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Introduction
Historical perspective

A great interest in ”automatic/robotic” systems
even in mythology:

Talos, created by Hephaistos and offered to
the king Minos
In Iliad, Hephaistosis referred as creator of
technical artificial creatures
384-322 BJC, Aristote is speaking about
machines doing human work

First realizations

In Egypt: moving jaw of Anubis mask, moving arm of Amon’s
statue to designate the new pharaon
In Alexandria: fountains with moving birds (hydraulic systems)
Early mechanical automatons in the 9th/10th century (mainly
in the Arabic world)
Clocks and automatons in the 13th/14th century (Europe)
Industrial automatons: 18th/19th century (e.g. Vaucanson,
Jacquard)
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Introduction
Historical perspective

First use of the word Robot (means forced labor or
serf in Czech) in the play R.U.R. (Rossum’s
Universal Robots) by Karel Capek (1890-1938) in
January 1921.

In R.U.R., Capek poses a paradise, where the machines

initially bring so many benefits but in the end bring an

equal amount of blight in the form of unemployment and

social unrest
Science fiction

Often a bad image: men against robots, dystopic society, etc.
More and more a good image.

Formal definition (Robot Institute of America)

A reprogrammable, multifunctional manipulator designed to move material,
parts, tools, or specialized devices through various programmed motions for the
performance of a variety of tasks
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Robots and their image

Robots have a bad image (1930-1960)

Robots take human works
Robots are dangerous since potentially independent and
more intelligent than we are

Robots have a better image (1960-today)

Robots can make things that human can not do (space,
etc.)
Human can do things that robots can not do (we still are
clever)
Robots can be games
Robots can be good or bad

N. Marchand (gipsa-lab) Robotics ENSIT 4 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Robotics industry (1/many)

Where are the robots ?
France:

61% in automotive industry
14% in chemical industry
. . .
4% in electricity industry
3% in food industry

What kind of robots ?

Industry: ground fixed robots: manipulators, arm robots, . . .

Private individuals: mobile robots: service, games, . . .

Future of robots:

Industrial mobile robotics
Medical robotics
Service robots (growing field)
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Robotics industry... today (2/many)
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Vacuum cleaner

Kuka robot for automotive industry

Surgical robot

Forest robot

Hollywood robots

Micromanipulator
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... and in the future ? (2 bis/many)
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Nanorobotics (FEMTO-ST, Fr)

Military robots (Black Hornet, FLIR Systems, No)
2015 : Autonomous weapons: an open letter

from AI & Robotics researchers [link]

Bio-inspired robots
Spot from Boston Dynamics

Microrobotics (Harvard, USA)

Exoskeleton
Modular robots

https://futureoflife.org/open-letter-autonomous-weapons/
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Robotics industry (3/many)

Past

Future

Enova Robotics, Sousse, Tunisia

N. Marchand (gipsa-lab) Robotics ENSIT 8 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Robotics industry (3/many)

Past

Future

Enova Robotics, Sousse, Tunisia

N. Marchand (gipsa-lab) Robotics ENSIT 8 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Robotics industry: UAVs (4/many)

UAV’s Manufacturer

UAVs by countries
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Robotics industry: UAVs (5/many)

Development of the drone’s industry:

Foundation of DJI: 2006

Very competitive market with a high technological level of
intergration
Commercial margin of 10% to 15% (more than 50% on iPhone)
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Robotics industry: UAVs (6/many)
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Robolution (1/many)
Number of robots for every 10 000 workers:

N. Marchand (gipsa-lab)  

Nb of robots/10 000 workers
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Japan
US
EU
Germany
France, Finland, 
Spain
GB

70% of robots in companies with more than 1000 employees
17% of robots in companies with less than 300 employees
In 2002, 95% of robots > 30ke and 32% of robots > 60ke
79% of decrease of the mean price between 1990 and 2002
Big robots manufacturers: ABB (S), KUKA (G), Fanuc (JP),
etc.
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Robolution (2/many)

Robotics enables 90% of cost reduction (60% for delocation)

Each new robot destroys 6.2 jobs [MIT/Boston 1990-2007, 2017]

47% of jobs in the US, 50% of jobs in Europe have a high risk of
being replaced by robots in the next 20 years [Oxford, 2013] . . . but
only 9% according [OCDE, 2016]

Poor countries are more vulnerable, especially world factories (85% of
the jobs in Ethiopia, 77% in Chine [World Bank])

Sectors with high impact: Administration et Production

Winner sectors: Finance, Maths/Sciences, Education

No link between unemployment and robots

Helps to relocate jobs in countries where the consumers are

Very few studies on created jobs (compared to destroyed jobs)

800 000 direct jobs in robotics in 2020 and more than 2 millions in
connected domains (electronic, energy, agriculture, etc.)
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Robolution (3/many)

What about the previous industrial revolution ?

Machines have created more jobs than they have replaced
in the last 140 years
Working is getting less and less exhausting
Increase of new jobs (+580% éducation)
But we had fears, as in any big change periods:

1675 : Destruction of machines by weavers (England),
1788 : 2000 workers break weaving machines (France),
1811-1812 : Luddism (Angleterre)
1858 : Karl Marx is prophesies the replacement of the
humans by machines
1930 : John Maynard Keynes invents the term
”technological unemployment”
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Outline

Basic mechanics for robotics

Space representation
frames, coordinate transformation, etc.

Force and torques

Modelisation

Control for robots

All potential problems:
Oscillations, dry friction, saturations, etc.

Linear approaches
Nonlinear approaches
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Outline
1 Introduction
2 Modeling

Cartesian coordinates
Orientation
Frames
Newton

3 The quadrotor case
4 Kinematics and dynamics of robots

Arm robots
Inner-loop
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5 Path planning
Workspace and obstacles
Path planning problem formulation

6 Mobile robotics
7 Visual servoing
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1 Introduction

2 Modeling
Cartesian coordinates
Orientation
Frames
Newton

3 The quadrotor case

4 Kinematics and dynamics of robots

5 Path planning

6 Mobile robotics

7 Visual servoing
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Position and speed

The position of some point P in the fixed frame
F(o, ~ex , ~ey , ~ez ) is the vector ~p = (x , y , z)T

The speed of P in F is the vector ~s = ~̇p = (ẋ , ẏ , ż)T
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Rotations

A rotation is represented by a 3× 3 matrix R such that RT = R−1 and detR = 1

A rotation of angle θ around:

axis ~ex is given by:

Rx =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ




axis ~ey is given by:

Ry =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




axis ~ez is given by:

Rz =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1




a unit vector ~u = (ux , uy , uz )T :




u2
x + (1− u2

x )cθ uxuy (1− cθ)− uzsθ uxuz (1− cθ) + uy sθ
uxuy (1− cθ) + uzsθ u2

y + (1− u2
y )cθ uyuz (1− cθ)− uxsθ

uxuz (1− cθ)− uy sθ uyuz (1− cθ) + uxsθ u2
z + (1− u2

z )cθ




with c· = cos(·) and s· = sin(·) (and later on t· = tan(·))

The coordinates q of point Q obtained by rotating P with rotation R is q = Rp

The rotation resulting from 2 successive rotations R1 and then R2 is R2R1
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Products and associated tools

The scalar product < v1, v2 > is defined by: < v1, v2 >:= vT
1 v2 ∈ R

The cross product v1 × v2 is defined by:

v1 × v2 :=



v1yv2z − v1zv2y

v1zv2x − v1xv2z

v1xv2y − v1yv2x


 ∈ R3

The skew-symmetric matrix associated to a vector p = (x , y , z)T is:

p× :=




0 −z y
z 0 −x
−y x 0




The set of skew-symmetric matrix with the brackett [M1,M2] = M1M2 −M2M1 is
called SO(3) and forms an algebra

Skew-symmetric matrices and cross product:

v×u = v × u

Skew-symmetric matrices and rotations

u× sin θ + (I − uuT ) cos θ + uuT = exp((uθ)×)
is the rotation of angle θ leaving axis u fixed
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Attitude representation: angles

Attitude:

equivalent of position for angles: what is the orientation of an
object w.r.t. the ground ?
gives the rotation that transforms the reference frame into
the body frame

Many attitude representations

Euler angles
Quaternions
Rotation matrix
Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake,
azimuth-elevation-skew, . . .

Euler angles: 3 angles, 27 possible rotations

Engineering and robotics communities typically
use 3-1-3 Euler angles
Representations with singularities

Quaternions

u fixed by rotation of angle θ

the quaternion is:

q =




ux sin θ/2
uy sin θ/2
uz sin θ/2
cos θ/2


 =

(
~q
q0

)
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Many attitude representations

Euler angles
Quaternions
Rotation matrix
Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake,
azimuth-elevation-skew, . . .

Euler angles: 3 angles, 27 possible rotations

Engineering and robotics communities typically
use 3-1-3 Euler angles
Representations with singularities

Quaternions

u fixed by rotation of angle θ

the quaternion is:

q =




ux sin θ/2
uy sin θ/2
uz sin θ/2
cos θ/2


 =

(
~q
q0

)
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Attitude representation : angular
velocities

The angular velocity ω = (ω1, ω2, ω3)T represents the rotation speed w.r.t.
each axis of the body frame

Caution: Angular velocities are not the time derivatives of Euler angles

Angular velocities are given by:

Rotation matrix:
Ṙ = Rω×

Quaternions :

~̇q =
1

2
Ω(~ω)q

=
1

2
Ξ(q)~ω

with





Ω(~ω) =

(
0 −~ωT

~ω −~ω×
)

Ξ(q) =

(
−~qT

I3×3q0 + ~q×

)
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Moving frames

Varignon’s formula

d ~U

dt

M

=
d ~U

dt

F

+ ΩF/M × ~UF
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Moving frames

F := (O, ~ex , ~ey , ~ez ) fixed inertial frame

M := (M, ~t1, ~t2, ~t3): mobile frame

R: rotation matrix s.t. M = RF
ΩM/F : angular velocity matrix of M w.r.t. F
Velocities:

Absolute velocity

d ~OP

dt

F

=
d ~OM

dt

F

+
d ~MP

dt

M

+ ΩM/F × ~MP

Speed of M w.r.t F
Relative velocity
Due to the rotation of M w.r.t. F

N. Marchand (gipsa-lab) Robotics ENSIT 24 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Moving frames

F := (O, ~ex , ~ey , ~ez ) fixed inertial frame

M := (M, ~t1, ~t2, ~t3): mobile frame

R: rotation matrix s.t. M = RF
ΩM/F : angular velocity matrix of M w.r.t. F
Velocities:

Absolute velocity

d ~OP

dt

F

=
d ~OM

dt

F

+
d ~MP

dt

M

+ ΩM/F × ~MP

Speed of M w.r.t F
Relative velocity
Due to the rotation of M w.r.t. F

N. Marchand (gipsa-lab) Robotics ENSIT 24 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Moving frames

F := (O, ~ex , ~ey , ~ez ) fixed inertial frame

M := (M, ~t1, ~t2, ~t3): mobile frame

R: rotation matrix s.t. M = RF

ΩM/F : angular velocity matrix of M w.r.t. F
Velocities:

Absolute velocity

d ~OP

dt

F

=
d ~OM

dt

F

+
d ~MP

dt

M

+ ΩM/F × ~MP

Speed of M w.r.t F
Relative velocity
Due to the rotation of M w.r.t. F

N. Marchand (gipsa-lab) Robotics ENSIT 24 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Moving frames

F := (O, ~ex , ~ey , ~ez ) fixed inertial frame

M := (M, ~t1, ~t2, ~t3): mobile frame

R: rotation matrix s.t. M = RF
ΩM/F : angular velocity matrix of M w.r.t. F

Velocities:

Absolute velocity

d ~OP

dt

F

=
d ~OM

dt

F

+
d ~MP

dt

M

+ ΩM/F × ~MP

Speed of M w.r.t F
Relative velocity
Due to the rotation of M w.r.t. F

N. Marchand (gipsa-lab) Robotics ENSIT 24 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Moving frames

F := (O, ~ex , ~ey , ~ez ) fixed inertial frame

M := (M, ~t1, ~t2, ~t3): mobile frame

R: rotation matrix s.t. M = RF
ΩM/F : angular velocity matrix of M w.r.t. F
Velocities:

Absolute velocity

d ~OP

dt

F

=
d ~OM

dt

F

+
d ~MP

dt

M

+ ΩM/F × ~MP

Speed of M w.r.t F
Relative velocity
Due to the rotation of M w.r.t. F

N. Marchand (gipsa-lab) Robotics ENSIT 24 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Moving frames
F := (O, ~ex , ~ey , ~ez ) fixed frame

M := (M, ~t1, ~t2, ~t3): mobile frame
R: rotation matrix s.t. M = RF
ΩM/F : angular velocity matrix of M w.r.t. F
Acceleration:

P̈F :=

(
dṖF

dt

)F
=

dṖM

dt

F

+
dΩM/F × PF

dt

dṖM

dt

F

= P̈M + ΩM/F × ṖM (Varignon’s formula)

dΩM/F × PF

dt
= Ω̇M/F × PF + ΩM/F × ṖF

dΩM/F × PF

dt
= Ω̇M/F×PF+ΩM/F× ṖM+ΩM/F×(ΩM/F×PF )

all together:

P̈M = P̈F − 2Ω× ṖM − Ω̇× PF − Ω× (Ω× PF )

Coriolis effect
Euler effect (tangent acceleration)

Centrifugal effect
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= Ω̇M/F×PF+ΩM/F× ṖM+ΩM/F×(ΩM/F×PF )

all together:
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dṖM

dt

F
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Newton’s laws

Consider:

an inertial frame F
a body of mass m :=

∑

i

mi composed of elements located in ~pi with speed ~vi in F

or a body of mass m :=

∫

body

dm composed of elementary part located in ~pdm with speed ~vdm

in F
~p :=

∑
i mi~pi

m
defines the position of its center of mass G in F

or ~p :=

∫
body

dm~pdm

m
defines the position of its center of mass G in F

~v := ~̇p defines speed of the center of mass

~ri := (~pi − ~p) (resp. ~rdm := (~pdm − ~p))

Linear Momentum

~P :=
∑

i

mi~vi = m~v ∈ R3

~P :=

∫

body

~vdmdm ∈ R3

Angular Momentum

~L :=
∑

i

mi (~pi − ~p)× ~vi

~L :=

∫

body

(~pdm − ~p)× ~vdmdm

=

∫

body

||~rdm||2 dm
︸ ︷︷ ︸

J: moment of inertia

~ω
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Newton’s laws

Consider:

a rigid body

an inertial frame F
a moving frame M centered in the center of mass and aligned with the
main axis of the rigid body

Let ~Fi ’s be forces applying on the body with moment arm ~ai

Newton’s second law

∑
~F =

d ~P

dt

F

Conservation of the angular
momentum

∑
~τ =

d~L

dt

F

In a moving frame (Varignon’s formula):

d~L

dt

F

=
d~L

dt

M

+ Ω× ~L
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Menu
1 Introduction
2 Modeling

Cartesian coordinates
Orientation
Frames
Newton

3 The quadrotor case
4 Kinematics and dynamics of robots

Arm robots
Inner-loop
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5 Path planning
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Path planning problem formulation
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How it works

4 fixed rotors with controlled rotation
speed si

4 generated forces Fi

4 counter-rotating torques Γi

Roll movement

generated with a
dissymmetry between left and right
forces:

Γr = l(F4 − F2)

Pitch movement

generated with a
dissymmetry between front and rear
forces:

Γp = l(F1 − F3)

Yaw movement

generated with a
dissymmetry between front/rear and
left/right torques:

Γy = Γ1 + Γ3 − Γ2 − Γ4

Principe de fonctionnement
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Actuation and aerodynamics

Electrical motor: A 2nd order system with friction and saturation

Aerodynamical forces and torques: Very complex models exist
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Actuation and aerodynamics

Electrical motor: A 2nd order system with friction and saturation
usually approximated by a 1rst order system:

ṡi = − k2
m

JrR
si −

1

Jr
τload +

km

JrR
satŪi

(Ui ) i ∈ {1, 2, 3, 4}

si : rotation speed
Ui : voltage applied to the motor; real control variable

τload: motor load: τload = kgearboxcD |si | si with cD drag coefficient

Aerodynamical forces and torques: Very complex models exist
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Actuation and aerodynamics

Electrical motor: A 2nd order system with friction and saturation
usually approximated by a 1rst order system:

ṡi = − k2
m

JrR
si −

1

Jr
τload +

km

JrR
satŪi

(Ui ) i ∈ {1, 2, 3, 4}

si : rotation speed
Ui : voltage applied to the motor; real control variable

τload: motor load: τload = kgearboxcD |si | si with cD drag coefficient

Aerodynamical forces and torques: Very complex models exist
but overcomplicated for control, better use the simplified model:

Fi = cT s2
i

Γr = lcT (s2
4 − s2

2 )

Γp = lcT (s2
1 − s2

3 )

Γy = lcD(s2
1 + s2

3 − s2
2 − s2

4 )

i ∈ {1, 2, 3, 4}

cT : thrust coefficient, cD : drag coefficient
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Frames and variables

Two frames

a fixed frame E(~e1, ~e2, ~e3)
a frame attached to the X4
T (~t1, ~t2, ~t3)

Frame change

a rotation matrix R from T to E

~e1

~e2

~e3

~t1

~t2

~t3

State variables:

Cartesian coordinates (in E)

position ~p
velocity ~v

Attitude coordinates:

angular velocity ~ω in the moving frame T
either: Euler angles three successive rotations about ~t3, ~t1

and ~t3 of angles angles φ, θ and ψ giving R
or: Quaternion representation (q0, ~q) = (cosβ/2, ~u sinβ/2)
represent a rotation of angle β about ~u
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Newton’s laws

Cartesian coordinates:




~̇p = ~v

m~̇v = −mg~e3 + R ·
∑

i

Fi (si )~t3

︸ ︷︷ ︸
~T : control thrust

+~Fext

Attitude:

Rotation matrix formalism:
{

Ṙ = R~ω×

J ~̇ω = −~ω×J~ω + ~Γc + ~Γext
with ~ω× =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




~ω× is the skew symmetric tensor associated to ~ω
Quaternion formalism:





~̇q =
1

2
Ω(~ω)~q

=
1

2
Ξ(q)~ω

J ~̇ω = −~ω×J~ω + ~Γc + ~Γext

with





Ω(~ω) =

(
0 −~ωT

~ω −~ω×
)

Ξ(q) =

(
−~qT

I3×3q0 + ~q×

)

where ~Γc =




Γr (s2, s4)
Γp(s1, s3)

Γy (s1, s2, s3, s4)


 are the control torques

N. Marchand (gipsa-lab) Robotics ENSIT 33 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Newton’s laws

Cartesian coordinates:




~̇p = ~v

m~̇v = −mg~e3 + R ·
∑

i

Fi (si )~t3

︸ ︷︷ ︸
~T : control thrust

+~Fext

Attitude:

Rotation matrix formalism:
{
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The wronskian matrix

Consider the 1-2-3 Euler angles (φ, θ, ψ)

The rotation matrix is given by:

R = RzRyRx =



cθcφ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsφ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ




The relation between the time derivative of the Euler angles and the angular velocity is:

~ω =



φ̇
0
0


+ Rz




0

θ̇
0


+ RzRy




0
0

ψ̇


 = W−1



φ̇

θ̇

ψ̇
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cθsφ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ




The relation between the time derivative of the Euler angles and the angular velocity is:

~ω =



φ̇
0
0


+ Rz




0

θ̇
0


+ RzRy




0
0

ψ̇


 = W−1



φ̇

θ̇

ψ̇




~e1

~e2

~e3

~t1

~t2

~t3 ω1

ω2

ω3
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The relation between the time derivative of the Euler angles and the angular velocity is:

~ω =



φ̇
0
0


+ Rz




0

θ̇
0


+ RzRy




0
0

ψ̇


 = W−1



φ̇

θ̇

ψ̇




W is called the wronskian matrix given by (for 1-2-3 Euler angles):

W =




0
sφ
cθ

cφ
cθ

0 cφ −sφ
1 sφtθ cφtθ




This matrix is singular for θ = π/2 + kπ
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A first model: review of nonlinearities





ṡi = − k2
m

JrR
si −

kgearboxcD

Jr
|si | si +

km

JrR
satŪi

(Ui )

~̇p = ~v

m~̇v = −mg~e3 + R




0
0∑

i

Fi (si )




Ṙ = R~ω×

J ~̇ω = −~ω×J~ω +




Γr (s2, s4)
Γp(s1, s3)

Γy (s1, s2, s3, s4)
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A first model: review of nonlinearities





ṡi = − k2
m

JrR
si −

kgearboxcD

Jr
|si | si +

km

JrR
satŪi

(Ui )

~̇p = ~v

m~̇v = −mg~e3 + R




0
0∑

i

Fi (si )




Ṙ = R~ω×

J ~̇ω = −~ω×J~ω +




Γr (s2, s4)
Γp(s1, s3)

Γy (s1, s2, s3, s4)




In red: nonlinearities
In blue: where the control variables act
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Parameter identification

Electrical motor:

For small input steps, the system behaves very close to a linear
first order system
Hence, use linear identification tools
Ūi is found on the data-sheet of the motor (damage avoidance)

Aerodynamical parameters: b and cD

b and cD measured with specific test beds, depends upon temperature,
distance from ground, etc.

Mechanical parameters:

l length of an arm of the helicopter, easy to measure
m total mass of the helicopter, easy to measure
J body inertia, hard to have precisely
Ir rotor inertia, hard to have precisely
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Lorsqu’on bouge l’axe, l’hélice répond à la perturbation d’une manière similaire aux hélices 
Proxflyer ce qui nous promet de bons résultats sur le CoaX. Malheureusement nous n’avons pas 
pu tester le comportement du système avec les deux hélices sur le système contrarotatif n’ayant 
pas deux hélices à disposition avant le montage final. 
 

5.5.2 Mécanisme de contra rotation avec hélices blanches  
 
Nous avons fait tourner le module muni d’hélices blanches 
sur une balance pour avoir quelques chiffres quant à la 
qualité du système. Les hélices blanches ne sont pas les plus 
optimisée pour notre application, mais elle donne déjà des 
informations utiles pour la suite du projet. Les résultats sont 
représentés dans un tableau et des graphiques plus loin. 
 
 
 
 
 
 
 
 
 
 
 
Pour tester les hélices ou les moteurs, nous utilisons, en temps normal, un ban de test 
spécialement conçu à cet effet. La force de poussée est transmise à la balance via un levier (voir 
les tests des propulseurs latéraux). La valeur de la poussée est alors déduite à l’aide d’une 
constante. Cela est difficilement réalisable avec le système contrarotatif, mais comme le lacet 
résultant est faible et que les hélices sont montées à l’envers, seule une petite fixation à la balance 
suffit pour avoir des résultats satisfaisants. 
 
Pour les tests, nous avons utilisé un moteur CC Faulhaber 1724 [10] avec une réduction de 1:4. 
Les hélices sont placées à l’envers sur les axes, de façon à appliquer une poussée verticale vers le 
bas. On évite ainsi les effets dus à la réflexion du flux d’air produit par les hélices sur le sol.  

 
Figure 36 : Hélices blanches Figure 35 : Ban de test utilisé 

Mechanical parameters:

l length of an arm of the helicopter, easy to measure
m total mass of the helicopter, easy to measure
J body inertia, hard to have precisely
Ir rotor inertia, hard to have precisely
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The flapping effect

The thrust was assumed to be
∑

i

Fi (si )~t3, that is colinear to ~t3

It has been proved to be false because it neglects the effect of the apparent wind speed, this
is the flapping effect

Higher thrust on one side of the blades

The thrust becomes
∑

i

Rflapping

i Fi (si )~t3, torques are also modified
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The flapping effect

The thrust was assumed to be
∑

i

Fi (si )~t3, that is colinear to ~t3

It has been proved to be false because it neglects the effect of the apparent wind speed, this
is the flapping effect

Higher thrust on one side of the blades

The thrust becomes
∑

i

Rflapping

i Fi (si )~t3, torques are also modified

~v

si
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The flapping effect

The thrust was assumed to be
∑

i

Fi (si )~t3, that is colinear to ~t3

It has been proved to be false because it neglects the effect of the apparent wind speed, this
is the flapping effect

Higher thrust on one side of the blades

The thrust becomes
∑

i

Rflapping

i Fi (si )~t3, torques are also modified

si

apparent wind
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The flapping effect

The thrust was assumed to be
∑

i

Fi (si )~t3, that is colinear to ~t3

It has been proved to be false because it neglects the effect of the apparent wind speed, this
is the flapping effect

Higher thrust on one side of the blades

The thrust becomes
∑

i

Rflapping

i Fi (si )~t3, torques are also modified

si

non vertical thrust
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The thrust was assumed to be
∑

i

Fi (si )~t3, that is colinear to ~t3

It has been proved to be false because it neglects the effect of the apparent wind speed, this
is the flapping effect

Higher thrust on one side of the blades

The thrust becomes
∑

i

Rflapping

i Fi (si )~t3, torques are also modified

~t3

si

↵

RflappingFi(si)~t3
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Modeling more into details: the
flapping effect

The flapping matrix takes can be decomposed :

Rflapping = Rflapping
x · Rflapping

y

=




1 0 0
0 c(β) −s(β)
0 s(β) c(β)


 ·




c(α) 0 s(α)
0 1 0

−s(α) 0 c(α)




α and β can be composed as follows :

α = αv + αω

β = βv + βω

αv and βv represent the contribution of the linear speed of
the body to the flapping effect

aω and bω represent the contribution of the rotational
speed of the body to the flapping effect
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The ground effect

The thrust was assumed to be
∑

i

Fi (si )~t3, with Fi (si ) = cT s2
i

Unfortunately, cT is not constant but depends upon

the density of the air, therefore of the temperature
the ground distance : it is the ground effect, αg (z) ≥ 1
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The ground effect

The thrust was assumed to be
∑

i

Fi (si )~t3, with Fi (si ) = cT s2
i

Unfortunately, cT is not constant but depends upon

the density of the air, therefore of the temperature
the ground distance : it is the ground effect, αg (z) ≥ 1

~t3

~t3

Fi(si)~t3
<latexit sha1_base64="r+QVi+r6gdDlACrihXos+ux41Zg="></latexit>

↵gFi(si)~t3
<latexit sha1_base64="oLd/5xSat+O8yW1EMA8i0GJx7MU="></latexit>

ground
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Rotors effects
Each rotor may be thought of as a rigid disc rotating
around the vertical axis the body frame, with angular
velocity si . The rotor’s axis of rotation is itself moving
with the angular velocity of the frame. This leads to the
following gyroscopic torque :

~Γgyro = Ir~ω × ~t3

∑

i

(−1)i |si |

Ir is the inertia matrix of a rotor

Each rotor produces a counter rotating torque that can be
expressed as:

sres :=
∑

i

(−1)i |si |

~ΓI = Ir ṡres~t3
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Other effects

�1

�2

�3

Superposition of thrust center and mass center

External forces

Air friction: −Kv ||~v || ~v
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The mixing matrix
The mixing matrix Mx links the torques and thrust force
to the rotational speed of the rotors

Depends on the considered configuration (not the same for
+ or x configuration)

For the + configuration presented before, we have:



T
Γr

Γp

Γy


 =




cT cT cT cT

0 −lcT 0 lcT

lcT 0 −lcT 0
lcD −lcD lcD −lcD




︸ ︷︷ ︸
Mx




s2
1

s2
2

s2
3

s2
4




Flapping and other effect renders the relation between the
rotor’s speeds and control thrust and torques complex

With flapping appears coupling phenomenon: the thrust
affects the yaw movement and the drag affects
thrust/roll/pitch movements
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affects the yaw movement and the drag affects
thrust/roll/pitch movements
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Complete model

Actuation: depends upon the type of electrical drive you use

Body:





~̇p = ~v

m~̇v = −mg~e3 − Kv ||~v || ~v + R ~T+~Fext

Ṙ = R~ω×

J ~̇ω = −~ω×J~ω + Ir ṡres~t3 + Ir~ω × ~t3

∑

i

(−1)i |si |+ ~Γc+~Γext

Thrust:
~T =

∑

i

Rflapping

i αgcT s2
i
~t3

Torques:

~Γc =
∑

i

Rflapping

i αgcT s2
i
~t3 × pTrotori

+
∑

i

(−1)i+1cDs
2
i
~t3
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Jointed-arm robots
Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
rotary joints

Two possible rotary joints:

rotary around the arm

rotary perpendicular to the arm

Each possible movement is called a degree of freedom (dof)
Sometimes movements are coupled (more than 1 dof/articulation)
A “universal” robot has 12 dof:

6 for spatial position (vehicle)
3 for the arm
3 for the terminal tool

In the industrial context, a polyvalent robot will have 6 dof
6 dof are sufficient for any position and orientation of the terminal tool in the
reachable space
Many tasks can be performed with less than 6 dof: “pick and place” needs only 4 dof
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Jointed-arm robots

Characteristic variables:

Actuator control ui of the joint i
Actuator torques Ci of the joint i
Angles θi of the joint
Spatial position Xi of the extremity of the joint

Controlling a robot is equivalent to mastering the relation

Actuator’s dynamics
Robot’s dynamics
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Controller Actuator+Robot

Disturbances

uiθr
i e θi

−
θm

i

Enables to force θ to follow the reference θr

The actuator is usually a first (electric) or second order
system (pneumatic)

Usually controlled with a PID controller with

filtered derivative action
anti-windup to tackle saturations
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Inner control loop
Anti-windup PID

We go back to the X4 example and focus on the rotors:

{
ṡi = − k2

m

JrR
si −

1

Jr
τload +

km

JrR
satŪi

(Ui )

If one wants to act on the X4 with desired forces F d
i , it

is necessary to be able to set the rotors speeds si to sd
i

with

sd
i =

√
1

b
F d

i

A usual way to control the electrical motor consist in

taking τload as un unknown load
neglecting the voltage limitations Ūi
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Inner control loop
Anti-windup PID

The so obtained system is linear

si (s)

Ui (s)
=

1
km

1 + Jr R
k2

m
s

=
G

1 + τs

Define a PI controller for it:

C (s) = Kp +
Ki

s

Taking Ki =
1

τCLG
and Kp = τKi , the closed loop system

is:

si (s)

Ui (s)
=

1

1 + τCLs
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Inner control loop
Anti-windup PID

Make a step that compensates the weight, that is such

that sd
i =

√
mg

4b
so that

∑

i

F d
i = mg

Taking τCL = 50 ms, one gets
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Inner control loop
Anti-windup PID

The result could be worse:

1

s-1
Transfer FcnSaturationPulse

Generator

7s+5

s
Control

 

For u ∈ [−1.2, 1.2], the closed-loop behavior is:

Saturations may lead to instability especially in the
presence of integrators in the loop
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Inner control loop
Anti-windup PID

Consider a linear system with a PID controller:

Linear system

6. Linear systems with a nonlinearity

PID controller

The instability comes from the integration of the error

Key idea: soften the integral effect when the control is
saturated
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Inner control loop
Anti-windup PID

Structure of the PID controller with anti-windup:

6. Linear systems with a nonlinearity

Anti Windup
PID controller Linear system

If u = ū, that is if u is not saturated, then the PID
controller with anti-windup is identical to the classical
PID controller
If u is saturated (u 6= ū), Ks tunes the reduction of the
integral effect of the PID
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Inner control loop
Anti-windup PID

Make a step that compensates the weight, that is such

that sd
i =

√
mg

4b
so that

∑

i

F d
i = mg

Taking τCL = 50 ms, one gets
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accélérations que pour les décélérations. Pour obtenir cela on utilise la structure de contrôleur illustrée
par la figure III.7. La dynamique du préfiltre de consigne Hdes(p) = 1

(
1

2πfc p+ 1
)2 avec fc = 7Hz a été

choisie pour correspondre à la dynamique de décélération la plus rapide atteignable par les rotors.
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Figure III.8 – a) Réponse indicielle d’un rotor en boucle ouverte en bleu continu et en pointillés rouge
la réponse souhaitée en boucle fermée. b) Réponse d’un rotor en fonction des différentes versions du
contrôleur de rotors. En noir, la consigne de vitesse à atteindre, en pointillés rouge la trajectoire désirée
pour atteindre cette consigne. En orange continu, la réponse en boucle fermée, lorsque l’anti-windup est
désactivé. En mauve, la réponse en boucle fermée avec anti-windup mais sans le terme d’anticipation.
En vert la réponse en boucle fermée avec l’anti-windup, et le terme d’anticipation actifs. c) Évolution
de l’erreur de poursuite (par rapport à la trajectoire souhaitée ω?rf ) pour les différentes variantes du
contrôleur de rotors. Le contrôleur avec anti-windup et terme d’anticipation présente les meilleures
performances.

L’asservissement en vitesses des rotors est donc réalisé à l’aide d’un correcteur PI classique et
d’un anti-windup, associé à un terme d’anticipation. Les consignes des rotors sont également filtrées,
afin d’harmoniser la dynamique d’accélération et de décélération et d’assurer une réponse identique
pour chacun des rotors. La dynamique du correcteur PI est choisi de façon à obtenir une dynamique de
boucle bien plus rapide que celle du préfiltre, ce qui assure une bonne poursuite. Le terme d’anticipation
ff(ω?r ) consiste en une table associant à chaque consigne de vitesse une valeur de commande nominale.
La commande nominale correspondant à une vitesse a été construite grâce à des essais en boucle ouverte,
réalisés avec une batterie pleine. En effet, une commande u0 génère, avec une batterie pleine ayant une
tension V0, une vitesse de rotation ω0. Pour une tension V1 < V0 on obtient pour cette même commande
u0 plus qu’une vitesse de rotation ω1, avec ω1 < ω0. Il est important de construire la table sur la base
d’une batterie pleine, afin de ne pas surestimer la commande nominale nécessaire. En effet, surestimer
cette commande aurait pour effet de rendre la dynamique de la boucle fermée plus lente lorsque l’on
demande au moteur de ralentir. La table est donc constituée de 10 couples "consigne/commande" ; les
valeurs manquantes sont calculées en ligne par interpolation linéaire.

L’anti-windup permet d’annuler les overshoots et undershoots liés à l’effet intégrale de la commande,
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couples et la poussée de chaque rotor est décrite par :
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 = sin

(
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1 −1 1 −1
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M
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T4




(III.1)

Où φ, θ et représentent les couples de roulis, tangage et lacet (c’est à dire autour des axes ~x, ~y
et ~z respectivement) ; Ti représente la poussée générée par le rotor i.

Les couples résultent donc d’une combinaison linéaire des poussées de chacun des rotors, et le
passage de l’un à l’autre, s’opère grâce à la matrice M (qui est une matrice constante). Il suffit donc,
pour contrôler les couples, d’asservir la poussée des rotors. Or, celle-ci est facilement déduite de la
vitesse de rotation des rotors grâce à la relation suivante :

Ti = cT .ω
2
ri (III.2)

−+ + ++ ++

−+

+ −

++

−

d’éviter les "overshoots" et "undershoots", liés à l’intégrateur.
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Attitude control

Required by most of the higher level control strategies

Basic for stable remote piloting

Embedded in all commercial platforms

Consist in controlling only the part of the model corresponding to the
angular motion:

{
Ṙ = R~ω×

J ~̇ω = −~ω×J~ω + ~Γc + ~Γext





~̇q =
1

2
Ω(~ω)~q

=
1

2
Ξ(q)~ω

J ~̇ω = −~ω×J~ω + ~Γc + ~Γext

Linearization of the rotational dynamics gives three second order
integrators

Most of the applied strategies are PID controllers based on the
linearization. Some sliding mode approaches. Few nonlinear approaches.

Valid only around zero angles position, but

robust
easy to tune
can handle saturation
can be adaptive
...
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A saturation based attitude control
Body’s dynamics

~̇p = ~v

~̇v = −g~e3 +
1

m
R~f − c~v

(
q̇0

q̇v

)
=

1

2

(
−qT

v

I3q0 − q×v

)
ω

ω̇ = J−1(~τ − ω × Jω)

R : Rotation matrix from T to E

~t2
~t1

~t3

~e2

~e1

~e3

T

E
R

E :
Fixed frame
T : Mobile frame
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Attitude stabilization

Attitude with reference vectors:

T

Rd ~s
E

k
~s Tk

Current vector: s Tk = R s Ek
Desired vector: s Tkd

= Rd s Ek

Attitude error:

~ζ =
∆−1

n

n∑

k=1

~s Tk × Rd~s
E

k

∆ : positive diagonal matrix

n : sensors number

Rd : desired orientation of T relatively to E)

If ~s Tk and Rd~s
E

k are collinear, then ~ζ = 0
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A saturation based attitude control

Sensors used: Rate gyros and reference sensors

Control torques

τ̄j = − satτ̃j (λj [ω̄Gj
+ ρj ζ̄j )]) j = {1, 2, 3}

λj , ρj : positive tuning parameters

satτ̃j : saturation function

ω̄Gj
: averaged angular velocity (measured by the rate gyros)

ζ̄j : averaged attitude error

Stability proved (rigid body) using Lyapunov function:

V =
1

2
~ωT J~ω +

1

n

n∑

k=1

(1− ~s m
k

T Rd ~s
f

k )

Generalized PID controller, almost global stability, simpler version using
quaternion exists, stability independent from the knowledge of J, robust to
velocity sensor saturation.
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Generalized PID controller, almost global stability, simpler version using
quaternion exists, stability independent from the knowledge of J, robust to
velocity sensor saturation.
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A saturation based attitude control

Initial orientation: (φ, θ, ψ) = (70,−50, 30) ◦
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Linearization
First thing people want to try ?
Many possible approaches
Taking

x := (φ, θ, ψ, φ̇, θ̇, ψ̇, pT , vT )T

the linearization of the linear and angular dynamics around
some reference x r of the form (0, 0, ψr , 0, 0, 0, pr T , 0)T is
given by :

˙̃x = Ax̃ + Bũ

with the following matrices A and B:

A :=




03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3×3

0 g 0
−g 0 0
0 0 0

03×3 03×3 03×3



, B :=




03×3 03×1

J−1 03×1

03×3 03×1

03×3

0
0
1

m




Linear control is always possible but not very suitable
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A robotic oriented nonlinear approach
Based on fast attitude and actuator loops
Angle tracking is assumed to be perfect

The aim is to bring the UAV to ~p ? =
(
p?1 p?2 p?3

)T

Filter the position target ~p ?f =
~p ?

(τf s + 1)3
, ~p ?f must be C 3

Let the tilde denote the error, for instance x̃ = x?f − x
With PIDs controllers, define an acceleration target on the two first direction (i = 1, 2):

[p̈if ]? = kP p̃i + kI

∫ t

0

p̃idt + kD

(
ṗ?if − vi

)
+ p̈?if

With a PID controller, compute the thrust control:

T ? =
kP p̃3 + kI

∫ t

0
p̃3dt + kD

(
ṗ?3f
− v3

)

cφcθ
+

m

cφcθ

(
g + p̈?3f

)

Yaw angle ψ can be stabilized to any direction independently
Compute the roll and pitch control:

φ? = sin−1
( m

T ?
([p̈1f

]?sψ − [p̈2f
]?cψ)

)

θ? = sin−1
( m

T ?
([p̈1f

]?cψ + [p̈2f
]?sψ)

)
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98 CHAPITRE III. QUAD-ROTOR OPEN-SOURCE : X4-MAG
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Figure III.28 – A gauche, l’évolution des positions X, Y et Z de X4-MaG lors de 5 tests en vol
stationnaire. Chaque test est affiché dans une couleur différente, et on présente l’écart type sous la forme
d’une zone rouge transparente. L’association du contrôleur de position décrit par (III.72) et(III.74) avec
le contrôleur d’attitude géométrique, permet d’atteindre des précisions de positionnement en 3D tout à
fait satisfaisantes, étant donné que le robot est capable de se maintenir dans une ellipsoïde de 3.0 cm de
rayon sur le plan horizontal et de seulement quelques millimètres sur le plan vertical. D’après [Manecy
et al., 2015].

9 Conclusion

9.1 La plateforme X4-MaG

Durant ce chapitre, j’ai donc expliqué, en détail, les différents choix de conception et algorithmes
de contrôle du quadrirotor X4-MaG. Cette nouvelle plateforme open-source et open-hardware peut
être assemblée pour un coût d’environ 500€. Elle peut être pilotée directement par un système de
télécommande de modéliste ou évoluer de façon entièrement autonome entre des coordonnées fixées par
une station sol. La programmation du pilote automatique est grandement simplifiée et est entièrement
faite sous Matlab/Simulink, grâce à la nouvelle toolbox open source que j’ai développée (RT-MaG).
De plus, l’architecture logicielle et matérielle a été conçue de façon à fournir des modes de secours

x , y error: ±1.5cm
z error: milimetric
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standard deviation
STD = 1.67cm
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réalisée par le robot. D’après [Manecy et al., 2015].

Flying Mode Max Error Mean Error STD

Hover
x 2.8cm 0.03cm 0.7cm
y 2.7cm 0.02cm 0.6cm
z 0.4cm 0.00cm 0.3cm

Path Following 0.8m.s−1
x 5.3cm 0.04cm 1.7cm
y 6.7cm 0.02cm 2.9cm
z 3cm 0.14cm 1.5cm

Path Following 1.2m.s−1
x 8.3cm 0.3cm 2.3cm
y 7.0cm 0.7cm 3.2cm
z 6.6cm 0.5cm 2.0cm

Table III.5 – Précisions de positionnement du quadrirotor X4-MaG dans différents modes de vol.

en cas de défaillance à plusieurs niveaux. J’ai alors proposé une architecture simple, pour doter le
calculateur haut niveau d’un mode de secours, permettant de faciliter l’essai de nouveaux contrôleurs
tout en limitant le risque de crash dans l’arène de vol. Le contrôleur de secours est alors un contrôleur
fiable et validé, reposant sur les mesures du système Vicon, qui reprend automatiquement la main,
si le contrôleur expérimental ne parvient pas à atteindre les trajectoires à réaliser. De même, une
fonction fail-safe, permet de maintenir une stabilisation d’attitude et de position minimale (basée sur
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Characteristic variables:

Actuator control ui
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Angles θi

Spatial position Xi

Controlling a robot is equivalent to mastering the relation

Actuator dynamics
Robot dynamics

N. Marchand (gipsa-lab) Robotics ENSIT 74 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Jointed-arm robots

Characteristic variables:

Actuator control ui

Actuator torques Ci

Angles θi

Spatial position Xi

Controlling a robot is equivalent to mastering the relation

Actuator dynamics
Robot dynamics

N. Marchand (gipsa-lab) Robotics ENSIT 74 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Jointed-arm robots

Characteristic variables:

Actuator control ui

Actuator torques Ci

Angles θi

Spatial position Xi

Controlling a robot is equivalent to mastering the relation

Actuator dynamics
Robot dynamics

N. Marchand (gipsa-lab) Robotics ENSIT 74 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Jointed-arm robots

Characteristic variables:

Actuator control ui

Actuator torques Ci

Angles θi

Spatial position Xi

Controlling a robot is equivalent to mastering the relation

Actuator dynamics
Robot dynamics

N. Marchand (gipsa-lab) Robotics ENSIT 74 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Jointed-arm robots

Characteristic variables:

Actuator control ui

Actuator torques Ci

Angles θi

Spatial position Xi

Controlling a robot is equivalent to mastering the relation

Actuator dynamics
Robot dynamics

N. Marchand (gipsa-lab) Robotics ENSIT 74 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Jointed-arm robots

Characteristic variables:

Actuator control ui

Actuator torques Ci

Angles θi

Spatial position Xi

Controlling a robot is equivalent to mastering the relation

ui � Ci � θi � Xi

Actuator dynamics
Robot dynamics

N. Marchand (gipsa-lab) Robotics ENSIT 74 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Jointed-arm robots

Characteristic variables:

Actuator control ui

Actuator torques Ci

Angles θi

Spatial position Xi

Controlling a robot is equivalent to mastering the relation

ui � Ci � θi � Xi

Actuator dynamics

Robot dynamics

N. Marchand (gipsa-lab) Robotics ENSIT 74 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Jointed-arm robots

Characteristic variables:

Actuator control ui

Actuator torques Ci

Angles θi

Spatial position Xi

Controlling a robot is equivalent to mastering the relation

ui � Ci � θi � Xi

Actuator dynamics
Robot dynamics

N. Marchand (gipsa-lab) Robotics ENSIT 74 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Geometrical model of robots
Consist in finding the relations Xi = fi (θi )

Sometimes called “forward kinematics”
That gives Xn = f (θi , . . . , θn), the position of the extremity of
the arm as a functions of the control angles (and of the robot
parameters)
The aim is then to deduce the θr

i ’s using f −1 (inversion)
Assumptions:

The model must be quite precise

no friction, no drift, no backlash, no dead zone, . . .

The dynamical phenomena must be negligible

mass effect fully compensated by the inner-loop
few flexibility of the arms (not for spatial robotic arms !)

Sufficiently simple model to be online inverted
The model must be invertible

Despite the limitations, this approach is widely used (oversized
robots)
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few flexibility of the arms (not for spatial robotic arms !)

Sufficiently simple model to be online inverted
The model must be invertible

Despite the limitations, this approach is widely used (oversized
robots)
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Computation of the geometrical model
Combination of rotations and translations

Let X be the orientation and position of the last segment in R0 (usually
variable to control)

Orientation: for any ~v

~v(Ri ) = R i
i−1~v(Ri−1)

~v(Ri ) =
i∏

k=1

Rk
k−1~v(R0) = R i

0~v(R0)

Position: for any point C

−−→
O0C (R0) =

−−−→
OOOi (R0) +

−−→
OiC (R0) =

−−−→
OOOi (R0) + R0

i

−−→
OiC (Ri )

−−→
O0C (R0) =

−−−→
OOO1(R0) + R0

1

−−−→
O1O2(R1) + · · ·+ R0

i−1

−−−−→
Oi−1Oi (Ri−1) + R0

i

−−→
OiC (Ri )

where R i+1
i is the rotation matrix from Ri to Ri+1:

R i+1
i = R i

i+1

T
, detR i+1

i = 1
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Computation of the geometrical model
Combination of rotations and translations

Easy way to compute the geometrical model:
homogeneous coordinates

Let ~v :=
(
v1 v2 v3

)
, then it is equivalent to the

4-dimension vector ~V with ω = 1:

V =




v1ω
v2ω
v3ω
ω




Translation: a translation of vector
(
a b c

)
is given by:

Trans =




1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1




Rotation: a rotation of matrix R is given by:

Rot =

(
R 03×1

01×3 1

)

Note that still R−1 = RT and det(R) = 1
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Computation of the geometrical model
Denavit-Hartenberg’s convention

Consider two successive articulations

Then, to go from Ok to Ok+1 and from Rk to Rk+1, one
does successively:

One rotation around zk of angle θk+1

One translation along zk of distance dk+1

One translation along xk+1 of distance ak+1

One rotation around xk+1 of angle αk+1

The DH parametrization always exists and is unique
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Control with the geometrical model

Compute the set of θr
i corresponding to the reference X r

θi as a function of X r is often called “inverse kinematics”

The model must be invertible (for any X r , there is some
θr

i )
We talk about resolvable robots
Can be inverted using a optimization procedure

Make a step in the inner control loop to go from θ0
i to θr

i

Drawbacks: the actuators are in closed loop but the
robot is in open-loop

what about the speed ?
the trajectory is not well defined (obstacle avoidance, etc.)
dry friction if multiple X d

what about the influence of the weight (that depends upon
the configuration)
inertia may cause overshoot or oscillations
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Exercise
Compute the matrix transformation of the Denavit-Hartenberg’s
convention

One rotation around zk of angle θk+1:

R1 =




cθk+1 −sθk+1 0 0
sθk+1 cθk+1 0 0

0 0 1 0
0 0 0 1




One translation along zk of distance dk+1

T1 =




1 0 0 0
0 1 0 0
0 0 1 dk+1

0 0 0 1




One translation along xk+1 of distance ak+1

T2 =




1 0 0 ak+1

0 1 0 0
0 0 1 0
0 0 0 1




One rotation around xk+1 of angle αk+1

R2 =




1 0 0 0
0 cαk+1 −sαk+1 0
0 sαk+1 cαk+1 0
0 0 0 1




The matrix transformation of the Denavit-Hartenberg’s convention
is: R2 · T2 · T1 · R1
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Kinematic model of robots
Express the infinitesimal mouvement dX as a function of speed of the actuators

dθ

dt

Sometimes called “velocity kinematics”
Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control
variables
The kinematic model is “simply” the derivation of the geometric model
X = f (θ0, θ1, · · · , θn):

Ẋ =
∂f

∂θ
θ̇

J :=
∂f

∂θ
is called the Jacobian of the robot

J represents the instantaneous transformation between a vector of joint velocities and
the linear and angular velocities of the end-effector
J can be decomposed into Jv and Jω so that:

ẋRf
n = Jv θ̇

ωRf
n = Jω θ̇

The kinematic model can also be obtained using the composition of speed and
decomposing the Denavit-Hartenberg’s parametrization:

R(z , θ)T (z , d)T (x+, a)R(x+, α)

Fastidious in many cases but systematic ! See books for that
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The kinematic model is “simply” the derivation of the geometric model
X = f (θ0, θ1, · · · , θn):

Ẋ =
∂f

∂θ
θ̇

J :=
∂f

∂θ
is called the Jacobian of the robot

J represents the instantaneous transformation between a vector of joint velocities and
the linear and angular velocities of the end-effector
J can be decomposed into Jv and Jω so that:

ẋRf
n = Jv θ̇

ωRf
n = Jω θ̇

The kinematic model can also be obtained using the composition of speed and
decomposing the Denavit-Hartenberg’s parametrization:

R(z , θ)T (z , d)T (x+, a)R(x+, α)

Fastidious in many cases but systematic ! See books for that
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Kinematic model of robots

Kinematic model can be used if “it can be stopped quasi
instantaneously” (quickly w.r.t. the tasks to be done)

As for geometrical model, the dynamics has to be
neglected

Many cases can happen:

J is square and full rank: miracle !
J is square but for some articulation position, det J = 0
(singularities), the singularities are usually avoided
J has more columns than rows: add a criterium to find the
optimal path
J has more rows than columns: impossible configurations
of nonholonomic constraints, nonlinear control theory to
solve this problem

The kinematic model is a state space representation
of a controlled system
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Example of kinematic model

Example: the car in the plane

Characterizing variables (state
variables): x , y and θ
Control variables: speed of
each wheels Vr and Vl

The kinematic model is given
by the relation between ẋ , ẏ , θ̇
and the controls Vr and Vl

What is the kinematic model
of the car ?
What is the expression of the
Jacobian of this robot ?
Is this system underactuated or
overactuated ? Explain why

ẋ =
Vl + Vr

2
cos θ

ẏ =
Vl + Vr

2
sin θ

θ̇ =
Vr − Vl

d

J =
1

2




cos θ cos θ
sin θ sin θ

− 2

d

2

d
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ẋ =
Vl + Vr

2
cos θ
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and the controls Vr and Vl

What is the kinematic model
of the car ?

What is the expression of the
Jacobian of this robot ?
Is this system underactuated or
overactuated ? Explain why
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ẏ =
Vl + Vr

2
sin θ

θ̇ =
Vr − Vl

d

J =
1

2




cos θ cos θ
sin θ sin θ

− 2

d

2

d




N. Marchand (gipsa-lab) Robotics ENSIT 84 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Example of kinematic model

Example: the car in the plane

Characterizing variables (state
variables): x , y and θ
Control variables: speed of
each wheels Vr and Vl

The kinematic model is given
by the relation between ẋ , ẏ , θ̇
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Relation between workspace forces and joint
torques

The workspace forces and joint torques are linked with the
relation:

τ = JT
v F

the Jacobian must be derived at each origin Oi of each
link frame
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Kinematic redundancy

When a robot is given by its kinematic model Ẋ = J θ̇

J is usually n × p with X ∈ Rn and θ ∈ Rp

r = p − n is called the kinematic redundancy number

When r < 0, the robot is underactuated, usually the case
with mobile robots ⇒ advanced control

When r > 0, the robot is overactuated. It has redundancy.

For a robot with redundancy, one can write:

J =
(
Jn Jp−n

)
with Jn invertible
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Control through the kinematic equation

Control with Jt Take a robot given by its kinematic model
Ẋ = J θ̇

Control with Jt

Apply a fictive force F = K (X − Xd ) with K positive and
symmetric
Take θ̇ = J tF = J tK (X − Xd ) = J tKe

Then the elastic potential Φ(e) =
1

2
etKe is such that

Φ̇(e) = −etKJJ tKe < 0

e ⇀ 0, X ⇀ Xd

Automatically handles redundancy
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Control through the kinematic equation

Control with J+ Take a robot given by its kinematic model
Ẋ = J θ̇

Control with J+ := Jt(JJt)−1

J+ is the Moore-Penrose pseudo-inverse (pinv in Matlab)
Can be obtained through SVD decomposition. J = U∆V t ,
∆ diagonal =⇒ J+ = V∆+U t , ∆+ is the inverse of the
nonzero coefficient of ∆
Taking θ̇ = J+Ẋ minimizes the energy θ̇t θ̇
Taking θ̇ = J+

M Ẋ with J+
M := M−1J t(JM−1J t)−1

minimizes the kinetic energy T =
1

2
θ̇tM(θ)θ̇
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Dynamical model of robots
Express the accelerations of movement as
a function of the actuation variables

The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)
Sometimes also includes the actuators
dynamics (mainly electrical or
pneumatical)
Very complex and most of the time
impossible to control (too complex to
design a control)
simplifications are required:

based on relative speed of the 6= parts of
the robot
thanks to inner-loops that can render
parts instantaneous w.r.t. other parts of
the robot

Almost never used for arm-robots
Widely used for flying or diving robots
(UAVs, AUVs, etc.) or walking robots
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Dynamical models of robots
n-link manipulator

The dynamical equations are of the form:

D(q)q̈ + C (q, q̇)q̇ + g(q) = r

Obtained thanks to the Euler-Lagrange formalism
q are the generalized coordinates

C (q, q̇)q̇ =
∑

i

∑

j

cij (q)q̇i q̇j

Centrifugal effect when i = j (term in q̇2
i )

Coriolis effect when i 6= j (terms in q̇i q̇j )

An important literature on the control of this type of
systems can be found
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Dynamical models of robots
flying and diving robots

The dynamical equations are of the form:





~̇p = ~v

m~̇v = −mg~e3 + R



Fx

Fy

Fz




Ṙ = R~ω×

J ~̇ω = −~ω×J~ω +




Γr

Γp

Γy




The number of available controls depends upon the system
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Different models of robots

Geometrical model (or forward kinematic model):

Position of the robot = f (position of the actuators)

Inverse geometrical model (or inverse kinematic model):

Position of the actuators = f (position of the robot)

Kinematic model (state space representation) (or
velocity kinematic model):

Speed of the robot = f (position,actuation speed)

Dynamical model (state space representation):

Robot acceleration = f (position and speed,forces/torques)
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Path planning

Need to choose a path for the end effector that avoids

collisions
singularities of the robot

Collision are easy to characterize in the workspace but may
need to be transformed in the configuration space

The complexity of obstacle avoidance grows exponentially
with the number of DOF

The method used are (usually):

Potential field: renders the obstacle repulsive
Gradient descent or Probabilistic roadmaps to generate the
path
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Workspace and obstacles

The workspace is the volume W the end effector can
reach. Usually divided into:

Reachable
Dexterous

The ”configuration” is the ”location” of all points of the
robot

Configuration answers the question: where is the robot
The configuration can be adapted to the problem: from
the set of all points of the robot to the sole the effector
The θi ’s are sufficient to characterize the configuration of
an arm robot for arm robots

The set of θi ’s corresponding to a possible configuration is
noted Q
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Workspace and obstacles

Obstacles are denotes Oi and the set of obstacle is
O = ∪Oi

Let θ ∈ Q and C (θ) denote the corresponding
configuration

Then the workspace can be divided into:

the collision-free configuration subspace
Qf = {θ ∈ Q|C (θ) ∩ O = ∅}
the collision configuration subspace
Qc = {θ ∈ Q|C (θ) ∩ O 6= ∅}
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Example: the car

The collision configuration subspace is the convex hull in
which the robot and an obstacle make vertex to vertex
contact

Can be much more complicate to obtain

Numerical simulation can easily solve this problem
(systematic simulation)
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1 Introduction
2 Modeling

Cartesian coordinates
Orientation
Frames
Newton

3 The quadrotor case
4 Kinematics and dynamics of robots
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A recall on gradient descent

F (x , y) = sin(
1

2
x2 − 1

4
y2 + 3) cos(2x + 1− ey )

z := (x , y), F (x , y) = F (z)

Aim: finding z? such that F (z?) is minimum

Maximum/minimum obtained iteratively by :

zk+1 = zk − γ∇F (zk)
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A recall on gradient descent
About the stop criteria

Many solutions to stop the iteration

zk+1 = zk − γ∇F (zk )

Better from the criteria point of view:
stops if F (zk+1) > F (zk)

No more improvement in the criteria:
stops if |F (zk+1)− F (zk)| < ε

No more slope (almost the same as previous condition)
stops if ||∇F (zk)|| < ε
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A recall on gradient descent
About the step size γ

On the step size γ

Newton-Euler method: H, Hessian of F

zk+1 = zk −∇F (zk)H(xk )−1

Quasi-Newton method:

zk+1 = zk − ρkBk∇F (zk )

Bk : approximation of the Hessian
http://en.wikipedia.org/wiki/Quasi-Newton_method)
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Path planning problem formulation

Want to go from one configuration θ0 (position) to
another one θf

We define a continuous function γ : [0, 1]→ Qf such that

γ(0) = θ0 and γ(1) = θf

γ will represent a configuration between the initial
configuration and the final

The aim will be to fin successive γ that remain in Qf :

τ → γ(τ) is a path from θ0 to θf

We define a potential field (criterium):

U(θ) = Uatt(θ) + Urep(θ)

Uatt(θ) will attract γ to θf : the goal configuration
Urep(θ) will repulse the system away from obstacle
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Simple exemple of objective function

Take Uatt(θ) = ||θ − θf ||: Uatt is the distance to the final
destination

Take Urep(θ) =
1

d(θ,Qc )
: Urep is infinite if there is a risk

of obstacle
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Attractive/Repulsive fields

Trying to minimize or maximize the distance is not
necessary appropriate

Inappropriate criterium may:

generate local minima
be delicate to minimize
have singularities

The main problem consist in finding a criterium that
will be convex (or close to)
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Manipulator robots

We define a potential field for each articulation

The attractive field is a monotonically increasing function
of the distance of the i th frame to the goal position

The attractive field applies a fictitious force that push the
manipulator into its goal position

The repulsive field will create a fictitious force that will
prevent collisions by repelling the robot from the obstacles
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Attractive fields

Simple potential field: conic well potential

Uatti (θ) = ζi ||Oi (θ)− Oi (θf )||

The corresponding force is:

Fatti (θ) = −ζi∇ ||Oi (θ)− Oi (θf )|| = −ζi
Oi (θ)− Oi (θf )

||Oi (θ)− Oi (θf )||

it is a ζi -norm vector pointing to the objective
has a singularity at the objective
ζi is a ponderation between articulations
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Attractive fields
Instead we use: parabolic well potential

Uatti (θ) =
1

2
ζi ||Oi (θ)− Oi (θf )||2

The corresponding force is:

Fatti (θ) = −∇ ||Oi (θ)− Oi (θf )|| = −ζi (Oi (θ)− Oi (θf ))

this force is defined everywhere

Or the hybrid potential:

Uatti (θ) =
1

2
ζi ||Oi (θ)− Oi (θf )||2 if ||Oi (θ)− Oi (θf )|| ≤ d

Uatti (θ) = −dζi ||Oi (θ)− Oi (θf )|| − 1

2
ζid

2 if ||Oi (θ)− Oi (θf )|| ≤ d

The corresponding force is:

Fatti (θ) = −ζi (Oi (θ)− Oi (θf )) if ||Oi (θ)− Oi (θf )|| ≤ d

Fatti (θ) = −dζi
Oi (θ)− Oi (θf )

||Oi (θ)− Oi (θf )|| if ||Oi (θ)− Oi (θf )|| ≤ d
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Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Repulsive fields

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence ρi > ρ0

Define the repulsive field:

Urepi (θ) = 0 if d(θ,O) > ρi

Urepi (θ) =
ζi

2

(
1

d(θ,O)
− 1

ρ0

)2

if d(θ,O) ≤ ρi

The corresponding fictive force is:

Frepi (θ) = 0 if d(θ,O) > ρi

Frepi (θ) = −ζi

(
1

d(θ,O)
− 1

ρ0

)
d(θ,O)−2∇d(θ,O) if

d(θ,O) ≤ ρi

N. Marchand (gipsa-lab) Robotics ENSIT 111 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

From attractive/repulsive forces to
actuator torques

The total joint torques acting on a robot is the sum of the
torques from all attractive and repulsive potentials:

τ(θ) =
∑

i

JT
Oi

(θ) (Fatti (θ) + Frepi (θ))
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Gradient descent

Now that we can formulate the total torques acting on the
joints in the configuration space due to the artificial
potentials, we can formulate a path planning algorithm

1 First, determine your initial configuration
2 Second, given a desired point in the workspace, calculate

the final configuration using the inverse kinematics: Use
this to create an attractive potential field

3 Locate obstacles in the workspace: Create a repulsive
potential field

4 Sum the joint torques in the configuration space
5 Use gradient descent to reach your target configuration
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Gradient descent

1 i = 0, θ[0] = θ0

2 if ||θ[i ]− θf || > ε,
then:

θ[i + 1] =

θ[i ] + α[i ]
τ(θ[i ])

||τ(θ[i ])||
i = i + 1
goto 2

else:

return θ[0], . . . , θ[i ]

Many other algorithm are
possible

steepest descent
(gradient) (Euler)
Newton
... see optimization
books

the θ[0], . . . , θ[i ] are the
successive configuration to
track = path

It is possible to add
random to escape local
minima
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Probabilistic roadmap

Randomly sample the configuration space

Enables to roughly separate Qf from O

Discards the points “too close” from O

Connect using straight line segments that do not intersect
obstacles

Eventually resample until Qf is sufficiently covered

Chose the path in the connected space
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Some final remarks
All the previous methods assume an a priori knowledge of
the environnement

Predictive control can also be used to handle constraints
“on line”
Adding fictive force is a very power tool also widely used
in formation control or robotics with communication
constraints (mainly range)
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Mobile robotics

Born in the 50s, aiming to autonomously moving robots

Grey Walter’s ”Turtle” (machina speculatrix): attracted
by light
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Mobile robotics

Born in the 50s, aiming to autonomous mobile robots

John Hopkins Univ. ”Beast” robot: first use of transistor
based sensing (ultrasound and photodiodes)
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Mobile robotics

Born in the 50s, aiming to autonomous mobile robots

Shakey robot from Stanford Univ.
Platform used to show first results on AI (1969)

N. Marchand (gipsa-lab) Robotics ENSIT 119 / 139



Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

Mobile robotics

Bio inspired locomotion: first biped robot

Honda E0 first biped robot (1986)
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Mobile robotics

Bio inspired locomotion: first biped walk

Rabbit robot CNRS-Grenoble (2004)
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Mobile robotics

Bio inspired locomotion: more about mobility

Boston Dynamics (SoftBank)
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Mobile robotics

SLAM: Simultaneous localization and mapping

https://github.com/erik-nelson/blam
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Mobile robotics

SLAM: Simultaneous localization and mapping
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Mobile robotics

Aerial robotics
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Mobile robotics

Bionics
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Basis of navigation
Navigation gathers different problems

Approach of a given visible target, going to the target. Each new sensing
produces an action. Typically what some insects do.
Usually based on a gradient approach

Guidance Ability to go to some position characterized by a visible
environnement.
Usually based on a gradient approach

To goal navigation In that case, the target don’t need to be visible but the
robot has a representation of the world.
Graph or gradient approach

Topological navigation Same as previous one with a memory of the possible
the spatial relationship between positions: the robot can go back)
Graph or gradient approach

Metric navigation Same as above but the robot is capable to memorize the
metric positions: the robot can go back to a point without taking
the same path.

The 3 first strategies: reactiv navigation

The 2 last enable trajectory planification also called path planning
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Basis of navigation
Three key words of navigation

Navigation relies on

Perception where am i ?
Planification where should i go ?

Action how can i move ?

The order of Perception/Planification/Action is not trivial

Sometimes it may be necessary to move to see where to
go: perception depends upon control

Sometimes it may be necessary see to know where to go:
navigation depends upon perception
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Basis of navigation
the perception

Two kind of perceptions:

Proprioceptive information Everything that the robot can
measure independently from the environnement,
typically the rotation of its wheels, accelerometers,
gyrometers, etc.

Exterioceptive information Everything that the robot sense in the
outside world, typically distance to obstacles.
Sensors are cameras, infrared/laser/ultra sound
sensors, etc.

Two type of problems

Perception variability The perception of the same place can vary
(e.g. because of the sun)

Perceptual aliasing The same perception signals can correspond
to 2 different places

Perception is merged via a fusion step
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Basis of navigation
the perception

Different kind of usage of perception information

Direct

To built a metric map
To built a metric map with objects
To built a metric map with objects of known typology
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Navigation key words of navigation

Navigation relies on

Perception where am i ?
Planification where should i go ?

Action how can i move ?

The order of Perception/Planification/Action is not trivial

Sometimes it may be necessary to move to see where to
go: perception depends upon control

Sometimes it may be necessary see to know where to go:
navigation depends upon perception
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Introduction to visual servoing

An arm robot equipped with a camera

Aim: bring the final effector to a given predefined
configuration

The configuration is defined by a final image feature to reach

Two possible configurations

Eye in hand configuration Eye to hand configuration
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Introduction to visual servoing
The key points

Being able to extract feature from the image: ”recognize”
points of the object

Being able to characterize the relation between the robot
movement and the image changes
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Image based visual servoing
The interaction matrix
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Figure 10: An example of image based visual servoing. Let us assume a case of
a static camera and a robot holding the object. A number of feature points on the
object is tracked and used to generate a vector of current measurements, fc. The
vector of reference measurements is denoted f∗. The error function is defined as a
function of distance between these measurements, e = fc − f∗. This error function
is then updated in each frame and used used together with the image Jacobian to
estimate the control input to the robot.

5.1.2 Image based control

Image based visual servoing involves the estimation of the robot’s velocity screw,
q̇, so as to move the image plane features, fc, to a set of desired locations, f∗, (Hager
et al. 1995), (Malis et al. 1998), (Chaumette et al. 1991). Image based visual
servoing control involves the computation of the image Jacobian or the interaction
matrix, (Hutchinson et al. 1996), (Espiau et al. 1992), (Hashimoto & Noritsugu
1998). The image Jacobian represents the differential relationship between the
scene frame and the camera frame (where either the scene or the camera frame is
usually attached to the robot):

J(q) =
[

δf
δq

]
=




δ f1(q)
δq1

. . . δ f1(q)
δqm

...
. . .

...
δ fk(q)

δq1
. . . δ fk(q)

δqm


 (10)

where q represents the coordinates of the end-effector in some parameterization of
the task space T , f [ f1, f2, ..., fk ] represents a vector of image features, m is the
dimension of the task space T and k is number of image features. The relationship
between a velocity screw associated to the manipulator and the image parameters
rates of change is given by:

ḟ = J q̇ (11)
4It is straightforward to estimate the desired velocity screw in the end–effector coordinate frame.

16

The interaction matrix links the mouvement of Oc (lateral and
rotational) to the movement of the feature points (f c

i )
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Introduction to visual servoing
A short mathematical background

Positioning error:
e(t) = s(q(t), a)− s?

s denotes the current feature depending upon

the robot configuration q(t)
a set of parameters a gathering all additional information (coarse

camera intrinsic parameters, three-dimensional model of objects, etc.)

s? denotes the target feature

The relation between the image and the real world is given by the
interaction matrix:

ṡ = Lsνc

where

νc := (vc , ωc ) = (linear veloccam frame, angular veloccam frame)
Ls ∈ Rk×6: interaction matrix (Jacobian)
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a set of parameters a gathering all additional information (coarse

camera intrinsic parameters, three-dimensional model of objects, etc.)

s? denotes the target feature

The relation between the image and the real world is given by the
interaction matrix:

ṡ = Lsνc

where

νc := (vc , ωc ) = (linear veloccam frame, angular veloccam frame)

Ls ∈ Rk×6: interaction matrix (Jacobian)
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Control in visual servoing
A simple control approach

Coupling the error and the interaction relation, one gets:

ė = Lsνc

Take the linear velocities and angular velocities as control
variable

Let L+
s := (LT

s Ls)−1LT
s be the Moore–Penrose

pseudo-inverse of Ls

To force an exponential decrease of the error:

ė = −λe

we must chose
νc := −λL+

s e

Practically, Ls is never known perfectly and we use an
approximation
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Image-based visual servoing

Take a 3D point of coordinates P = (X ,Y ,Z ) in the
camera frame

Its coordinates in the image will be p = (x , y):

x = X/Z = (u − cu)/f α

y = Y /Z = (v − cv )/f

where f is the focal length, α is the ratio of the pixel
dimensions, cu and cv are the coordinates of the principal
point.

Derivating, we get

ẋ = Ẋ/Z − XŻ/Z 2 = (Ẋ − xŻ )/Z

ẏ = Ẏ /Z − Y Ż/Z 2 = (Ẏ − yŻ )/Z
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Image-based visual servoing

Using the Varignon’s formula

Ẋ = −vc − ω×c X

Mixing the two last equation, we get the interaction
matrix form P

ṗ = Lpνc

with

Lp =

(
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

)

Z is the depth and is usually not known

To control six degrees of freedom, at least three points are
required (p1, p2, p3)

Camera parameters can be obtained by calibration
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Image-based visual stereo servoing

We assume now that we have two cameras
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