature points (f_i^c)

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

• s denotes the current feature depending upon

N. Marchand (gipsa-lab)

ENSE3-ASI 102 / 109

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)

ENSE3-ASI 102 / 109

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)

ENSE3-ASI 102 / 109

• s^{*} denotes the target feature

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)
- s^{*} denotes the target feature
- The relation between the image and the real world is given by the interaction matrix:

$$\dot{s} = L_s \nu_c$$

where

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)
- s^{*} denotes the target feature
- The relation between the image and the real world is given by the interaction matrix:

$$\dot{s} = L_s \nu_c$$

where

• $\nu_c := (v_c, \omega_c) = (\text{linear veloc}_{cam frame}, \text{angular veloc}_{cam frame})$

ENSE3-ASI 102 / 109

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)
- s^{*} denotes the target feature
- The relation between the image and the real world is given by the interaction matrix:

$$\dot{s} = L_s \nu_c$$

where

ν_c := (ν_c, ω_c) = (linear veloc_{cam frame}, angular veloc_{cam frame})
 L_s ∈ ℝ^{k×6}: interaction matrix (Jacobian)

ENSE3-ASI 102 / 109

A B > A B > A B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

CONTROL IN VISUAL SERVOING

A simple control approach

• Coupling the error and the interaction relation, one gets:

 $\dot{e} = L_s \nu_c$

N. Marchand (gipsa-lab)

ENSE3-ASI 103 / 109

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

CONTROL IN VISUAL SERVOING

A simple control approach

• Coupling the error and the interaction relation, one gets:

 $\dot{e} = L_s \nu_c$

• Take the linear velocities and angular velocities as control variable

A = A = A = A = A
 A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

CONTROL IN VISUAL SERVOING A simple control approach

• Coupling the error and the interaction relation, one gets:

 $\dot{e} = L_s \nu_c$

- Take the linear velocities and angular velocities as control variable
- Let $L_s^+ := (L_s^T L_s)^{-1} L_s^T$ be the Moore–Penrose pseudo-inverse of L_s

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

CONTROL IN VISUAL SERVOING A simple control approach

• Coupling the error and the interaction relation, one gets:

 $\dot{e} = L_s \nu_c$

- Take the linear velocities and angular velocities as control variable
- Let $L_s^+ := (L_s^T L_s)^{-1} L_s^T$ be the Moore–Penrose pseudo-inverse of L_s
- To force an exponential decrease of the error:

$$\dot{e} = -\lambda e$$

we must chose

$$\nu_c := -\lambda L_s^+ e$$

ENSE3-ASI 103 / 109

N. Marchand

- Introduction
- Outline
- Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

CONTROL IN VISUAL SERVOING A simple control approach

• Coupling the error and the interaction relation, one gets:

 $\dot{e} = L_s \nu_c$

- Take the linear velocities and angular velocities as control variable
- Let $L_s^+ := (L_s^T L_s)^{-1} L_s^T$ be the Moore–Penrose pseudo-inverse of L_s
- To force an exponential decrease of the error:

$$\dot{e} = -\lambda e$$

we must chose

$$\nu_c := -\lambda L_s^+ e$$

• Practically, L_s is never known perfectly and we use an approximation

N. Marchand (gipsa-lab)

ENSE3-ASI 103 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• Take a 3D point of coordinates P = (X, Y, Z) in the camera frame

IMAGE-BASED VISUAL SERVOING

N. Marchand (gipsa-lab)

ENSE3-ASI 104 / 109

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

IMAGE-BASED VISUAL SERVOING

• Take a 3D point of coordinates *P* = (*X*, *Y*, *Z*) in the camera frame

• Its coordinates in the image will be p = (x, y):

$$x = X/Z = (u - c_u)/f\alpha$$

$$y = Y/Z = (v - c_v)/f$$

where f is the focal length, α is the ratio of the pixel dimensions, c_u and c_v are the coordinates of the principal point.

3

ENSE3-ASI 104 / 109

N. Marchand

Introductio

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

IMAGE-BASED VISUAL SERVOING

• Take a 3D point of coordinates P = (X, Y, Z) in the camera frame

• Its coordinates in the image will be p = (x, y):

$$x = X/Z = (u - c_u)/f\alpha$$

$$y = Y/Z = (v - c_v)/f$$

where f is the focal length, α is the ratio of the pixel dimensions, c_u and c_v are the coordinates of the principal point.

• Derivating, we get

$$\dot{x} = \dot{X}/Z - X\dot{Z}/Z^2 = (\dot{X} - x\dot{Z})/Z$$

$$\dot{y} = \dot{Y}/Z - Y\dot{Z}/Z^2 = (\dot{Y} - y\dot{Z})/Z$$

ENSE3-ASI 104 / 109

3

IMAGE-BASED VISUAL SERVOING

 $\dot{X} = -v_c - \omega_c^{\times} X$

Robotics

• Using the Varignon's formula

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

N. Marchand (gipsa-lab)

A B > A B > A B >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

IMAGE-BASED VISUAL SERVOING

• Using the Varignon's formula

$$\dot{X} = -v_c - \omega_c^{\times} X$$

• Mixing the two last equation, we get the interaction matrix form *P*

$$\dot{p} = L_p \nu_c$$

with

$$L_{\rho} = \begin{pmatrix} -1/Z & 0 & x/Z & xy & -(1+x^2) & y \\ 0 & -1/Z & y/Z & 1+y^2 & -xy & -x \end{pmatrix}$$

ENSE3-ASI 105 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

IMAGE-BASED VISUAL SERVOING

• Using the Varignon's formula

$$\dot{X} = -v_c - \omega_c^{\times} X$$

• Mixing the two last equation, we get the interaction matrix form *P*

$$\dot{p} = L_p \nu_c$$

with

$$L_{p} = \begin{pmatrix} -1/Z & 0 & x/Z & xy & -(1+x^{2}) & y \\ 0 & -1/Z & y/Z & 1+y^{2} & -xy & -x \end{pmatrix}$$

ENSE3-ASI 105 / 109

• Z is the depth and is usually not known

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

IMAGE-BASED VISUAL SERVOING

• Using the Varignon's formula

$$\dot{X} = -v_c - \omega_c^{\times} X$$

• Mixing the two last equation, we get the interaction matrix form *P*

$$\dot{p} = L_p \nu_c$$

with

$$L_{p} = \begin{pmatrix} -1/Z & 0 & x/Z & xy & -(1+x^{2}) & y \\ 0 & -1/Z & y/Z & 1+y^{2} & -xy & -x \end{pmatrix}$$

- Z is the depth and is usually not known
- To control six degrees of freedom, at least three points are required (p₁, p₂, p₃)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

IMAGE-BASED VISUAL SERVOING

• Using the Varignon's formula

$$\dot{X} = -v_c - \omega_c^{\times} X$$

• Mixing the two last equation, we get the interaction matrix form *P*

$$\dot{p} = L_p \nu_c$$

with

$$L_{p} = \begin{pmatrix} -1/Z & 0 & x/Z & xy & -(1+x^{2}) & y \\ 0 & -1/Z & y/Z & 1+y^{2} & -xy & -x \end{pmatrix}$$

- Z is the depth and is usually not known
- To control six degrees of freedom, at least three points are required (p₁, p₂, p₃)
- Camera parameters can be obtained by calibration

3

IMAGE-BASED VISUAL STEREO SERVOING

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• We assume now that we have two cameras

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic mode Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

N. Marchand (gipsa-lab)

Robotics

Stäubli RX90 robot

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

• $-160 \le \theta_1 \le 160$: waist angle

ENSE3-ASI 107 / 109

N. Marchand (gipsa-lab)

Robotics

Stäubli RX90 robot

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

Stäubli RX90 robot

ENSE3-ASI 107 / 109

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

Stäubli RX90 robot

• $-135 \le \theta_3 \le 135$: elbow angle

ENSE3-ASI 107 / 109

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

Stäubli RX90 robot

- $-135 \le \theta_3 \le 135$: elbow angle
- $-266 \le \theta_4 \le 266$: wrist roll angle

ENSE3-ASI 107 / 109

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

- Arm robots Inner-loop Geometrical model Kinematic model Dynamical model
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

STÄUBLI RX90 ROBOT

- $-135 \le \theta_3 \le 135$: elbow angle
- $-266 \le \theta_4 \le 266$: wrist roll angle
- $-100 \le heta_5 \le 100$: wrist bend angle

ENSE3-ASI 107 / 109

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conscluzion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

STÄUBLI RX90 ROBOT

- $-135 \le \theta_3 \le 135$: elbow angle
- $-266 \le \theta_4 \le 266$: wrist roll angle
- $-100 \le heta_5 \le 100$: wrist bend angle
- $-266 \le \theta_6 \le 266$: wrist swivel angle

ENSE3-ASI 107 / 109

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

STÄUBLI RX90 ROBOT

- $-135 \le \theta_3 \le 135$: elbow angle
- $-266 \le \theta_4 \le 266$: wrist roll angle
- $-100 \le heta_5 \le 100$: wrist bend angle
- $-266 \le \theta_6 \le 266$: wrist swivel angle
- Rest angles:

ENSE3-ASI 107 / 109

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

STÄUBLI RX90 ROBOT

- $-135 \le \theta_3 \le 135$: elbow angle
- $-266 \le \theta_4 \le 266$: wrist roll angle
- $-100 \le heta_5 \le 100$: wrist bend angle
- $-266 \le \theta_6 \le 266$: wrist swivel angle
- Rest angles:
 - θ₁₀ = 90

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

STÄUBLI RX90 ROBOT

- $-135 \le \theta_3 \le 135$: elbow angle
- $-266 \le \theta_4 \le 266$: wrist roll angle
- $-100 \le heta_5 \le 100$: wrist bend angle
- $-266 \le \theta_6 \le 266$: wrist swivel angle

• Rest angles:

• $\theta_{10} = 90$

•
$$\theta_{20} = \theta_{30} = 90$$

ENSE3-ASI 107 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Dynamical model

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

• 6 angles with constraints:

- $-160 \le \theta_1 \le 160$: waist angle
- $-120 \le \theta_2 \le 120$: shoulder angle

STÄUBLI RX90 ROBOT

- $-135 \le \theta_3 \le 135$: elbow angle
- $-266 \le \theta_4 \le 266$: wrist roll angle
- $-100 \le heta_5 \le 100$: wrist bend angle
- $-266 \le \theta_6 \le 266$: wrist swivel angle

• Rest angles:

• $\theta_{10} = 90$

•
$$\theta_{20} = \theta_{30} = 90$$

• $\theta_{40} = \theta_{50} = \theta_{60} = 0$

N. Marchand

Introduction

Outline

Mechanics

• Stäubli RX90 robot

dı

177

 d_0

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Consclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing

RX90 robot

Stäubli RX90 robot

d₄

d₃

N. Marchand (gipsa-lab)

Robotics

a₂

 d_2

 a_1

► < ≣ ► ≣ • ् २० ENSE3-ASI 108 / 109

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Dynamical model

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing

RX90 robot

Stäubli RX90 robot

• What are the number of DOF ?

Stäubli RX90 robot

d_0	d_1	a_1	d_2	<i>a</i> 2	<i>d</i> ₃	<i>d</i> ₄
	177					

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 108 / 109

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing

RX90 robot

Stäubli RX90 robot

• What are the number of DOF ?

STÄUBLI RX90 ROBOT

• Compute the forward kinematic (geometrical model) of the wrist

d_0	d_1	a_1	<i>d</i> ₂	a 2	<i>d</i> ₃	d_4
	177					

N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI 108 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing

RX90 robot

Stäubli RX90 robot

• What are the number of DOF ?

STÄUBLI RX90 ROBOT

- Compute the forward kinematic (geometrical model) of the wrist
- Compute the inverse kinematic

d_0	d_1	<i>a</i> 1	<i>d</i> ₂	a ₂	<i>d</i> ₃	<i>d</i> ₄
	177					

ENSE3-ASI 108 / 109

N. Marchand

Introduction

Outline

Mechanics

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

RX90 robot

Stäubli RX90 robot

Compute U_{att} and U_{rep} as function of the current position p = (x, y, z) and the desired final position p_f = (x_f, y_f, z_f)
Compute U(p, p_f) = U_{att} + U_{rep} ∈ ℝ⁺
Compute ∇U ∈ R³, the derivative of U w.r.t. p
∇U can be computed analytically
∇U can be computed numerically for ε small:

$$\nabla U \approx \left(\frac{\frac{U(x-\varepsilon,y,z,p_f) - U(x+\varepsilon,y,z,p_f)}{2\varepsilon}}{\frac{U(x,y-\varepsilon,z,p_f) - U(x,y+\varepsilon,z,p_f)}{2\varepsilon}}{\frac{U(x,y,z-\varepsilon,p_f) - U(x,y,z+\varepsilon,p_f)}{2\varepsilon}} \right)$$

Program an iterative routine with the following iteration:

$$p_{k+1} = p_k - \gamma \nabla U(p_k, p_f)$$

- Start the program at your initial position p₀ and stop the program when p_k is close to p_f
- **6** The successive p_0 , p_1 , ... give you the path

N. Marchand (gipsa-lab)

ENSE3-ASI 109 / 109