

N. Marchand

Introduction

Modeling

Cartesian coordinates

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mod

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

Nicolas Marchand

Nicolas.Marchand@gipsa-lab.fr

COPERNIC Team, Data Science Pole, **gipsa**-lab Grenoble, France

ENSIT

Robotics

ENSIT 1 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinat Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

INTRODUCTION

- Historical perspective
 - A great interest in "automatic/robotic" systems even in mythology:
 - Talos, created by Hephaistos and offered to the king Minos
 - In Iliad, Hephaistosis referred as creator of technical artificial creatures
 - 384-322 BJC, Aristote is speaking about machines doing human work

- First realizations
 - In Egypt: moving jaw of Anubis mask, moving arm of Amon's statue to designate the new pharaon
 - In Alexandria: fountains with moving birds (hydraulic systems)
 - Early mechanical automatons in the 9th/10th century (mainly in the Arabic world)
 - Clocks and automatons in the 13th/14th century (Europe)
 - Industrial automatons: 18th/19th century (e.g. Vaucanson, Jacquard)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

INTRODUCTION

- Historical perspective
 - First use of the word Robot (means forced labor or serf in Czech) in the play R.U.R. (Rossum's Universal Robots) by Karel Capek (1890-1938) in January 1921.

In R.U.R., Capek poses a paradise, where the machines initially bring so many benefits but in the end bring an equal amount of blight in the form of unemployment and social unrest

RUR

- Science fiction
 - Often a bad image: men against robots, dystopic society, etc. More and more a good image.

Formal definition (Robot Institute of America)

A reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical n Kinematic mo Dynamical mo
- Conclusion

Path planning

Workspace and obstacles

Mobile

Visual servoing

• Robots have a bad image (1930-1960)

- Robots take human works
- Robots are dangerous since potentially independent and more intelligent than we are

ROBOTS AND THEIR IMAGE

- Robots have a better image (1960-today)
 - Robots can make things that human can not do (space, etc.)
 - Human can do things that robots can not do (we still are clever)
 - Robots can be games
 - Robots can be good or bad

N. Marchand

Introduction

Modeling

- Cartesian coordinat
- Orientatio
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ROBOTICS INDUSTRY (1/MANY)

• Where are the robots ?

France:

- 61% in automotive industry
- 14% in chemical industry
- ...
- 4% in electricity industry
- 3% in food industry

• What kind of robots ?

- Industry: ground fixed robots: manipulators, arm robots, ...
- Private individuals: mobile robots: service, games, ...
- Future of robots:
 - Industrial mobile robotics
 - Medical robotics
 - Service robots (growing field)

N. Marchand (gipsa-lab)

Robotics

ENSIT 5 / 139

Robotics industry... today (2/MANY)

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Vacuum cleaner

Micromanipulator

Surgical robot

Forest robot

Kuka robot for automotive industry

Hollywood robots

N. Marchand (gipsa-lab)

Robotics

► Ξ • • • • • ENSIT 6 / 139

... AND IN THE FUTURE ? (2 BIS/MANY)

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

Nanorobotics (FEMTO-ST, Fr)

Military robots (Black Hornet, FLIR Systems, No) 2015 : Autonomous weapons: an open letter from AI & Robotics researchers [link]

Bio-inspired robots Spot from Boston Dynamics

Microrobotics (Harvard, USA)

Exoskeleton

Modular robots

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand (gipsa-lab)

Robotics

► Ξ つへ ENSIT 7 / 139

Robotics industry (3/many)

Robotics

Past

Future

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X

Kinematics

- Arm robo
- Inner-Ioop
- Geometrical mot
- Kinematic mode
- Dynamical mod
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

🔿 Tractica

Total Industrial and Non-Industrial Robotics Revenue, World Markets: 2015-2020

Robotics

ENSIT 8 / 139

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics industry (3/many)

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X

Kinematics

- Arm robot
- Commentational and
- Kinementin mende
- Dynamical mod
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics
- Visual servoing

Future

Past

Tractica

Total Industrial and Non-Industrial Robotics Revenue, World Markets: 2015-2020

• Enova Robotics, Sousse, Tunisia

N. Marchand (gipsa-lab)

Robotics

ENSIT 8 / 139

A D > A B > A B > A B >

Estimated worldwide annual supply of industrial robots

ROBOTICS INDUSTRY: UAVS (4/MANY)

UAV's Manufacturer

Robotics

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

Χ4

Kinematics

Arm robot

- Coomstrical ma
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- paun pianning
- Mobile robotics
- Visual servoing

2016 2015 2014 2013 2012 Année 2011 2010 2009 2008 Nb. RPAS 2007 2006 Nb. fabricants Nb. pays producteurs 2005 500 1000 1500 2000 2500 0

• UAVs by countries

N. Marchand (gipsa-lab)

Robotics

ENSIT 9 / 139

ROBOTICS INDUSTRY: UAVS (5/MANY)

• Development of the drone's industry:

Robotics

N. Marchand

an

publications par

Introduction

Χ4

6000 coaxial UAV 2016 coaxial (helicopter OR UAV) 5000 2015 helicopter UAV 2014 quadcopter OR quadrotor 2013 4000 -fixed wing UAV 2012 flapping wing UAV Année 2011 3000 2010 P 2000 1000 1000 2009 2008 2007 Nb. RPAS 2006 Nb. fabricants Nb. pays producteurs 2005 0 2000 2008 2012 2016 1996 2004 500 1000 1500 0 2000 2500 Année Foundation of DJI: 2006 53% D.II 25%

- Very competitive market with a high technological level of intergration
- Commercial margin of 10% to 15% (more than 50% on iPhone) •

ROBOTICS INDUSTRY: UAVS (6/MANY)

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Kinematic mode

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

250 200 150 100 50 36% 103% 30% **59**% 81% Agriculture Building Construction Mining Transportation Inspection 126% 102% 97% 16% Delivery & Oil & Gas Power Lines Renewable Energy Media & Logistics Entertainment 58% 54% 12% **11()**% 8%

Environmental

Monitoring

Disaster

Response

Public Land Management

N. Marchand (gipsa-lab)

Police & Fire

Robotics

Traffic Monitoring

ENSIT 11 / 139

ROBOLUTION (1/MANY)

• Number of robots for every 10 000 workers:

Robotics

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical
- Kinematic mode
- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

- 70% of robots in companies with more than 1000 employees
- 17% of robots in companies with less than 300 employees
- In 2002, 95% of robots > 30k€ and 32% of robots > 60k€
- $\bullet~79\%$ of decrease of the mean price between 1990 and 2002
- Big robots manufacturers: ABB (S), KUKA (G), Fanuc (JP), etc.

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic mo Dynamical mo Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

Robolution (2/MANY)

- Robotics enables 90% of cost reduction (60% for delocation)
- Each new robot destroys 6.2 jobs [MIT/Boston 1990-2007, 2017]
- 47% of jobs in the US, 50% of jobs in Europe have a high risk of being replaced by robots in the next 20 years [Oxford, 2013] ... but only 9% according [OCDE, 2016]
- Poor countries are more vulnerable, especially world factories (85% of the jobs in Ethiopia, 77% in Chine [World Bank])
- Sectors with high impact: Administration et Production
- Winner sectors: Finance, Maths/Sciences, Education
- No link between unemployment and robots
- Helps to relocate jobs in countries where the consumers are
- Very few studies on created jobs (compared to destroyed jobs)
- 800 000 direct jobs in robotics in 2020 and more than 2 millions in connected domains (electronic, energy, agriculture, etc.)

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Commentation land
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Robolution (3/MANY)

- What about the previous industrial revolution ?
 - Machines have created more jobs than they have replaced in the last 140 years
 - Working is getting less and less exhausting
 - Increase of new jobs (+580% éducation)
 - But we had fears, as in any big change periods:
 - 1675 : Destruction of machines by weavers (England), 1788 : 2000 workers break weaving machines (France), 1811-1812 : Luddism (Angleterre)
 - 1858 : Karl Marx is prophesies the replacement of the humans by machines

ENSIT 14 / 139

• 1930 : John Maynard Keynes invents the term "technological unemployment"

N. Marchand (gipsa-lab)

Robotics

Outline

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

• Basic mechanics for robotics

- Space representation
 - frames, coordinate transformation, etc.
- Force and torques
- Modelisation
- Control for robots
 - All potential problems:
 - Oscillations, dry friction, saturations, etc.
 - Linear approaches
 - Nonlinear approaches

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robo

- Inner-loop
- Geometrical mod
- Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Introduction
 Modeling

• Cartesian coordinates

- Orientation
- Frames
- Newton
- 3 The quadrotor case

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion
- 5 Path planning
 - Workspace and obstacles
 - Path planning problem formulation
- 6 Mobile robotics
- Visual servoing

N. Marchand (gipsa-lab)

OUTLINE

ENSIT 16 / 139

OUTLINE

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics
- Visual servoing

Introduction

Modeling

2

- Cartesian coordinates
- Orientation
- Frames
- Newton

The quadrotor case

- Kinematics and dynamics of robots
- Path planning

Mobile robotics

N. Marchand (gipsa-lab)

Robotics

ENSIT 17 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation Frames

Newton

Χ4

Kinematics

Arm robots Inner-loop Geometrical mod

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Position and speed

• The **position** of some point *P* in the **fixed** frame $\mathcal{F}(o, \vec{e_x}, \vec{e_y}, \vec{e_z})$ is the vector $\vec{p} = (x, y, z)^T$

Robotics

ENSIT 18 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

Χ4

Kinematics

- Arm robots Inner-loop Geometrical mo
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Position and speed

• The **position** of some point *P* in the **fixed** frame $\mathcal{F}(o, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ is the vector $\vec{p} = (x, y, z)^T$

• The **speed** of *P* in \mathcal{F} is the vector $\vec{s} = \dot{\vec{p}} = (\dot{x}, \dot{y}, \dot{z})^T$

Robotics

ENSIT 18 / 139

Robotics	\bullet A rotation is represented by a 3 \times 3 ma	etrix R such that $R^T=R^{-1}$ and det $R=1$
N. Marchand		
Introduction		
Modeling Cartesian coordinates Orientation Frames Newton		
X4		
Kinematics Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion		
Path planning Workspace and obstacles path planning		
Mobile robotics		
Visual servoing		(미) (원) (분) (분) 분 (
N. Marchand (gips	a-lab) Robotics	ENSIT 19 /

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loon

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A rotation is represented by a 3 × 3 matrix R such that R^T = R⁻¹ and det R = 1
A rotation of angle θ around:

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Robotics • A rotation is represented by a 3×3 matrix R such that $R^T = R^{-1}$ and det R = 1• A rotation of angle θ around:

• axis \vec{e}_x is given by:

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

- Arm robot
- Inner-loon
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

イロト イポト イヨト

ROTATIONS

• A rotation is represented by a 3×3 matrix R such that $R^T = R^{-1}$ and det R = 1

N. Marchand	 A rotation of angle θ around: axis e_x is given by: 	(1 0		
Introduction		$R_{\rm x} = \begin{pmatrix} 1 & 0 \\ 0 & \cos\theta \end{pmatrix}$	$-\sin\theta$	
Modeling Cartesian coordinates Orientation Frames Newton X4	• axis $\vec{e_y}$ is given by:	$\begin{pmatrix} 0 & \sin \theta \\ \\ R_y = \begin{pmatrix} \cos \theta & 0 \\ 0 & 1 \\ -\sin \theta & 0 \end{pmatrix}$	$ \begin{array}{c} \cos\theta \\ \sin\theta \\ 0 \\ \cos\theta \end{array} $	
Kinematics Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion				
Path planning Workspace and obstacles path planning Mobile robotics				
Visual servoing				
N. Marchand (gips	a-lab)	Robotics		ENSIT 19 /

Robotics	• A rotation is represented by a 3 \times 3 matrix R such that $R^T = R^{-1}$ and det $R = 1$				
N. Marchand	 A rotation of angle θ aroun axis e_x is given by: 	ıd:			
Introduction		$R_{\rm x} = \begin{pmatrix} 1 & 0 \\ 0 & \cos \theta \end{pmatrix}$	$\begin{pmatrix} 0\\ -\sin\theta \end{pmatrix}$		
Modeling		$\begin{pmatrix} 0 & \sin \theta \end{pmatrix}$	$\cos\theta$		
Cartesian coordinates Orientation Frames Newton	• axis $\vec{e_y}$ is given by:	$R_{y} = \begin{pmatrix} \cos\theta & 0\\ 0 & 1\\ \sin\theta & 0 \end{pmatrix}$	$\begin{pmatrix} & \sin \theta \\ & 0 \\ & \cos \theta \end{pmatrix}$		
X4					
Kinematics Am robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion	 axis e _z is given by: 	$R_z = \begin{pmatrix} \cos\theta & -s\\ \sin\theta & \cos\theta\\ 0 & 0 \end{pmatrix}$	$ \begin{array}{ccc} \sin\theta & 0\\ \cos\theta & 0\\ 0 & 1 \end{array} \right) $		
Path planning Workspace and obstacles path planning					
Mobile robotics					
Visual servoing					
N. Marchand (gipsa-la	ab)	Robotics	ENSIT	19	

• A rotation is represented by a 3 \times 3 matrix R such that $R^T = R^{-1}$ and det R = 1Robotics • A rotation of angle θ around: N. Marchand • axis \vec{e}_x is given by: $R_{\rm x} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix}$ • axis \vec{e}_v is given by: Orientation $R_{y} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$ • axis \vec{e}_{τ} is given by: $R_z = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$ • a unit vector $\vec{u} = (u_x, u_y, u_z)^T$: $\begin{pmatrix} u_x^2 + (1 - u_x^2)c_\theta & u_x u_y(1 - c_\theta) - u_z s_\theta & u_x u_z(1 - c_\theta) + u_y s_\theta \\ u_x u_y(1 - c_\theta) + u_z s_\theta & u_y^2 + (1 - u_y^2)c_\theta & u_y u_z(1 - c_\theta) - u_x s_\theta \\ u_y u_y(1 - c_\theta) - u_y s_\theta & u_y u_y(1 - c_\theta) + u_y s_\theta & u_y^2 + (1 - u_y^2)c_\theta \end{pmatrix}$ with $c_{i} = \cos(\cdot)$ and $s_{i} = \sin(\cdot)$ (and later on $t_{i} = \tan(\cdot)$)

N. Marchand (gipsa-lab)

servoing

Robotics

ENSIT 19 / 139

• A rotation is represented by a 3 \times 3 matrix R such that $R^T = R^{-1}$ and det R = 1Robotics • A rotation of angle θ around: N. Marchand • axis \vec{e}_x is given by: $R_{\rm x} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix}$ • axis \vec{e}_v is given by: Orientation $R_{y} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$ • axis \vec{e}_{τ} is given by: $R_z = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$ • a unit vector $\vec{u} = (u_x, u_y, u_z)^T$: $\begin{pmatrix} u_x^2 + (1 - u_x^2)c_\theta & u_x u_y (1 - c_\theta) - u_z s_\theta & u_x u_z (1 - c_\theta) + u_y s_\theta \\ u_x u_y (1 - c_\theta) + u_z s_\theta & u_y^2 + (1 - u_y^2)c_\theta & u_y u_z (1 - c_\theta) - u_x s_\theta \\ u_y u_y (1 - c_x) - u_y s_x & u_y u_y (1 - c_x) + u_y s_\theta & u_z^2 + (1 - u_z^2)c_\theta \end{pmatrix}$ with $c_{\cdot} = \cos(\cdot)$ and $s_{\cdot} = \sin(\cdot)$ (and later on $t_{\cdot} = \tan(\cdot)$) • The coordinates q of point Q obtained by rotating P with rotation R is q = Rpservoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 19 / 139

N. Marchand (gipsa-lab)

ROTATIONS

• A rotation is represented by a 3 \times 3 matrix R such that $R^T = R^{-1}$ and det R = 1Robotics • A rotation of angle θ around: N. Marchand • axis \vec{e}_x is given by: $R_{\rm x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$ • axis \vec{e}_v is given by: Orientation $R_{y} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$ • axis \vec{e}_{τ} is given by: $R_z = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$ • a unit vector $\vec{u} = (u_x, u_y, u_z)^T$: $\begin{pmatrix} u_x^2 + (1 - u_x^2)c_\theta & u_x u_y (1 - c_\theta) - u_z s_\theta & u_x u_z (1 - c_\theta) + u_y s_\theta \\ u_x u_y (1 - c_\theta) + u_z s_\theta & u_y^2 + (1 - u_y^2)c_\theta & u_y u_z (1 - c_\theta) - u_x s_\theta \\ u_y u_y (1 - c_\theta) - u_y s_\theta & u_y (1 - c_\theta) + u_y s_\theta & u_z^2 + (1 - u_z^2)c_\theta \end{pmatrix}$ with $c_{\cdot} = \cos(\cdot)$ and $s_{\cdot} = \sin(\cdot)$ (and later on $t_{\cdot} = \tan(\cdot)$) • The coordinates q of point Q obtained by rotating P with rotation R is q = Rp• The rotation resulting from 2 successive rotations R_1 and then R_2 is $R_2 R_1$

Robotics

ENSIT 19 / 139

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$ Robotics N. Marchand Orientation Newton obstacles servoing

N. Marchand (gipsa-lab)

ENSIT 20 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

- Arm robot
- Inner-loon
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$

• The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1y}v_{2z} - v_{1z}v_{2y} \\ v_{1z}v_{2x} - v_{1x}v_{2z} \\ v_{1x}v_{2y} - v_{1y}v_{2x} \end{pmatrix} \in \mathbb{R}^3$$

ENSIT 20 / 139

イロト イポト イヨト イヨト

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $< v_1, v_2 >$ is defined by: $< v_1, v_2 > := v_1^T v_2 \in \mathbb{R}$

• The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1_y} v_{2_z} - v_{1_z} v_{2_y} \\ v_{1_z} v_{2_x} - v_{1_x} v_{2_z} \\ v_{1_x} v_{2_y} - v_{1_y} v_{2_x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames Newton

.....

Kinematics

Arm robo

- Inner-loop
- Geometrical mo
- Kinematic mode
- Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$

• The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1_y} v_{2_z} - v_{1_z} v_{2_y} \\ v_{1_z} v_{2_x} - v_{1_x} v_{2_z} \\ v_{1_x} v_{2_y} - v_{1_y} v_{2_x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

• The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 - M_2M_1$ is called SO(3) and forms an algebra

ENSIT 20 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames Newton

X4

Kinematics

Arm robo

- Inner-loop
- Geometrical mo

Kinematic mode

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$

• The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1_y} v_{2_z} - v_{1_z} v_{2_y} \\ v_{1_z} v_{2_x} - v_{1_x} v_{2_z} \\ v_{1_x} v_{2_y} - v_{1_y} v_{2_x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 M_2M_1$ is called SO(3) and forms an algebra
- Skew-symmetric matrices and cross product:

N. Marchand (gipsa-lab)

ENSIT 20 / 139

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robo

- Inner-loop
- Geometrical mo
- Kinematic mode
- Dynamical mod

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$

• The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1_y} v_{2_z} - v_{1_z} v_{2_y} \\ v_{1_z} v_{2_x} - v_{1_x} v_{2_z} \\ v_{1_x} v_{2_y} - v_{1_y} v_{2_x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 M_2M_1$ is called SO(3) and forms an algebra
 - Skew-symmetric matrices and cross product:

$$v^{\times}u = v \times u$$

< □ > < 同 > < 回 > < 回 > < □ >

ENSIT 20 / 139

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames Newton

Y/

Kinematics

Arm robo

- Inner-loop
- Geometrical mo

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$

• The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1_y} v_{2_z} - v_{1_z} v_{2_y} \\ v_{1_z} v_{2_x} - v_{1_x} v_{2_z} \\ v_{1_x} v_{2_y} - v_{1_y} v_{2_x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 M_2M_1$ is called SO(3) and forms an algebra
 - Skew-symmetric matrices and cross product:

$$v^{\times}u = v \times u$$

• Skew-symmetric matrices and rotations

N. Marchand (gipsa-lab)

ENSIT 20 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames Newton

хı

Kinematics

Arm robo

- Inner-loop
- Geometrical mo

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

PRODUCTS AND ASSOCIATED TOOLS

• The scalar product $\langle v_1, v_2 \rangle$ is defined by: $\langle v_1, v_2 \rangle := v_1^T v_2 \in \mathbb{R}$

• The cross product $v_1 \times v_2$ is defined by:

$$v_1 \times v_2 := \begin{pmatrix} v_{1_y} v_{2_z} - v_{1_z} v_{2_y} \\ v_{1_z} v_{2_x} - v_{1_x} v_{2_z} \\ v_{1_x} v_{2_y} - v_{1_y} v_{2_x} \end{pmatrix} \in \mathbb{R}^3$$

• The skew-symmetric matrix associated to a vector $p = (x, y, z)^T$ is:

$$p^{\times} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- The set of skew-symmetric matrix with the brackett $[M_1, M_2] = M_1M_2 M_2M_1$ is called SO(3) and forms an algebra
 - Skew-symmetric matrices and cross product:

$$v^{\times}u = v \times u$$

• Skew-symmetric matrices and rotations

$$u^{\times} \sin \theta + (I - uu^{T}) \cos \theta + uu^{T} = \exp((u\theta)^{\times})$$

is the rotation of angle θ leaving axis u fixed

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

Robotics

• Attitude:

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loon

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 21 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

- Arm robots
- Inner-loon
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?

ENSIT 21 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

- Arm robot
- Inner-loon
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame

ENSIT 21 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations

ENSIT 21 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions

ENSIT 21 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix

ENSIT 21 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Geometrical mod

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...

ENSIT 21 / 139

・ロト ・ 西ト ・ ヨト

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

- Frame
- Newton

Χ4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, . . .
- Euler angles: 3 angles, 27 possible rotations

L. Euler (1707-1783)

イロト イポト イヨト

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

- Frame
- Newton

Χ4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles

L. Euler (1707-1783)

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

- Frame
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

L. Euler (1707-1783)

N. Marchand

Orientation

- Newton

servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - · equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew,
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

W.R. Hamilton (1805-1865)

Quaternions

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

- Frame
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

W.R. Hamilton (1805-1865)

• Quaternions

- u fixed by rotation of angle θ
- the quaternion is:

$$q = \begin{pmatrix} u_x \sin \theta/2 \\ u_y \sin \theta/2 \\ u_z \sin \theta/2 \\ \cos \theta/2 \end{pmatrix} = \begin{pmatrix} \vec{q} \\ q_0 \end{pmatrix}$$

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

- Frame
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

W.R. Hamilton (1805-1865)

• Quaternions

- $\bullet~u$ fixed by rotation of angle θ
- the quaternion is:

$$q = \begin{pmatrix} u_x \sin \theta/2 \\ u_y \sin \theta/2 \\ u_z \sin \theta/2 \\ \cos \theta/2 \end{pmatrix} = \begin{pmatrix} \vec{q} \\ q_0 \end{pmatrix}$$

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

- Frame
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION: ANGLES

- Attitude:
 - equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
 - gives the rotation that transforms the reference frame into the body frame
- Many attitude representations
 - Euler angles
 - Quaternions
 - Rotation matrix
 - Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
- Euler angles: 3 angles, 27 possible rotations
- Engineering and robotics communities typically use 3-1-3 Euler angles
- Representations with singularities

W.R. Hamilton (1805-1865)

Quaternions

- u fixed by rotation of angle θ
- the quaternion is:

$$q = \begin{pmatrix} u_x \sin \theta/2 \\ u_y \sin \theta/2 \\ u_z \sin \theta/2 \\ \cos \theta/2 \end{pmatrix} = \begin{pmatrix} \vec{q} \\ q_0 \end{pmatrix}$$

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION : ANGULAR VELOCITIES

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

ENSIT 22 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ATTITUDE REPRESENTATION : ANGULAR VELOCITIES

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

• **Caution:** Angular velocities <u>are not</u> the time derivatives of Euler angles

N. Marchand (gipsa-lab)

Robotics

ENSIT 22 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic mod Dynamical mo

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ATTITUDE REPRESENTATION : ANGULAR VELOCITIES

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

Caution: Angular velocities <u>are not</u> the time derivatives of Euler angles
Angular velocities are given by:

N. Marchand (gipsa-lab)

ENSIT 22 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical

Kinematic model

Dynamical m

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTITUDE REPRESENTATION : ANGULAR VELOCITIES

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

- Caution: Angular velocities <u>are not</u> the time derivatives of Euler angles
 Angular velocities are given by:
 - Rotation matrix:

$$\dot{R} = R\omega^{\times}$$

Robotics

ENSIT 22 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ATTITUDE REPRESENTATION : ANGULAR VELOCITIES

• The angular velocity $\omega = (\omega_1, \omega_2, \omega_3)^T$ represents the rotation speed w.r.t. each axis of the body frame

- Caution: Angular velocities <u>are not</u> the time derivatives of Euler angles
 Angular velocities are given by:
 - Rotation matrix:

$$\dot{R} = R\omega^{\times}$$

• Quaternions :

$$\dot{\vec{q}} = \frac{1}{2} \Omega(\vec{\omega}) q \qquad \text{with} \begin{cases} \Omega(\vec{\omega}) = \begin{pmatrix} 0 & -\vec{\omega}^T \\ \vec{\omega} & -\vec{\omega}^\times \end{pmatrix} \\ \exists (q) = \begin{pmatrix} -\vec{q}^T \\ b_{3\times 3} q_0 + \vec{q}^\times \end{pmatrix} \end{cases}$$

N. Marchand (gipsa-lab)

ENSIT 22 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinate

Orientation

Frames

Newton

χı

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model

Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

MOVING FRAMES

P. Varignon (1654-1722)

Varignon's formula

 $=rac{dec{U}}{dt}^{\mathcal{F}}+\Omega^{\mathcal{F}/\mathcal{M}} imesec{U}^{\mathcal{F}}$ $d\vec{U}^{\mathcal{M}}$ dt

N. Marchand (gipsa-lab)

Robotics

ENSIT 23 / 139

MOVING FRAMES

• $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed inertial frame

N. Marchand

Introduction

Modeling

Cartesian coordinate

Orientation

Frames

Newton

χı

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 24 / 139

+ □ > < □ > < □ > < □ > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MOVING FRAMES

• $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed inertial frame • $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame

Robotics

ENSIT 24 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

Χ4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed inertial frame
- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$

Robotics

ENSIT 24 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

Χ4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed inertial frame
- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$
- $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t.

Robotics

ENSIT 24 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical Kinematic m

Dynamical mode

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

MOVING FRAMES

• $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed inertial frame \mathcal{M} • $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame • R: rotation matrix s.t. $\mathcal{M} = R.\mathcal{F}$ • $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. Velocities: Absolute velocity (dÕP dON dt • Speed of \mathcal{M} w.r.t \mathcal{F} Relative velocity • Due to the rotation of \mathcal{M} w.r.t. \mathcal{F}

N. Marchand (gipsa-lab)

ENSIT 24 / 139

MOVING FRAMES

• $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

χı

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 25 / 139

$MOVING \ FRAMES$ • $\mathcal{F} := (\textit{O}, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame

• $\mathcal{M} := (\mathcal{M}, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

χı

Kinematics

- Arm robots
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 25 / 139

+ □ > < □ > < □ > < □ > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

χı

Kinematics

- Arm robot
- Inner-loon
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame
- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$

Robotics

ENSIT 25 / 139

+ □ > < □ > < □ > < □ > < □ >

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ fixed frame
- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$
- $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. \mathcal{F}

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

- Arm robot
- Inner-loon
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 25 / 139

N. Marchand

Frames

servoing

MOVING FRAMES

- $\mathcal{F} := (O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ fixed frame
- $\mathcal{M} := (M, \vec{t_1}, \vec{t_2}, \vec{t_3})$: mobile frame
- R: rotation matrix s.t. $\mathcal{M} = R\mathcal{F}$
- $\Omega^{\mathcal{M}/\mathcal{F}}$: angular velocity matrix of \mathcal{M} w.r.t. \mathcal{F}
- Acceleration

$$\ddot{P}^{\mathcal{F}} := \left(\frac{d\dot{P}^{\mathcal{F}}}{dt}\right)^{\mathcal{F}} = \frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} + \frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{dt}$$

$$\begin{aligned} \frac{d\dot{P}^{\mathcal{M}}}{dt}^{\mathcal{F}} &= \ddot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}} \text{ (Varignon's formula)} \\ \frac{d\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}}{dt} &= \dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{F}} \\ &= \dot{\Omega}^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}} + \Omega^{\mathcal{M}/\mathcal{F}} \times \dot{P}^{\mathcal{M}} + \Omega^{\mathcal{M}/\mathcal{F}} \times (\Omega^{\mathcal{M}/\mathcal{F}} \times P^{\mathcal{F}}) \end{aligned}$$

all together:

NEWTON'S LAWS

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop
- Geometrical mod
- Kinematic mode
- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

a body of mass m := ∑_i m_i composed of elements located in p_i with speed v_i in F
or a body of mass m := ∫_{body} dm composed of elementary part located in p_{dm} with speed v_{dm} in F
p := ∑_i m_ip_i/m defines the position of its center of mass G in F
or p := ∫_{body} dmp_{dm}/m defines the position of its center of mass G in F
v := p defines speed of the center of mass

•
$$\vec{r}_i := (\vec{p}_i - \vec{p}) (\text{resp. } \vec{r}_{dm} := (\vec{p}_{dm} - \vec{p}))$$

Linear Momentum

Consider[.]

• an inertial frame \mathcal{F}

$$egin{array}{rcl} ec{P} & := & \sum_i m_i ec{v}_i = m ec{v} \in \mathbb{R}^3 \ ec{P} & := & \int_{ ext{body}} ec{v}_{dm} dm \in \mathbb{R}^3 \end{array}$$

Angular Momentum $\vec{L} := \sum_{i} m_{i}(\vec{p}_{i} - \vec{p}) \times \vec{v}_{i}$ $\vec{L} := \int_{body} (\vec{p}_{dm} - \vec{p}) \times \vec{v}_{dm} dm$ $= \underbrace{\int_{body} ||\vec{r}_{dm}||^{2} dm}_{J: \text{ moment of inertia}} \vec{\omega}$

Robotics

ENSIT 26 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robo

- Inner-Ioop
- Geometrical mo
- Kinematic mode
- Dynamical mod

Conclusion

Path planning

Workspace and obstacles

pauri pianninį

Mobile robotics

Visual servoing

Consider:

- a rigid body
- \bullet an inertial frame ${\cal F}$
- \bullet a moving frame ${\cal M}$ centered in the center of mass and aligned with the main axis of the rigid body

NEWTON'S LAWS

• Let $\vec{F_i}$'s be forces applying on the body with moment arm $\vec{a_i}$

Conservation of the angular momentum $\sum \vec{\tau} = \frac{d\vec{L}}{dt}^{\mathcal{F}}$

• In a moving frame (Varignon's formula):

$$\frac{d\vec{L}^{\mathcal{F}}}{dt} = \frac{d\vec{L}^{\mathcal{M}}}{dt} + \Omega \times \vec{L}$$

I. Newton (1643-1727) J. L. Lagrange (1736-1813)

N. Marchand (gipsa-lab)

ENSIT 27 / 139

X4

servoing

- N. Marchand

- N. Marchand (gipsa-lab)

- ۲
- Newton

The quadrotor case

- Arm robots
- Inner-loop
- Kinematic model
- Dynamical model
- Conclusion
- Workspace and obstacles
- Path planning problem formulation

Menu

Robotics

ENSIT 28 / 139

HOW IT WORKS

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

イロン イ団 と イヨン イヨン

Robotics

ENSIT 29 / 139

HOW IT WORKS

Robotics

- N. Marchand
- Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• 4 fixed rotors with controlled rotation speed *s_i*

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

ENSIT 29 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i

Robotics

Robotics

- N. Marchand
- Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Robotics

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement

A D > A B > A B > A B >

Robotics

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mode Dynamical mod Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

$$\Gamma_r = I(F_4 - F_2)$$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mode Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• 4 fixed rotors with controlled rotation speed *s_i*

HOW IT WORKS

- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = l(F_4 - F_2)$

Pitch movement

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mod Dynamical mod Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

• 4 fixed rotors with controlled rotation speed *s_i*

HOW IT WORKS

- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = I(F_4 - F_2)$

 Pitch movement generated with a dissymmetry between front and rear forces:

$$\Gamma_p = I(F_1 - F_3)$$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mod Dynamical mod Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

• 4 fixed rotors with controlled rotation speed *s_i*

HOW IT WORKS

- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = I(F_4 - F_2)$

 Pitch movement generated with a dissymmetry between front and rear forces:

$$\Gamma_p = I(F_1 - F_3)$$

Yaw movement

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic moo Dynamical moo Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

• 4 fixed rotors with controlled rotation speed *s_i*

HOW IT WORKS

- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = I(F_4 - F_2)$

 Pitch movement generated with a dissymmetry between front and rear forces:

 $\Gamma_p = l(F_1 - F_3)$

• Yaw movement generated with a dissymmetry between front/rear and left/right torques:

$$\Gamma_y = \Gamma_1 + \Gamma_3 - \Gamma_2 - \Gamma_4$$

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MODELING THE QUADROTOR

gipsa-lab

Robotics

ENSIT 30 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

ACTUATION AND AERODYNAMICS

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loon

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Electrical motor: A 2nd order system with friction and saturation

イロト イポト イヨト イヨト

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- orientatio
- Names

X4

Kinematics

- Arm robots Inner-loop Geometrical m Kinematic mod
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ACTUATION AND AERODYNAMICS

• Electrical motor: A 2nd order system with friction and saturation usually *approximated* by a 1^{rst} order system:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \eta_{\text{oad}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i) \quad i \in \{1, 2, 3, 4\}$$

- s_i: rotation speed
- U_i : voltage applied to the motor; real control variable

 τ_{load} : motor load: $\tau_{\text{load}} = k_{gearbox} c_D |s_i| s_i$ with c_D drag coefficient

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

ACTUATION AND AERODYNAMICS

• Electrical motor: A 2nd order system with friction and saturation usually *approximated* by a 1^{rst} order system:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\text{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i) \quad i \in \{1, 2, 3, 4\}$$

s_i: rotation speed

5

- U_i : voltage applied to the motor; real control variable
- τ_{load} : motor load: $\tau_{\text{load}} = k_{gearbox} c_D |s_i| s_i$ with c_D drag coefficient

• Aerodynamical forces and torques: Very complex models exist

N. Marchand (gipsa-lab)

Robotics

ENSIT 31 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical n
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

• Electrical motor: A 2nd order system with friction and saturation

ACTUATION AND AERODYNAMICS

usually *approximated* by a 1^{rst} order system:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i) \quad i \in \{1, 2, 3, 4\}$$

- s_i: rotation speed
- U_i : voltage applied to the motor; real control variable
- τ_{load} : motor load: $\tau_{\text{load}} = k_{gearbox} c_D |s_i| s_i$ with c_D drag coefficient
- Aerodynamical forces and torques: Very complex models exist but overcomplicated for control, better use the *simplified* model:

$$\begin{array}{rcl} F_i &=& c_T s_i^2 \\ \Gamma_r &=& l c_T (s_4^2 - s_2^2) \\ \Gamma_p &=& l c_T (s_1^2 - s_3^2) \\ \Gamma_y &=& l c_D (s_1^2 + s_3^2 - s_2^2 - s_4^2) \end{array} \qquad i \in \{1,2,3,4\}$$

 c_T : thrust coefficient, c_D : drag coefficient

N. Marchand (gipsa-lab)

Robotics

ENSIT 31 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loon

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Two frames

- a fixed frame $\mathcal{E}(\vec{e}_1, \vec{e}_2, \vec{e}_3)$
- a frame attached to the X4 $\mathcal{T}(\vec{t_1}, \vec{t_2}, \vec{t_3})$

Robotics

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Two frames

- a fixed frame $\mathcal{E}(\vec{e_1}, \vec{e_2}, \vec{e_3})$
- a frame attached to the X4 $\mathcal{T}(\vec{t_1}, \vec{t_2}, \vec{t_3})$
- Frame change
 - a rotation matrix R from $\mathcal T$ to $\mathcal E$

A D > A B > A B > A B >

Robotics

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop
- Geometrical mod
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Two frames

- a fixed frame $\mathcal{E}(\vec{e}_1, \vec{e}_2, \vec{e}_3)$
- a frame attached to the X4 $\mathcal{T}(\vec{t_1}, \vec{t_2}, \vec{t_3})$
- Frame change
 - a rotation matrix R from $\mathcal T$ to $\mathcal E$

+ □ > < □ > < □ > < □ > < □ >

State variables:

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical mod
- Kinematic mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Two frames

- a fixed frame $\mathcal{E}(\vec{e}_1, \vec{e}_2, \vec{e}_3)$
- a frame attached to the X4 $\mathcal{T}(\vec{t_1}, \vec{t_2}, \vec{t_3})$
- Frame change
 - a rotation matrix R from $\mathcal T$ to $\mathcal E$

< □ > < 同 > < 回 > < 回 > < 回 >

• State variables:

- Cartesian coordinates (in \mathcal{E})
 - position \vec{p}
 - velocity \vec{v}

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical mod
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics
- Visual servoing

N. Marchand (gipsa-lab)

• Two frames

- a fixed frame $\mathcal{E}(\vec{e_1}, \vec{e_2}, \vec{e_3})$
- a frame attached to the X4 $\mathcal{T}(\vec{t_1}, \vec{t_2}, \vec{t_3})$
- Frame change
 - a rotation matrix R from $\mathcal T$ to $\mathcal E$

- State variables:
 - Cartesian coordinates (in \mathcal{E})
 - position \vec{p}
 - velocity \vec{v}
 - Attitude coordinates:
 - \bullet angular velocity $\vec{\omega}$ in the moving frame $\mathcal T$
 - either: Euler angles three successive rotations about \vec{t}_3 , \vec{t}_1 and \vec{t}_3 of angles angles ϕ , θ and ψ giving R
 - or: Quaternion representation $(q_0, \vec{q}) = (\cos \beta/2, \vec{u} \sin \beta/2)$ represent a rotation of angle β about \vec{u}

Robotics

Robotics

• Cartesian coordinates:

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

$$\vec{p} = \vec{v}$$

$$\vec{mv} = -mg\vec{e}_3 + R \underbrace{\sum_i F_i(s_i)\vec{t}_3}_{i} + \vec{F}_{ext}$$

$$\vec{T} : \text{ control thrust}$$

Robotics

≣ ► ≣ ∽ ९ ९ ENSIT 33 / 139

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Robotics

Cartesian coordinates:

1 ⇒

N. Marchand

Newton

• Attitude:

$$\begin{cases} p = v \\ m\vec{v} = -mg\vec{e}_3 + R \\ \vec{\tau} : \text{ control thrust} \end{cases} + \vec{F}_{ext}$$

X4

obstacles

path planning

servoing

N. Marchand (gipsa-lab)

э ENSIT 33 / 139

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

• Cartesian coordinates:

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

$\begin{cases} \dot{\vec{p}} = \vec{v} \\ m \dot{\vec{v}} = -mg \vec{e}_3 + R \underbrace{\sum_{i} F_i(s_i) \vec{t}_3}_{\vec{T} : \text{ control thrust}} + \vec{F}_{ext} \end{cases}$

Attitude:

• Rotation matrix formalism:

$$\left\{ \begin{array}{rrr} \dot{R} & = & R\vec{\omega}^{\times} \\ J\vec{\omega} & = & -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_c + \vec{\Gamma}_{ext} \end{array} \right. \qquad \text{with } \vec{\omega}^{\times} = \left(\begin{matrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{matrix} \right)$$

 $\vec{\omega}^{\,\times}$ is the skew symmetric tensor associated to $\vec{\omega}$

Robotics

• Cartesian coordinates:

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

$$\vec{\vec{p}} = \vec{v} \vec{m\vec{v}} = -mg\vec{e}_3 + R \underbrace{\sum_i F_i(s_i)\vec{t}_3}_{i} + \vec{F}_{ext} \vec{\vec{T}} : \text{ control thrust}$$

• Attitude:

• Rotation matrix formalism:

$$\begin{cases} \dot{R} = R\vec{\omega}^{\times} \\ J\dot{\vec{\omega}} = -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{cases} \quad \text{with } \vec{\omega}^{\times} = \begin{pmatrix} 0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0 \end{pmatrix}$$

 $\vec{\omega}^{\times}$ is the skew symmetric tensor associated to $\vec{\omega}$ • Quaternion formalism:

$$\begin{cases} \dot{\vec{q}} &= \frac{1}{2}\Omega(\vec{\omega})\vec{q} \\ &= \frac{1}{2}\Xi(q)\vec{\omega} \\ J\dot{\vec{\omega}} &= -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{cases} \text{ with } \begin{cases} \Omega(\vec{\omega}) = \begin{pmatrix} 0 & -\vec{\omega}^{T} \\ (\vec{\omega} & -\vec{\omega}^{\times}) \\ \Xi(q) = \begin{pmatrix} 0 & -\vec{\omega}^{T} \\ -\vec{q}^{T} \\ l_{3\times 3}q_{0} + \vec{q}^{\times} \end{pmatrix}$$

Robotics

ENSIT 33 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

Robotics

• Cartesian coordinates:

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mod
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

$\begin{cases} \vec{p} = \vec{v} \\ m\vec{v} = -mg\vec{e}_3 + R \underbrace{\sum_{i} F_i(s_i)\vec{t}_3}_{i} + \vec{F}_{ext} \\ \vec{T} : \text{ control thrust} \end{cases}$

Attitude:

• Rotation matrix formalism:

$$\begin{cases} \dot{R} = R\vec{\omega}^{\times} \\ \dot{J\vec{\omega}} = -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{cases} \quad \text{with } \vec{\omega}^{\times} = \begin{pmatrix} 0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0 \end{pmatrix}$$

 $\vec{\omega}^{\times}$ is the skew symmetric tensor associated to $\vec{\omega}$ • Quaternion formalism:

$$\begin{cases} \dot{\vec{q}} &= \frac{1}{2}\Omega(\vec{\omega})\vec{q} \\ &= \frac{1}{2}\Xi(q)\vec{\omega} & \text{with} \begin{cases} \Omega(\vec{\omega}) = \begin{pmatrix} 0 & -\vec{\omega}^{T} \\ \vec{\omega} & -\vec{\omega}^{\times} \end{pmatrix} \\ \vec{J}\dot{\vec{\omega}} &= -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{cases}$$

where
$$\vec{\Gamma}_{c} = \begin{pmatrix} \Gamma_{r}(s_{2}, s_{4}) \\ \Gamma_{p}(s_{1}, s_{3}) \\ \Gamma_{y}(s_{1}, s_{2}, s_{3}, s_{4}) \end{pmatrix}$$
 are the control torques

N. Marchand (gipsa-lab)

Robotics

ENSIT 33 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

The wronskian matrix

- Consider the 1-2-3 Euler angles ($\phi, \theta, \psi)$
- The rotation matrix is given by:

$$R = R_z R_y R_x = \begin{pmatrix} c_\theta c_\phi & s_\phi s_\theta c_\psi - c_\phi s_\psi & c_\phi s_\theta c_\psi + s_\phi s_\psi \\ c_\theta s_\phi & s_\phi s_\theta s_\psi + c_\phi c_\psi & c_\phi s_\theta s_\psi - s_\phi c_\psi \\ -s_\theta & s_\phi c_\theta & c_\phi c_\theta \end{pmatrix}$$

ENSIT 34 / 139

- N. Marchand
- Introduction

Modeling

- Cartesian coordinate Orientation
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics
- Visual servoing

N. Marchand (gipsa-lab)

The wronskian matrix

- Consider the 1-2-3 Euler angles ($\phi, \theta, \psi)$
- The rotation matrix is given by:

$$R = R_z R_y R_x = \begin{pmatrix} c_\theta c_\phi & s_\phi s_\theta c_\psi - c_\phi s_\psi & c_\phi s_\theta c_\psi + s_\phi s_\psi \\ c_\theta s_\phi & s_\phi s_\theta s_\psi + c_\phi c_\psi & c_\phi s_\theta s_\psi - s_\phi c_\psi \\ -s_\theta & s_\phi c_\theta & c_\phi c_\theta \end{pmatrix}$$

• The relation between the time derivative of the Euler angles and the angular velocity is:

$$\vec{\omega} = \begin{pmatrix} \dot{\phi} \\ 0 \\ 0 \end{pmatrix} + R_z \begin{pmatrix} 0 \\ \dot{\theta} \\ 0 \end{pmatrix} + R_z R_y \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix} = W^{-1} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}$$

Robotics

ENSIT 34 / 139

+ = + + = + + = + + =

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-Ioop
- Geometrical mod
- Kinematic model
- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

pacir planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

The wronskian matrix

- Consider the 1-2-3 Euler angles ($\phi, \theta, \psi)$
- The rotation matrix is given by:

$$R = R_z R_y R_x = \begin{pmatrix} c_\theta c_\phi & s_\phi s_\theta c_\psi - c_\phi s_\psi & c_\phi s_\theta c_\psi + s_\phi s_\psi \\ c_\theta s_\phi & s_\phi s_\theta s_\psi + c_\phi c_\psi & c_\phi s_\theta s_\psi - s_\phi c_\psi \\ -s_\theta & s_\phi c_\theta & c_\phi c_\theta \end{pmatrix}$$

• The relation between the time derivative of the Euler angles and the angular velocity is: $(\dot{\phi})$ (0) ($\dot{\phi}$) ($\dot{\phi}$)

$$\vec{\omega} = \begin{pmatrix} \phi \\ 0 \\ 0 \end{pmatrix} + R_z \begin{pmatrix} 0 \\ \dot{\theta} \\ 0 \end{pmatrix} + R_z R_y \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix} = W^{-1} \begin{pmatrix} \phi \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}$$

• W is called the wronskian matrix given by (for 1-2-3 Euler angles):

$$\mathcal{N} = egin{pmatrix} 0 & rac{s_\phi}{c_ heta} & rac{c_\phi}{c_ heta} \ 0 & c_\phi & -s_\phi \ 1 & s_\phi t_ heta & c_\phi t_ heta \end{pmatrix}$$

• This matrix is singular for
$$\theta = \pi/2 + k\pi$$

< □ > < 同 > < 回 > < 回 > < 回 >

A FIRST MODEL: REVIEW OF NONLINEARITIES

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mo Kinematic mod
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics
- Visual servoing

N. Marchand (gipsa-lab)

$$\begin{aligned} \dot{s}_{i} &= -\frac{k_{m}^{2}}{J_{r}R}s_{i} - \frac{k_{gearbox}c_{D}}{J_{r}}|s_{i}|s_{i} + \frac{k_{m}}{J_{r}R}\operatorname{sat}_{\bar{U}_{i}}(U_{i})\\ \dot{\vec{p}} &= \vec{v}\\ m\dot{\vec{v}} &= -mg\vec{e}_{3} + R\begin{pmatrix}0\\\\0\\\sum_{i}F_{i}(s_{i})\end{pmatrix}\\ \dot{\vec{k}} &= R\vec{\omega}^{\times}\\ J\dot{\vec{\omega}} &= -\vec{\omega}^{\times}J\vec{\omega} + \begin{pmatrix}\Gamma_{r}(s_{2},s_{4})\\\Gamma_{p}(s_{1},s_{3})\\\Gamma_{y}(s_{1},s_{2},s_{3},s_{4})\end{pmatrix} \end{aligned}$$

Robotics

ENSIT 35 / 139

イロト イポト イヨト

A FIRST MODEL: REVIEW OF NONLINEARITIES

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mod Dynamical mod

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

 $\dot{s}_{i} = -\frac{k_{m}^{2}}{J_{r}R}s_{i} - \frac{k_{gearbox}c_{D}}{J_{r}}|s_{i}|s_{i} + \frac{k_{m}}{J_{r}R}\operatorname{sat}_{\bar{U}_{i}}(U_{i})$ $\dot{\vec{p}} = \vec{v}$ $-mg\vec{e}_3 + R\left(\begin{array}{c} 0\\ \sum F_i(s_i) \end{array} \right)$ mΫ $\dot{R} = R\vec{\omega}^{\times}$ $J\dot{\vec{\omega}} = -\vec{\omega}^{\times}J\vec{\omega} + \begin{pmatrix} \Gamma_r(s_2, s_4) \\ \Gamma_p(s_1, s_3) \\ \Gamma_y(s_1, s_2, s_3, s_4) \end{pmatrix}$

In red: nonlinearities In blue: where the control variables act

N. Marchand (gipsa-lab)

Robotics

ENSIT 35 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PARAMETER IDENTIFICATION

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

PARAMETER IDENTIFICATION

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)

• Aerodynamical parameters: b and c_D

b and *c*_D measured with specific test beds, depends upon temperature, distance from ground, etc.

N. Marchand (gipsa-lab)

Robotics

ENSIT 36 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinate

E-----

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical r

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

.

robotics

Visual servoing

N. Marchand (gipsa-lab)

PARAMETER IDENTIFICATION

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)

• Aerodynamical parameters: b and c_D

b and c_D measured with specific test beds, depends upon temperature, distance from ground, etc.

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical i

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

paur planning

Mobile robotics

Visual servoing

PARAMETER IDENTIFICATION

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)

• Aerodynamical parameters: b and c_D

b and c_D measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

N. Marchand (gipsa-lab)

ENSIT 36 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation

Frames

X4

Kinematics

Arm robot

Geometrical mode

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

PARAMETER IDENTIFICATION

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)

• Aerodynamical parameters: b and cD

b and c_D measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

I length of an arm of the helicopter, easy to measure

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames

X4

Kinematics

Arm robots Inner-loop

- Geometricar mou
- Rinematic mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

PARAMETER IDENTIFICATION

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)

• Aerodynamical parameters: b and cD

b and c_D measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

I length of an arm of the helicopter, easy to measure m total mass of the helicopter, easy to measure

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newto

X4

Kinematics

- Arm robot
- Geometrical mod
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

-----e

robotics

Visual servoing

PARAMETER IDENTIFICATION

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)

• Aerodynamical parameters: b and cD

b and c_D measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

- I length of an arm of the helicopter, easy to measure
- m total mass of the helicopter, easy to measure
- J body inertia, hard to have precisely

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Neuton

X4

Kinematics

- Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

Mobile

Visual servoing

PARAMETER IDENTIFICATION

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \bar{U}_i is found on the data-sheet of the motor (damage avoidance)

• Aerodynamical parameters: b and cD

b and c_D measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

- I length of an arm of the helicopter, easy to measure
- m total mass of the helicopter, easy to measure
- J body inertia, hard to have precisely
- I_r rotor inertia, hard to have precisely

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

The flapping effect

- The thrust was assumed to be $\sum_{i} F_i(s_i) \vec{t}_3$, that is colinear to \vec{t}_3
- It has been proved to be false because it neglects the effect of the apparent wind speed, this is the **flapping effect**

Robotics

ENSIT 37 / 139

 $\exists \rightarrow$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

The flapping effect

- The thrust was assumed to be $\sum_{i} F_i(s_i) \vec{t}_3$, that is colinear to \vec{t}_3
- It has been proved to be false because it neglects the effect of the apparent wind speed, this is the **flapping effect**

ENSIT 37 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

The flapping effect

- The thrust was assumed to be $\sum_{i} F_i(s_i) \vec{t}_3$, that is colinear to \vec{t}_3
- It has been proved to be false because it neglects the effect of the apparent wind speed, this is the **flapping effect**

apparent wind

ENSIT 37 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

The flapping effect

- The thrust was assumed to be $\sum_i F_i(s_i) \vec{t}_3$, that is colinear to \vec{t}_3
- It has been proved to be false because it neglects the effect of the apparent wind speed, this is the **flapping effect**
- Higher thrust on one side of the blades
- The thrust becomes $\sum_{i} R_{i}^{\text{flapping}} F_{i}(s_{i}) \vec{t}_{3}$, torques are also modified

Robotics

ENSIT 37 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

The flapping effect

- The thrust was assumed to be $\sum_{i} F_i(s_i) \vec{t}_3$, that is colinear to \vec{t}_3
- It has been proved to be false because it neglects the effect of the apparent wind speed, this is the **flapping effect**
- Higher thrust on one side of the blades
- The thrust becomes $\sum_{i} R_{i}^{\text{flapping}} F_{i}(s_{i}) \vec{t}_{3}$, torques are also modified

Robotics

ENSIT 37 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

$\begin{array}{c} MODELING \mbox{ MORE INTO DETAILS: THE} \\ FLAPPING \mbox{ EFFECT} \\ \bullet \mbox{ The flapping matrix takes can be decomposed :} \end{array}$

$R^{\scriptscriptstyle {\mathrm{flapping}}}$	=	$R_{\!\scriptscriptstyle X}^{\scriptscriptstyle \mathrm{flapp}}$	$P^{ing} \cdot R^{fla}_y$	pping				
		(1)	0	0)		$\int c(\alpha)$	0	$s(\alpha)$
	=	0	$c(\beta)$	$-s(\beta)$	•	0	1	0
		(0	$s(\beta)$	c(β) /		$\langle -s(\alpha) \rangle$	0	$c(\alpha)/$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop

Geometrical mod

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MODELING MORE INTO DETAILS: THE FLAPPING EFFECT • The flapping matrix takes can be decomposed :

 $R^{\text{flapping}} = R_{\chi}^{\text{flapping}} \cdot R_{y}^{\text{flapping}}$ $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c(\beta) & -s(\beta) \\ 0 & s(\beta) & c(\beta) \end{pmatrix} \cdot \begin{pmatrix} c(\alpha) & 0 & s(\alpha) \\ 0 & 1 & 0 \\ -s(\alpha) & 0 & c(\alpha) \end{pmatrix}$

 $\bullet \ \alpha \ {\rm and} \ \beta \ {\rm can} \ {\rm be} \ {\rm composed} \ {\rm as} \ {\rm follows}$:

$$\begin{aligned} \alpha &= \alpha_{\mathbf{v}} + \alpha_{\omega} \\ \beta &= \beta_{\mathbf{v}} + \beta_{\omega} \end{aligned}$$

Robotics

ENSIT 38 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MODELING MORE INTO DETAILS: THE FLAPPING EFFECT • The flapping matrix takes can be decomposed :

 $R^{\text{flapping}} = R_{\chi}^{\text{flapping}} \cdot R_{y}^{\text{flapping}}$ $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c(\beta) & -s(\beta) \\ 0 & s(\beta) & c(\beta) \end{pmatrix} \cdot \begin{pmatrix} c(\alpha) & 0 & s(\alpha) \\ 0 & 1 & 0 \\ -s(\alpha) & 0 & c(\alpha) \end{pmatrix}$

• α and β can be composed as follows :

$$\alpha = \alpha_{\mathbf{v}} + \alpha_{\omega}$$
$$\beta = \beta_{\mathbf{v}} + \beta_{\omega}$$

• α_v and β_v represent the contribution of the linear speed of the body to the flapping effect

ENSIT 38 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MODELING MORE INTO DETAILS: THE FLAPPING EFFECT • The flapping matrix takes can be decomposed :

$R^{\scriptscriptstyle { ext{flapping}}}$	=	$R_{\!\scriptscriptstyle X}^{\scriptscriptstyle \mathrm{flapp}}$	$P^{ing} \cdot R_y^{fla}$	pping				
		(1)	0	0)		$\int c(\alpha)$	0	$s(\alpha)$
	=	0	$c(\beta)$	$-s(\beta)$	•	0	1	0
		\ 0	$s(\beta)$	c(β) /		$-s(\alpha)$	0	$c(\alpha)/$

• α and β can be composed as follows :

$$\alpha = \alpha_{\mathbf{v}} + \alpha_{\omega}$$
$$\beta = \beta_{\mathbf{v}} + \beta_{\omega}$$

• α_v and β_v represent the contribution of the linear speed of the body to the flapping effect

• a_{ω} and b_{ω} represent the contribution of the rotational speed of the body to the flapping effect

Robotics

ENSIT 38 / 139

The ground effect

Robotics

• The thrust was assumed to be
$$\sum_{i} F_i(s_i) \vec{t}_3$$
, with $F_i(s_i) = c_T s_i^2$

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 39 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

The ground effect

- The thrust was assumed to be $\sum_{i} F_i(s_i) \vec{t}_3$, with $F_i(s_i) = c_T s_i^2$
- Unfortunately, c_T is not constant but depends upon
 - the density of the air, therefore of the temperature
 - the ground distance : it is the ground effect, $\alpha_g(z) \geq 1$

N. Marchand (gipsa-lab)

Robotics

ENSIT 39 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ROTORS EFFECTS

• Each rotor may be thought of as a rigid disc rotating around the vertical axis the body frame, with angular velocity *s_i*. The rotor's axis of rotation is itself moving with the angular velocity of the frame. This leads to the following gyroscopic torque :

$$ec{\mathsf{r}}_{\mathsf{gyro}} = \mathit{I_r}ec{\omega} imes ec{t_3} \sum_i (-1) i \ket{s_i}$$

• I_r is the inertia matrix of a rotor

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

inner-ioop

Geometricar mo

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

Rotors effects

• Each rotor may be thought of as a rigid disc rotating around the vertical axis the body frame, with angular velocity *s_i*. The rotor's axis of rotation is itself moving with the angular velocity of the frame. This leads to the following gyroscopic torque :

$$ec{\mathsf{r}}_{\mathsf{gyro}} = \mathit{I_r}ec{\omega} imes ec{t_3} \sum_i (-1) i \ket{s_i}$$

- *I_r* is the inertia matrix of a rotor
- Each rotor produces a counter rotating torque that can be expressed as:

$$s_{res}$$
 := $\sum_{i} (-1)^{i} |s_{i}|$
 $\vec{\Gamma}_{I} = I_{r} \dot{s}_{res} \vec{t}_{3}$

N. Marchand (gipsa-lab)

ENSIT 40 / 139

OTHER EFFECTS

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 41 / 139

OTHER EFFECTS

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mo Kinematic mode
- Construction

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

 \vec{F} \vec{u}_3 \vec{t}_3 \vec{v}_2 \vec{u}_1 \vec{u}_2 \vec{u}_1 \vec{u}_2 \vec{u}_1 \vec{u}_2 \vec{u}_3 \vec{u}_3 \vec{u}_4 \vec{u}_3 \vec{u}_4 $\vec{u$

- Superposition of thrust center and mass center
- External forces
- Air friction: $-K_v ||\vec{v}||\vec{v}$

N. Marchand

Introduction

Modeling

Cartesian coordinates

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

THE MIXING MATRIX

• The **mixing matrix** M_x links the torques and thrust force to the rotational speed of the rotors

ENSIT 42 / 139

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

THE MIXING MATRIX

- The mixing matrix M_x links the torques and thrust force to the rotational speed of the rotors
- Depends on the considered configuration (not the same for + or x configuration)

< □ > < 同 > < 回 > < 回 > < 回 >

ENSIT 42 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical n Kinematic mo
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

THE MIXING MATRIX

- The mixing matrix M_x links the torques and thrust force to the rotational speed of the rotors
- Depends on the considered configuration (not the same for + or x configuration)
- For the + configuration presented before, we have:

$$\begin{pmatrix} T \\ \Gamma_r \\ \Gamma_p \\ \Gamma_y \end{pmatrix} = \underbrace{\begin{pmatrix} c_T & c_T & c_T & c_T \\ 0 & -lc_T & 0 & lc_T \\ lc_T & 0 & -lc_T & 0 \\ lc_D & -lc_D & lc_D & -lc_D \end{pmatrix}}_{M_x} \begin{pmatrix} s_1^2 \\ s_2^2 \\ s_3^2 \\ s_4^2 \end{pmatrix}$$

ENSIT 42 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model Dynamical mode

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

THE MIXING MATRIX

- The mixing matrix M_x links the torques and thrust force to the rotational speed of the rotors
- Depends on the considered configuration (not the same for + or x configuration)
- For the + configuration presented before, we have:

$$\begin{pmatrix} T \\ \Gamma_r \\ \Gamma_p \\ \Gamma_y \end{pmatrix} = \underbrace{\begin{pmatrix} c_T & c_T & c_T & c_T \\ 0 & -lc_T & 0 & lc_T \\ lc_T & 0 & -lc_T & 0 \\ lc_D & -lc_D & lc_D & -lc_D \end{pmatrix}}_{M_x} \begin{pmatrix} s_1^2 \\ s_2^2 \\ s_3^2 \\ s_4^2 \end{pmatrix}$$

• Flapping and other effect renders the relation between the rotor's speeds and control thrust and torques complex

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

THE MIXING MATRIX

- The mixing matrix M_x links the torques and thrust force to the rotational speed of the rotors
- Depends on the considered configuration (not the same for + or x configuration)
- For the + configuration presented before, we have:

$$\begin{pmatrix} T \\ \Gamma_r \\ \Gamma_p \\ \Gamma_y \end{pmatrix} = \underbrace{\begin{pmatrix} c_T & c_T & c_T & c_T \\ 0 & -lc_T & 0 & lc_T \\ lc_T & 0 & -lc_T & 0 \\ lc_D & -lc_D & lc_D & -lc_D \end{pmatrix}}_{M_x} \begin{pmatrix} s_1^2 \\ s_2^2 \\ s_3^2 \\ s_4^2 \end{pmatrix}$$

- Flapping and other effect renders the relation between the rotor's speeds and control thrust and torques complex
- With flapping appears coupling phenomenon: the thrust affects the yaw movement and the drag affects thrust/roll/pitch movements

Complete model

Robotics	• Actuation:	depends upor	n the type o	f electrical dr	rive you us	se
N. Marchand						
Introduction						
Modeling Cartesian coordinates Orientation Frames Newton						
X4						
Kinematics Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion						
Path planning Workspace and obstacles path planning						
Mobile robotics						
Visual servoing				A D > A D > A C		= ~~~
N. Marchand (gipsa	lab)	Robot	tics		ENSIT	43 / 139

COMPLETE MODEL

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- e
- Newton

X4

Kinematics

- Arm robots
- Geometrical mod
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Actuation: depends upon the type of electrical drive you useBody:

Complete model

Robotics

- N. Marchand
- Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

pain planning

Mobile robotics

Visual servoing

Actuation: depends upon the type of electrical drive you use
Body:

$$p = v$$

$$m\vec{v} = -mg\vec{e}_3 - K_v ||\vec{v}|| \vec{v} + R\vec{T} + \vec{F}_{ext}$$

$$\dot{R} = R\vec{\omega}^{\times}$$

$$J\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} + I_r\dot{s}_{res}\vec{t}_3 + I_r\vec{\omega} \times \vec{t}_3 \sum_i (-1)i|s_i| + \vec{\Gamma}_c + \vec{\Gamma}_{ext}$$

• Thrust:

÷

 \rightarrow

$$\vec{\mathcal{T}} = \sum_{i} R_{i}^{\text{flapping}} \alpha_{g} c_{T} s_{i}^{2} \vec{t}_{3}$$

N. Marchand (gipsa-lab)

ENSIT 43 / 139

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complete model

Robotics

- N. Marchand
- Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mo Kinematic mode Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

.....

robotics

Visual servoing

N. Marchand (gipsa-lab)

Actuation: depends upon the type of electrical drive you use Body:

$$\vec{p} = \vec{v}$$

$$\vec{m}\vec{v} = -mg\vec{e}_3 - K_v ||\vec{v}|| \vec{v} + R\vec{T} + \vec{F}_{ext}$$

$$\vec{R} = R\vec{\omega}^{\times}$$

$$\vec{J}\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} + I_r\dot{s}_{res}\vec{t}_3 + I_r\vec{\omega} \times \vec{t}_3 \sum_i (-1)i|s_i| + \vec{\Gamma}_c + \vec{\Gamma}_{ext}$$

• Thrust:

$$ec{\mathcal{T}} = \sum_{i} R_{i}^{\text{flapping}} lpha_{g} c_{T} s_{i}^{2} ec{t}_{3}$$

• Torques:

$$\vec{f}_c = \sum_i R_i^{\text{flapping}} \alpha_g c_T s_i^2 \vec{t}_3 \times p_{rotor_i}^{\mathcal{T}} + \sum_i (-1)^{i+1} c_D s_i^2 \vec{t}_3$$

Robotics

ENSIT 43 / 139

< □ > < 同 > < 三 > < 三 >

OUTLINE

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics Arm robots

servoing

4 Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

N. Marchand (gipsa-lab)

Robotics

ENSIT 44 / 139

JOINTED-ARM ROBOTS Jointed-arm robot: A robot whose arm is constructed of rigid members connected by

Robotics

rotary joints

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 45 / 139

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
 - Two possible rotary joints:

N. Marchand

Robotics

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 45 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
Two possible rotary joints:

Robotics

rotary around the arm

- Robotics

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 45 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 45 / 139

N. Marchand

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

• rotary perpendicular to the arm

Kinematics

Arm robots

Newton

- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Each possible movement is called a degree of freedom (dof)

ENSIT 45 / 139

N. Marchand

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

• rotary perpendicular to the arm

Kinematics

Arm robots

- Inner-loop Geometrical mode Kinematic mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Sometimes movements are coupled (more than 1 dof/articulation)

N. Marchand

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

Kinematics

Arm robots

- Inner-loop Geometrical m Kinematic mo
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- Each possible movement is called a degree of freedom (dof)
- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Each possible movement is called a degree of freedom (dof)
 - Sometimes movements are coupled (more than 1 dof/articulation)
 - A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- 110.000

X4

Kinematics

Arm robots

- Inner-loop Geometrical mo Kinematic mod
- Dynamical mod
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 45 / 139

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints • Two possible rotary joints:
- rotary around the arm

rotary perpendicular to the arm

- Each possible movement is called a degree of freedom (dof)
 - Sometimes movements are coupled (more than 1 dof/articulation)
 - A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm

Robotics

- N. Marchand

Arm robots

N. Marchand (gipsa-lab)

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
- Two possible rotary joints:
 - rotary around the arm

rotary perpendicular to the arm

- Each possible movement is called a degree of freedom (dof)
 - Sometimes movements are coupled (more than 1 dof/articulation)
 - A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm
 - 3 for the terminal tool

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

- Inner-loop
- Kinematic model
- Dynamical mod
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 45 / 139

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
 Two possible rotary joints:
- N. Marchand
- rotary around the arm

rotary perpendicular to the arm

Kinematics

Arm robots

- Inner-loop
- Geometrical mod
- Kinematic mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Each possible movement is called a degree of freedom (dof)

- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm
 - 3 for the terminal tool
- In the industrial context, a polyvalent robot will have 6 dof

JOINTED-ARM ROBOTS

- Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
 Two possible rotary joints:
- N. Marchand
- rotary around the arm

rotary perpendicular to the arm

- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:
 - 6 for spatial position (vehicle)
 - 3 for the arm
 - 3 for the terminal tool
- In the industrial context, a polyvalent robot will have 6 dof
- 6 dof are sufficient for any position and orientation of the terminal tool in the *reachable space*

robotics

Arm robots

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 45 / 139

 Jointed-arm robot: A robot whose arm is constructed of rigid members connected by rotary joints
 Two possible rotary joints:

1000

- Robotics
- Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

- Inner-loop
- Geometrical mod
- Kinematic mode
- Dynamical mo

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing • rotary perpendicular to the arm

- Sometimes movements are coupled (more than 1 dof/articulation)
- A "universal" robot has 12 dof:

rotary around the arm

- 6 for spatial position (vehicle)
- 3 for the arm
- 3 for the terminal tool
- In the industrial context, a polyvalent robot will have 6 dof
- 6 dof are sufficient for any position and orientation of the terminal tool in the *reachable space*
- Many tasks can be performed with less than 6 dof: "pick and place" needs only 4 dof

Robotics

ENSIT 45 / 139

Robotics

N. Marchand

Introduction

• Characteristic variables:

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 46 / 139

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

• Actuator control *u_i* of the joint *i*

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots

- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

- Actuator control u_i of the joint i
- Actuator torques C_i of the joint i

< □ > < 同 > < 三 > < 三 >

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

- Actuator control u_i of the joint i
- Actuator torques C_i of the joint i
- Angles θ_i of the joint

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

- Inner-loop Geometrical r
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

- Actuator control u_i of the joint i
- Actuator torques C_i of the joint i
- Angles θ_i of the joint
- Spatial position X_i of the extremity of the joint

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Nouton

X4

Kinematics

Arm robots

Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control u_i of the joint i
 - Actuator torques C_i of the joint i
 - Angles θ_i of the joint
 - Spatial position X_i of the extremity of the joint
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newtor

X4

Kinematics

Arm robots

- Inner-loop Geometrical mod Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control u_i of the joint i
 - Actuator torques C_i of the joint i
 - Angles θ_i of the joint
 - Spatial position X_i of the extremity of the joint
- Controlling a robot is equivalent to mastering the relation

• Actuator's dynamics
$$U_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots

- Inner-loop Geometrical mod Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

P----- P------Q

Mobile robotics

Visual servoing

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control u_i of the joint i
 - Actuator torques C_i of the joint i
 - Angles θ_i of the joint
 - Spatial position X_i of the extremity of the joint
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$
• Actuator's dynamics
• Robot's dynamics

N. Marchand (gipsa-lab)

OUTLINE

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Introduction

Modeling

4

The quadrotor case

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

N. Marchand (gipsa-lab)

Robotics

ENSIT 47 / 139

Robotics

• Inner control loop:

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

+ □ > < □ > < □ > < □ > < □ >

Robotics

N. Marchand

Inner control loop:

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robot

- Inner-loop
- Geometrical mod
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Enables to force θ to follow the reference θ_r

Robotics

N. Marchand

Inner control loop:

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

patri planning

Mobile robotics

Visual servoing

- Enables to force θ to follow the reference θ_r
- The actuator is usually a first (electric) or second order system (pneumatic)

Robotics

N. Marchand

Inner control loop:

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile

robotics

Visual servoing $\begin{array}{c} & \text{Disturbances} \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & e \\ & e$

- Enables to force θ to follow the reference θ_r
- The actuator is usually a first (electric) or second order system (pneumatic)
- Usually controlled with a PID controller with

Robotics

N. Marchand

Inner control loop:

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing $\begin{array}{c} \theta_{i}^{r} \\ \theta_{i}^{r} \\ \theta_{i}^{m} \end{array} \xrightarrow{e} \end{array} \xrightarrow{c} Controller} \begin{array}{c} u_{i} \\ u_{i} \\ Actuator + Robot \\ \theta_{i} \\ \end{array}$

- Enables to force θ to follow the reference θ_r
- The actuator is usually a first (electric) or second order system (pneumatic)
- Usually controlled with a PID controller with
 - filtered derivative action

N. Marchand (gipsa-lab)

Robotics

ENSIT 48 / 139

Robotics

N. Marchand

Inner control loop:

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newtor

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

- Enables to force θ to follow the reference θ_r
- The actuator is usually a first (electric) or second order system (pneumatic)
- Usually controlled with a PID controller with
 - filtered derivative action
 - anti-windup to tackle saturations

N. Marchand (gipsa-lab)

Robotics

ENSIT 48 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

 $\bullet\,$ We go back to the X4 example and focus on the rotors:

INNER CONTROL LOOP Anti-windup PID

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mod Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

barn biannig

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INNER CONTROL LOOP Anti-windup PID

• We go back to the X4 example and focus on the rotors:

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \eta_{\text{oad}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{rac{1}{b}F_i^d}$$

Robotics

ENSIT 49 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

INNER CONTROL LOOP Anti-windup PID

• We go back to the X4 example and focus on the rotors:

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{rac{1}{b}F_i^d}$$

• A usual way to control the electrical motor consist in

N. Marchand (gipsa-lab)

Robotics

ENSIT 49 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing INNER CONTROL LOOP Anti-windup PID

• We go back to the X4 example and focus on the rotors:

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{rac{1}{b}F_i^d}$$

A usual way to control the electrical motor consist in
 taking τ_{load} as un unknown load

ENSIT 49 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

INNER CONTROL LOOP Anti-windup PID

• We go back to the X4 example and focus on the rotors:

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\mathsf{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{rac{1}{b}F_i^d}$$

- A usual way to control the electrical motor consist in
 - taking τ_{load} as un unknown load
 - neglecting the voltage limitations \bar{U}_i

N. Marchand (gipsa-lab)

ENSIT 49 / 139

Anti-windup PID

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• The so obtained system is linear

$$\frac{s_i(s)}{U_i(s)} = \frac{\frac{1}{k_m}}{1 + \frac{J_r R}{k_m^2}s} = \frac{G}{1 + \tau s}$$

ENSIT 50 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• The so obtained system is linear

$$\frac{s_i(s)}{U_i(s)} = \frac{\frac{1}{k_m}}{1 + \frac{J_r R}{k_m^2} s} = \frac{G}{1 + \tau s}$$

• Define a **PI controller** for it:

$$C(s) = K_p + \frac{K_i}{s}$$

Robotics

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Modeling

Cartesian coordinate

Orientation

Frames

Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

INNER CONTROL LOOP Anti-windup PID

• The so obtained system is linear

$$\frac{s_i(s)}{U_i(s)} = \frac{\frac{1}{k_m}}{1 + \frac{J_r R}{k_m^2} s} = \frac{G}{1 + \tau s}$$

• Define a **PI controller** for it:

$$C(s) = K_p + \frac{K_i}{s}$$

• Taking $K_i = \frac{1}{\tau_{CL}G}$ and $K_p = \tau K_i$, the closed loop system is: $\frac{s_i(s)}{U_i(s)} = \frac{1}{1 + \tau_{CL}s}$

N. Marchand (gipsa-lab)

Robotics

ENSIT 50 / 139

A B > A B > A B >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Anti-windup PID

INNER CONTROL LOOP

• Make a step that **compensates the weight**, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$

Robotics

ENSIT 51 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

.

robotics

Visual servoing

• Make a step that compensates the weight, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

• Taking $\tau_{CL} = 50$ ms, one gets without saturations

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Market .

robotics

Visual servoing

• Make a step that compensates the weight, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

• Taking $\tau_{CL} = 50$ ms, one gets with saturations

N. Marchand (gipsa-lab)

Anti-windup PID

Robotics

• The result could be worse:

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 52 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Anti-windup PID

Robotics

• The result could be worse:

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• For $u \in [-1.2, 1.2]$, the closed-loop behavior is:

Anti-windup PID

Robotics

• The result could be worse:

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• For $u \in [-1.2, 1.2]$, the closed-loop behavior is:

Anti-windup PID

Robotics

• The result could be worse:

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing • Saturations may lead to instability especially in the presence of integrators in the loop

• For $u \in [-1.2, 1.2]$, the closed-loop behavior is:

N. Marchand (gipsa-lab)

Robotics

ENSIT 52 / 139

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Consider a linear system with a PID controller:

ENSIT 53 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Consider a linear system with a PID controller:

Robotics

ENSIT 53 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Consider a linear system with a PID controller:

• The instability comes from the integration of the error

N. Marchand (gipsa-lab)

Robotics

ENSIT 53 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Consider a linear system with a PID controller:

- The instability comes from the **integration** of the error
- Key idea: soften the integral effect when the control is saturated

N. Marchand (gipsa-lab)

ENSIT 53 / 139

Anti-windup PID

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Structure of the PID controller with anti-windup:

ENSIT 54 / 139

A D > A B > A B > A B >

Anti-windup PID

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Structure of the **PID controller with anti-windup**:

Robotics

ENSIT 54 / 139

< □ > < 同 > < 回 > < 回 > < □ >

Anti-windup PID

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mod

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing • Structure of the PID controller with anti-windup:

• If $u = \bar{u}$, that is if u is not saturated, then the PID controller with anti-windup is identical to the classical PID controller

Anti-windup PID

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile

robotics

Visual servoing

• Structure of the PID controller with anti-windup:

- If $u = \bar{u}$, that is if u is not saturated, then the PID controller with anti-windup is identical to the classical PID controller
- If u is saturated $(u \neq \bar{u})$, K_s tunes the reduction of the integral effect of the PID

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Anti-windup PID

INNER CONTROL LOOP

• Make a step that **compensates the weight**, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$

Robotics

ENSIT 55 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

.....

robotics

Visual servoing

• Make a step that compensates the weight, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

• Taking $\tau_{CL} = 50$ ms, one gets without anti-windup

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

paur planning

Mobile robotics

Visual servoing

• Make a step that compensates the weight, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum F_i^d = mg$

INNER CONTROL LOOP Anti-windup PID

• Taking $\tau_{CL} = 50$ ms, one gets with anti-windup

N. Marchand (gipsa-lab)

Towards gain scheduling

• Take again $\tau_{CL} = 50$ ms and a PI controller tuned at s_i^d

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INNER CONTROL LOOP

Towards gain scheduling

• Take again $\tau_{CL} = 50$ ms and a PI controller tuned at s_i^d

Robotics

• Make speed steps of different level

ENSIT 56 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newto

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INNER CONTROL LOOP

Towards gain scheduling

- Take again $\tau_{CL} = 50$ ms and a PI controller tuned at s_i^d
- Make speed steps of different level

< □ > < 同 > < 回 > < 回 > < 回 >

Towards gain scheduling • Take again $\tau_{CL} = 50$ ms and a PI controller tuned at the current s_i

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

< □ > < 同 > < 回 > < 回 > < □ >

Towards gain scheduling • Take again $\tau_{CI} = 50$ ms and a PI controller tuned at the current s_i

• Make speed steps of different level

Robotics

- N. Marchand
- Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

< □ > < 同 > < 回 > < 回 > < 回 >

ENSIT 57 / 139

Towards gain scheduling • Take again $\tau_{CI} = 50$ ms and a PI controller tuned at the current s_i

Robotics

- N. Marchand
- Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newtor

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• The rotors are now well controlled...almost

Robotics

• Make speed steps of different level

ENSIT 57 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates
Orientation
Frames
Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• We assume we can measure every thing (thanks to people like Hassen) !

Assumptions and principles

Robotics

ENSIT 58 / 139

< □ > < 同 > < 回 > < 回 > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Assumptions and principles

- We assume we can measure every thing (thanks to people like Hassen) !
- Three embedded loops in a control strategy as follows

ENSIT 58 / 139

N. Marchand

Newton

Inner-loop

servoing

Assumptions and principles

- We assume we can measure every thing (thanks to people like Hassen) !
- Three embedded loops in a control strategy as follows

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Actuator control

- Closing the actuator loop will
 - increase the precision of the forces and torques generated
 - allow non identical actuators
 - render the system more reactive
 - face battery drop problem and the non constant gain of the open loop system

N. Marchand

Introduction

Modeling

Cartesian coordinate

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Actuator control

- Closing the actuator loop will
 - increase the precision of the forces and torques generated
 - allow non identical actuators
 - render the system more reactive
 - face battery drop problem and the non constant gain of the open loop system
- A speed measure is required, usually optic or magnetic

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Actuator control

- Closing the actuator loop will
 - increase the precision of the forces and torques generated
 - allow non identical actuators
 - render the system more reactive
 - face battery drop problem and the non constant gain of the open loop system
- A speed measure is required, usually optic or magnetic
- Two usual approaches: sliding mode and PI controller with anti-windup

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles
- Mobile robotics

Visual servoing

Actuator control

- Closing the actuator loop will
 - increase the precision of the forces and torques generated
 - allow non identical actuators
 - render the system more reactive
 - face battery drop problem and the non constant gain of the open loop system
- A speed measure is required, usually optic or magnetic
- Two usual approaches: sliding mode and PI controller with anti-windup

N. Marchand (gipsa-lab)

N. Marchand

Inner-loop

servoing

Actuator control

- Closing the actuator loop will
 - increase the precision of the forces and torques generated
 - allow non identical actuators
 - render the system more reactive
 - face battery drop problem and the non constant gain of the open loop system
- A speed measure is required, usually optic or magnetic
- Two usual approaches: sliding mode and PI controller with anti-windup

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

Actuator control

- Closing the actuator loop will
 - increase the precision of the forces and torques generated
 - allow non identical actuators
 - render the system more reactive
 - face battery drop problem and the non constant gain of the open loop system
- A speed measure is required, usually optic or magnetic
- Two usual approaches: sliding mode and PI controller with anti-windup

N. Marchand (gipsa-lab)

- N. Marchand
- Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Actuator control

- Closing the actuator loop will
 - increase the precision of the forces and torques generated
 - allow non identical actuators
 - render the system more reactive
 - face battery drop problem and the non constant gain of the open loop system
- A speed measure is required, usually optic or magnetic
- Two usual approaches: sliding mode and PI controller with anti-windup

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Attitude control

- Required by most of the higher level control strategies
- Basic for stable remote piloting
- Embedded in all commercial platforms

ENSIT 60 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Attitude control

- Required by most of the higher level control strategies
- Basic for stable remote piloting
- Embedded in all commercial platforms
- Consist in controlling only the part of the model corresponding to the angular motion:

$$\dot{R} = R\vec{\omega}^{\times} J\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext}$$

$$\begin{cases} \dot{\vec{q}} = \frac{1}{2}\Omega(\vec{\omega})\vec{q} \\ = \frac{1}{2}\Xi(q)\vec{\omega} \\ J\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{cases}$$

1

1

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

Attitude control

- Required by most of the higher level control strategies
- Basic for stable remote piloting
- Embedded in all commercial platforms
- Consist in controlling only the part of the model corresponding to the angular motion:

$$\begin{cases} \dot{R} = R\vec{\omega}^{\times} \\ J\dot{\vec{\omega}} = -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{cases} \begin{cases} \dot{\vec{q}} = \frac{1}{2}\Omega(\vec{\omega})\vec{q} \\ = \frac{1}{2}\Xi(q)\vec{\omega} \\ J\dot{\vec{\omega}} = -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{cases}$$

- Linearization of the rotational dynamics gives three second order integrators
- Most of the applied strategies are PID controllers based on the linearization. Some sliding mode approaches. Few nonlinear approaches.

イロト イポト イヨト イヨト

ENSIT 60 / 139

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Attitude control

- Required by most of the higher level control strategies
- Basic for stable remote piloting
- Embedded in all commercial platforms
- Consist in controlling only the part of the model corresponding to the angular motion:

$$\begin{vmatrix} \dot{R} &= R\vec{\omega}^{\times} \\ J\vec{\omega} &= -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{vmatrix} \begin{cases} \dot{\vec{q}} &= \frac{1}{2}\Omega(\vec{\omega})\vec{q} \\ &= \frac{1}{2}\Xi(q)\vec{\omega} \\ J\vec{\omega} &= -\vec{\omega}^{\times}J\vec{\omega} + \vec{\Gamma}_{c} + \vec{\Gamma}_{ext} \end{cases}$$

- Linearization of the rotational dynamics gives three second order integrators
- Most of the applied strategies are PID controllers based on the linearization. Some sliding mode approaches. Few nonlinear approaches.
- Valid only around zero angles position, but
 - robust
 - easy to tune
 - can handle saturation
 - can be adaptive

• ...

N. Marchand (gipsa-lab)

イロト イポト イヨト イヨト

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- v.

Kinematics

Arm robot

Inner-loop

Geometrical mod Kinematic model Dynamical model

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

R : Rotation matrix from $\mathcal T$ to $\mathcal E$

 \mathcal{T} : Mobile frame

< □ > < 同 > < 回 > < 回 > < 回 >

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newto

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

$\vec{p} = \vec{v}$ $\vec{v} = -g\vec{e}_3 + \frac{1}{m}R\vec{f} - c\vec{v}$ \vec{q}_0 $\vec{q}_v = \frac{1}{2}\begin{pmatrix} -q_v^T\\ I_3q_0 - q_v^X \end{pmatrix} \omega$ $\vec{\omega} = J^{-1}(\vec{\tau} - \omega \times J\omega)$

R : Rotation matrix from \mathcal{T} to \mathcal{E} $\vec{f}, \vec{\tau}$: Aerodynamic force and torque in \mathcal{T} \vec{p}, \vec{v} : Linear position and velocity in \mathcal{E}

- \mathcal{T} : Mobile frame
- m : Body's mass

< □ > < 同 > < 回 > < 回 > < 回 >

- c: Viscosity coefficient
- g : Gravity

N. Marchand (gipsa-lab)

Robotics

ENSIT 61 / 139

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newtor

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

R : Rotation matrix from \mathcal{T} to \mathcal{E} $\vec{f}, \vec{\tau}$: Aerodynamic force and torque in \mathcal{T} \vec{p}, \vec{v} : Linear position and velocity in \mathcal{E} $q = [q_0 q_v]^T$: Quaternion q_v^{\times} : Skew symmetric matrix associated to q_v ω : Angular velocity in \mathcal{T}

- $\mathcal{T}:\mathsf{Mobile}\;\mathsf{frame}$
- m : Body's mass
- c: Viscosity coefficient
- g : Gravity
- I_3 : Identity matrix
- J: Inertia matrix

N. Marchand (gipsa-lab)

Robotics

ENSIT 61 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing $\dot{\vec{p}} = \vec{v}$ $\dot{\vec{v}} = -g\vec{e}_3 + \frac{1}{m}R\vec{f} - c\vec{v}$ $\begin{pmatrix} \dot{q}_0 \\ \dot{q}_v \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -q_v^T \\ I_3q_0 - q_v^X \end{pmatrix} \omega$ $\dot{\omega} = J^{-1}(\vec{\tau} - \omega \times J\omega)$

R : Rotation matrix from \mathcal{T} to \mathcal{E} $\vec{f}, \vec{\tau}$: Aerodynamic force and torque in \mathcal{T} \vec{p}, \vec{v} : Linear position and velocity in \mathcal{E} $q = [q_0 q_v]^T$: Quaternion q_v^{\times} : Skew symmetric matrix associated to q_v ω : Angular velocity in \mathcal{T}

Fixed frame

- $\mathcal{T}:\mathsf{Mobile}\;\mathsf{frame}$
- m : Body's mass
- c: Viscosity coefficient
- g : Gravity
- I₃ : Identity matrix
- J : Inertia matrix

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand (gipsa-lab)

Robotics

ENSIT 61 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

 $\phi^{wing}(\phi_0^{wing}, t)$ $\psi^{wing}(\psi_0^{wing}, t)$

 θ^{wing} NUL

ENSIT 62 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

 $\phi^{wing}(\phi_0^{wing}, t)$ aerodynamic forces and torques $\psi^{wing}(\psi_0^{wing}, t)$ $(\vec{f}, \vec{\tau})$

θ^{wing} NUL

ENSIT 62 / 139

A D > A B > A B > A B >

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

 $\phi^{wing}(\phi_0^{wing}, t)$ aerodynamic forces and torques $\psi^{wing}(\psi_0^{wing}, t)$ $(\vec{f}, \vec{\tau})$

θ^{wing} NUL

ENSIT 62 / 139

A D > A B > A B > A B >

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

θ^{wing} NUL

Robotics

ENSIT 62 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Dynamical mo

Deth plennin.

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A saturation based attitude control

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile

Visual servoing

 $\phi^{wing}(\phi_0^{wing}, t)$ average averaged aerodynamic over aerodynamic forces and torques a wingbeat forces and torques $\psi^{\text{wing}}(\psi^{\text{wing}}_{2}, t)$ period $(\vec{f}, \vec{\tau})$ $(\vec{T}, \vec{\Gamma}_c)$ θ^{wing} Λ, Λ^{-1} $(\vec{T},\vec{\Gamma}_{c}) = \Lambda(\phi_{0}^{wing},\psi_{0}^{wing})^{d,g}$

Find $\vec{T} = \vec{T}(\vec{p}, \vec{v}, \vec{q}, \vec{\omega})$ and $\vec{\Gamma}_c = \vec{\Gamma}_c(\vec{p}, \vec{v}, \vec{q}, \vec{\omega})$ such that the system has the desired behavior

N. Marchand (gipsa-lab)

Robotics

ENSIT 62 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A saturation based attitude control

Averaged forces and torques $(\vec{T}, \vec{\Gamma}_c)$

ENSIT 63 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

A saturation based attitude control

 $\begin{array}{l} \text{Constraints} \\ 0 \leq \phi_0^{wing} \leq \tilde{\phi}_0^{wing} \\ -\tilde{\psi}_0^{wing} \leq \psi_0^{wing} \leq \tilde{\psi}_0^{wing} \end{array}$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

A saturation based attitude control

 $\begin{array}{ccc} \text{Wings angles} & \text{Averaged} \\ \text{amplitudes} & & & \text{forces and torques} \\ (\phi_0^{wing}, \psi_0^{wing})^{l,r} & & (\vec{T}, \vec{\Gamma}_c) \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

N. Marchand (gipsa-lab)

ENSIT 63 / 139

+ = + + = + + = + + =

Robotics

• Physical limitations: wings angles saturation

N. Marchand

Introduction

Modeling

Cartesian coordinate

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

$$\begin{array}{rcl} 0 & \leq & (\phi_0^{\textit{wing}})^{l,r} & \leq & \widetilde{\phi}_0^{\textit{wing}} \\ \widetilde{\psi}_0^{\textit{wing}} & \leq & (\psi_0^{\textit{wing}})^{l,r} & \leq & \widetilde{\psi}_0^{\textit{wing}} \end{array}$$

$$\beta x \left[\phi_0^{\text{wing}, r^2} \cos \psi_0^d - \phi_0^{\text{wing}, l^2} \cos \psi_0^g \right] = \Gamma_r^{\text{max}}$$
$$\alpha x \left[\phi_0^{\text{wing}, r^2} \sin \psi_0^d - \phi_0^{\text{wing}, l^2} \sin \psi_0^g \right] = \Gamma_y^{\text{max}}$$

ENSIT 64 / 139

+ = > +

Robotics

• Physical limitations: wings angles saturation

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation

Newton

X4

Kinematics

Arm robots

Inner-loop Geometrical

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

$$\begin{array}{rcl} 0 & \leq & (\phi_0^{\rm wing})^{l,r} & \leq & \widetilde{\phi}_0^{\rm wing} \\ \tilde{\psi}_0^{\rm wing} & \leq & (\psi_0^{\rm wing})^{l,r} & \leq & \widetilde{\psi}_0^{\rm wing} \end{array}$$

$$\beta x \left[\phi_0^{\text{wing}, r^2} \cos \psi_0^d - \phi_0^{\text{wing}, l^2} \cos \psi_0^g \right] = \Gamma_r^{\text{max}}$$
$$\alpha x \left[\phi_0^{\text{wing}, r^2} \sin \psi_0^d - \phi_0^{\text{wing}, l^2} \sin \psi_0^g \right] = \Gamma_y^{\text{max}}$$

• Coupled saturations of the control torques

Robotics

• Physical limitations: wings angles saturation

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

$\begin{array}{rcl} 0 & \leq & (\phi_0^{\rm wing})^{l,r} & \leq & \tilde{\phi}_0^{\rm wing} \\ -\tilde{\psi}_0^{\rm wing} & \leq & (\psi_0^{\rm wing})^{l,r} & \leq & \tilde{\psi}_0^{\rm wing} \end{array}$

$$\beta x \left[\phi_0^{\text{wing}, r^2} \cos \psi_0^d - \phi_0^{\text{wing}, l^2} \cos \psi_0^g \right] = \Gamma_r^{\text{max}} \\ \alpha x \left[\phi_0^{\text{wing}, r^2} \sin \psi_0^d - \phi_0^{\text{wing}, l^2} \sin \psi_0^g \right] = \Gamma_y^{\text{max}}$$

N. Marchand (gipsa-lab)

Robotics

Robotics

• Physical limitations: wings angles saturation

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

$\begin{array}{rcl} 0 & \leq & (\phi_0^{\rm wing})^{l,r} & \leq & \tilde{\phi}_0^{\rm wing} \\ -\tilde{\psi}_0^{\rm wing} & \leq & (\psi_0^{\rm wing})^{l,r} & \leq & \tilde{\psi}_0^{\rm wing} \end{array}$

$$\beta x \left[\phi_0^{\text{wing}, r^2} \cos \psi_0^d - \phi_0^{\text{wing}, l^2} \cos \psi_0^g \right] = \Gamma_r^{\text{max}} \\ \alpha x \left[\phi_0^{\text{wing}, r^2} \sin \psi_0^d - \phi_0^{\text{wing}, l^2} \sin \psi_0^g \right] = \Gamma_y^{\text{max}}$$

Admissible saturation set Reduced to an ellipse in order to simplify the computations

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand (gipsa-lab)

Robotics

Robotics

• Physical limitations: wings angles saturation

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

$\begin{array}{rcl} 0 & \leq & (\phi_0^{\rm wing})^{l,r} & \leq & \tilde{\phi}_0^{\rm wing} \\ -\tilde{\psi}_0^{\rm wing} & \leq & (\psi_0^{\rm wing})^{l,r} & \leq & \tilde{\psi}_0^{\rm wing} \end{array}$

$$\beta x \left[\phi_0^{\text{wing}, r^2} \cos \psi_0^d - \phi_0^{\text{wing}, l^2} \cos \psi_0^g \right] = \Gamma_r^{\max}$$
$$\alpha x \left[\phi_0^{\text{wing}, r^2} \sin \psi_0^d - \phi_0^{\text{wing}, l^2} \sin \psi_0^g \right] = \Gamma_y^{\max}$$

Admissible saturation set Reduced to an ellipse in order to simplify the computations Nul yaw torque for a maximal roll torque

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand (gipsa-lab)

Robotics

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

• Physical limitations: wings angles saturation

$$\begin{array}{rclcrcl} 0 & \leq & (\phi_0^{\rm wing})^{l,r} & \leq & \tilde{\phi}_0^{\rm wing} \\ -\tilde{\psi}_0^{\rm wing} & \leq & (\psi_0^{\rm wing})^{l,r} & \leq & \tilde{\psi}_0^{\rm wing} \end{array}$$

$$\beta x \left[\phi_0^{\text{wing}, r^2} \cos \psi_0^d - \phi_0^{\text{wing}, l^2} \cos \psi_0^g \right] = \Gamma_r^{\max}$$
$$\alpha x \left[\phi_0^{\text{wing}, r^2} \sin \psi_0^d - \phi_0^{\text{wing}, l^2} \sin \psi_0^g \right] = \Gamma_y^{\max}$$

 $\Gamma_r^{max}(N.m)$

_1

Admissible saturation set Reduced to an ellipse in order to simplify the computations Nul yaw torque for a maximal roll torque Roll stabilization is preferred in order to bring the body to a horizontal position

N. Marchand (gipsa-lab)

Robotics

x 10⁻⁵

Robotics

• Attitude with reference vectors:

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

Current vector: $s_k^T = R s_k^{\mathcal{E}}$ Desired vector: $s_{k_d}^T = R_d s_k^{\mathcal{E}}$

+ □ > < □ > < □ > < □ > < □ >

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 65 / 139

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Attitude with reference vectors:

Current vector: $s_k^T = R s_k^{\mathcal{E}}$ Desired vector: $s_{k_d}^T = R_d s_k^{\mathcal{E}}$

< □ > < 同 > < 回 > < 回 > < 回 >

- Yaw control is impossible
- Add another sensor giving a non collinear measurement (magnetometer for example)

ENSIT 65 / 139

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots

Inner-loop

- Geometrical mode
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing $R_d \overline{s}_k^c \overline{s}_k^T$

Attitude with reference vectors:

Current vector: $s_k^T = R s_k^{\mathcal{E}}$ Desired vector: $s_{k_d}^T = R_d s_k^{\mathcal{E}}$

< □ > < 同 > < 回 > < 回 > < 回 >

- Yaw control is impossible
- Add another sensor giving a non collinear measurement (magnetometer for example)
- Number of non collinear sensors $n \ge 2$

Robotics

• Attitude with reference vectors:

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

Χ4

Kinematics

Arm robots

Inner-loop

- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Attitude error.

Current vector: $s_k^T = R s_k^{\mathcal{E}}$ Desired vector: $s_{k_d}^T = R_d s_k^{\mathcal{E}}$

 $\vec{\zeta} = \frac{\Delta^{-1}}{n} \sum_{k=1}^{n} \vec{s}_{k}^{\mathcal{T}} \times R_{d} \vec{s}_{k}^{\mathcal{E}}$

- Δ : positive diagonal matrix
- n : sensors number
- R_d : desired orientation of \mathcal{T} relatively to \mathcal{E})

ENSIT 65 / 139

Robotics

• Attitude with reference vectors:

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newb

121

Kinematics

Arm robots

Inner-loop

- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

Attitude error:

$$R_d \tilde{s}_k^{\mathcal{E}} \tilde{s}_k^{\mathcal{T}}$$

Current vector: $s_k^T = R s_k^{\mathcal{E}}$ Desired vector: $s_{k_d}^T = R_d s_k^{\mathcal{E}}$

$$\vec{\zeta} = \frac{\Delta^{-1}}{n} \sum_{k=1}^{n} \vec{s}_{k}^{\mathcal{T}} \times R_{d} \vec{s}_{k}^{\mathcal{E}}$$

- Δ : positive diagonal matrix
- n : sensors number
- R_d : desired orientation of \mathcal{T} relatively to \mathcal{E})

• If $\vec{s}_k^{\mathcal{T}}$ and $R_d \vec{s}_k^{\mathcal{E}}$ are collinear, then $\vec{\zeta} = 0$

N. Marchand (gipsa-lab)

ENSIT 65 / 139

A saturation based attitude control

• Sensors used: Rate gyros and reference sensors

Robotics N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

+ □ > < □ > < □ > < □ > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A saturation based attitude control

• Sensors used: Rate gyros and reference sensors

Control torques

ζi

$$ar{ au}_j = -\operatorname{sat}_{ ilde{ au}_j}(\lambda_j[ar{\omega}_{G_j} +
ho_jar{\zeta}_j)]) \qquad j = \{1, 2, 3\}$$

- λ_j, ρ_j : positive tuning parameters sat $\tilde{\tau}_j$: saturation function
 - $\bar{\omega}_{G_i}$: averaged angular velocity (measured by the rate gyros)
 - : averaged attitude error

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A saturation based attitude control

• Sensors used: Rate gyros and reference sensors

Control torques

$$ar{ au}_j = -\operatorname{sat}_{ ilde{ au}_j}(\lambda_j[ar{\omega}_{G_j} +
ho_jar{\zeta}_j)]) \qquad j = \{1, 2, 3\}$$

- $\begin{array}{lll} \lambda_j, \rho_j &: \text{ positive tuning parameters} \\ \mathrm{sat}_{\tilde{\tau}_j} &: \text{ saturation function} \\ \bar{\omega}_{G_i} &: \text{ averaged angular velocity (measured by the rate gyros)} \end{array}$
 - f_{j} : averaged attitude error
- Stability proved (rigid body) using Lyapunov function:

$$V = \frac{1}{2}\vec{\omega}^{T}J\vec{\omega} + \frac{1}{n}\sum_{k=1}^{n}(1 - \vec{s}_{k}^{mT}R_{d}\vec{s}_{k}^{f})$$

ENSIT 66 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newtor

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

A saturation based attitude control

• Sensors used: Rate gyros and reference sensors

Control torques

$$ar{ au}_j = -\operatorname{sat}_{ ilde{ au}_j}(\lambda_j[ar{\omega}_{G_j} +
ho_jar{\zeta}_j)]) \qquad j = \{1, 2, 3\}$$

- λ_j, ρ_j : positive tuning parameters
- $\operatorname{sat}_{\tilde{\tau}_i}$: saturation function
- $\bar{\omega}_{G_i}$: averaged angular velocity (measured by the rate gyros)
 - *j* : averaged attitude error
- Stability proved (rigid body) using Lyapunov function:

$$V = \frac{1}{2}\vec{\omega}^T J\vec{\omega} + \frac{1}{n} \sum_{k=1}^n (1 - \vec{s}_k^{mT} R_d \vec{s}_k^f)$$

• Generalized PID controller, *almost* global stability, simpler version using quaternion exists, stability independent from the knowledge of *J*, robust to velocity sensor saturation.

N. Marchand (gipsa-lab)

Robotics

ENSIT 66 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mod

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

A saturation based attitude control

Initial orientation: $(\phi, \theta, \psi) = (70, -50, 30)^{\circ}$

Angles (Roll, pitch, yaw)

N. Marchand (gipsa-lab)

ENSIT 67 / 139

A saturation based attitude control Angular velocities

Robotics

N. Marchand

ntroduction

Modeling

Cartesian coordinate Orientation Frames

Newton

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 68 / 139

A saturation based attitude control Control torgues

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 69 / 139

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Position control

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical mode

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Linearization

- First thing people want to try ?
- Many possible approaches
- Taking

$$\boldsymbol{x} := (\boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{\psi}, \dot{\boldsymbol{\phi}}, \dot{\boldsymbol{\theta}}, \dot{\boldsymbol{\psi}}, \boldsymbol{p}^{\mathsf{T}}, \boldsymbol{v}^{\mathsf{T}})^{\mathsf{T}}$$

the linearization of the linear and angular dynamics around some reference x^r of the form $(0, 0, \psi^r, 0, 0, 0, p^{r^T}, 0)^T$ is given by :

$$\dot{\tilde{x}} = A\tilde{x} + B\tilde{u}$$

with the following matrices A and B:

$$A := \begin{pmatrix} 0_{3\times3} & l_{3\times3} & 0_{3\times3} & 0_{3\times3} \\ 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\ 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & l_{3\times3} \\ 0 & g & 0 \\ -g & 0 & 0 & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \end{pmatrix}, \qquad B := \begin{pmatrix} 0_{3\times3} & 0_{3\times1} \\ J^{-1} & 0_{3\times1} \\ 0_{3\times3} & 0_{3\times1} \\ 0 \\ 0_{3\times3} & 0_{3\times1} \\ 0 \\ 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \end{pmatrix}$$

• Linear control is always possible but not very suitable

Robotics

N. Marchand

Inner-loop

servoing

Position control

A robotic oriented nonlinear approach

- Based on fast attitude and actuator loops
- Angle tracking is assumed to be perfect
- The aim is to bring the UAV to $\vec{p}^{\star} = (p_1^{\star} \quad p_2^{\star} \quad p_3^{\star})^T$ Filter the position target $\vec{p}_f^{\star} = \frac{\vec{p}^{\star}}{(\tau_f s + 1)^3}$, \vec{p}_f^{\star} must be C^3
- Let the tilde denote the error, for instance x̃ = x_f[⋆] − x
- With PIDs controllers, define an acceleration target on the two first direction (i = 1, 2):

$$[\ddot{p}_{i_{f}}]^{\star} = k_{P} \ddot{p}_{i} + k_{I} \int_{0}^{t} \tilde{p}_{i} dt + k_{D} \left(\dot{p}_{i_{f}}^{\star} - v_{i} \right) + \ddot{p}_{i_{f}}^{\star}$$

• With a PID controller, compute the thrust control:

$$T^{\star} = \frac{k_{P}\tilde{p}_{3} + k_{I}\int_{0}^{t}\tilde{p}_{3}dt + k_{D}\left(\dot{p}_{3_{f}}^{\star} - v_{3}\right)}{c_{\phi}c_{\theta}} + \frac{m}{c_{\phi}c_{\theta}}\left(g + \ddot{p}_{3_{f}}^{\star}\right)$$

- Yaw angle \u03c6 can be stabilized to any direction independently
- Compute the roll and pitch control:

$$\begin{array}{lll} \phi^{\star} & = & \sin^{-1}\left(\frac{m}{T^{\star}}([\ddot{p}_{1_{\ell}}]^{\star}s_{\psi}-[\ddot{p}_{2_{\ell}}]^{\star}c_{\psi})\right) \\ \theta^{\star} & = & \sin^{-1}\left(\frac{m}{T^{\star}}([\ddot{p}_{1_{\ell}}]^{\star}c_{\psi}+[\ddot{p}_{2_{\ell}}]^{\star}s_{\psi})\right) \end{array}$$

N. Marchand (gipsa-lab)

ENSIT 71 / 139

Position control

N. Marchand (gipsa-lab)

Robotics

ENSIT 72 / 139

OUTLINE

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Geometrical model

servoing

4 Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

N. Marchand (gipsa-lab)

Robotics

ENSIT 73 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

• Actuator control *u_i*

ENSIT 74 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

- Actuator control *u_i*
- Actuator torques C_i

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

- Actuator control *u_i*
- Actuator torques C_i
- Angles θ_i

ENSIT 74 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Characteristic variables:

- Actuator control *u_i*
- Actuator torques C_i
- Angles θ_i
- Spatial position X_i

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control *u_i*
 - Actuator torques C_i
 - Angles θ_i
 - Spatial position X_i
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$

< □ > < 同 > < 回 > < 回 > < 回 >

ENSIT 74 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

Mobile

robotics

Visual servoing

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control *u_i*
 - Actuator torques C_i
 - Angles θ_i

Actuator d

- Spatial position X_i
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$
ynamics

< □ > < 同 > < 回 > < 回 > < 回 >

ENSIT 74 / 139

N. Marchand (gipsa-lab)

N. Marchand

Geometrical model

servoing

JOINTED-ARM ROBOTS

- Characteristic variables:
 - Actuator control u;
 - Actuator torques C_i
 - Angles θ_i

۵

- Spatial position X_i
- Controlling a robot is equivalent to mastering the relation

$$u_i \rightleftharpoons C_i \rightleftharpoons \theta_i \rightleftharpoons X_i$$
• Actuator dynamics • Robot dynamics •

< □ > < 同 > < 回 > < 回 > < 回 >

ENSIT 74 / 139

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

GEOMETRICAL MODEL OF ROBOTS

• Consist in finding the relations $X_i = f_i(\theta_i)$

ENSIT 75 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Geometrical model of robots

• Consist in finding the relations $X_i = f_i(\theta_i)$

Sometimes called "forward kinematics"

A D > A B > A B > A B >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)

ENSIT 75 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newtor

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

GEOMETRICAL MODEL OF ROBOTS

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- 146440

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

GEOMETRICAL MODEL OF ROBOTS

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

GEOMETRICAL MODEL OF ROBOTS

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop
 - few flexibility of the arms (not for spatial robotic arms !)

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- Mobile

robotics

Visual servoing

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop
 - few flexibility of the arms (not for spatial robotic arms !)
 - Sufficiently simple model to be online inverted

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

Mobile

robotics

Visual servoing

Geometrical model of robots

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop
 - few flexibility of the arms (not for spatial robotic arms !)
 - Sufficiently simple model to be online inverted
 - The model must be invertible

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

GEOMETRICAL MODEL OF ROBOTS

- Consist in finding the relations $X_i = f_i(\theta_i)$
- Sometimes called "forward kinematics"
- That gives $X_n = f(\theta_i, \dots, \theta_n)$, the position of the extremity of the arm as a functions of the control angles (and of the robot parameters)
- The aim is then to deduce the θ_i^r 's using f^{-1} (inversion)
- Assumptions:
 - The model must be quite precise
 - no friction, no drift, no backlash, no dead zone, ...
 - The dynamical phenomena must be negligible
 - mass effect fully compensated by the inner-loop
 - few flexibility of the arms (not for spatial robotic arms !)
 - Sufficiently simple model to be online inverted
 - The model must be invertible
- Despite the limitations, this approach is widely used (oversized robots)

イロト イポト イヨト イヨト

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

patri pianing

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)

ENSIT 76 / 139

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}

ENSIT 76 / 139

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Geometrical model

Kinematic mode

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$ • $\vec{v}(\mathcal{R}_i) = \prod_{k-1}^i R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$

N. Marchand (gipsa-lab)

< □ > < 同 > < 回 > < 回 > < 回 >

ENSIT 76 / 139

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

- Geometrical model
- Kinematic mode
- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$ • $\vec{v}(\mathcal{R}_i) = \prod_{k=1}^i R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$
- **Position**: for any point *C*

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

- path planning
- Mobile robotics

Visual servoing

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$

•
$$\vec{v}(\mathcal{R}_i) = \prod_{k=1} R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$$

• **Position**: for any point *C*

•
$$\overrightarrow{O_0C}(\mathcal{R}_0) = \overrightarrow{O_0O_i}(\mathcal{R}_0) + \overrightarrow{O_iC}(\mathcal{R}_0) = \overrightarrow{O_0O_i}(\mathcal{R}_0) + R_i^0 \overrightarrow{O_iC}(\mathcal{R}_i)$$

N. Marchand (gipsa-lab)

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

- Commentation I and
- Geometrical model
- Kinematic mode
- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

$\mathcal{O}_{C_{1}} = \mathcal{O}_{C_{1}} = \mathcal{O}$

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$

•
$$\vec{v}(\mathcal{R}_i) = \prod_{k=1} R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$$

• **Position**: for any point *C*

•
$$\overrightarrow{O_0C}(\mathcal{R}_0) = \overrightarrow{O_0O'}(\mathcal{R}_0) + \overrightarrow{O_1C}(\mathcal{R}_0) = \overrightarrow{O_0O'}(\mathcal{R}_0) + R_i^0 \overrightarrow{O_1C}(\mathcal{R}_i)$$

• $\overrightarrow{O_0C}(\mathcal{R}_0) = \overrightarrow{O_0O'}(\mathcal{R}_0) + R_1^0 \overrightarrow{O_1O'}(\mathcal{R}_1) + \dots + R_{i-1}^0 \overrightarrow{O_{i-1}O'}(\mathcal{R}_{i-1}) + R_i^0 \overrightarrow{O_iC}(\mathcal{R}_i)$

N. Marchand (gipsa-lab)

Robotics

ENSIT 76 / 139

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

- Geometrical model
- Geometrical mode
- Kinematic mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

 $R_0 \begin{array}{c} o_0 & o_1 \\ \hline R_1 & o_2 \end{array}$

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$

•
$$\vec{v}(\mathcal{R}_i) = \prod_{k=1} R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$$

• **Position**: for any point *C*

$$\begin{array}{l} \bullet \quad \overline{O_0 \overrightarrow{C}}(\mathcal{R}_0) = \overline{O_0 \overrightarrow{O_i}}(\mathcal{R}_0) + \overline{O_i \overrightarrow{C}}(\mathcal{R}_0) = \overline{O_0 \overrightarrow{O_i}}(\mathcal{R}_0) + R_i^0 \overline{O_i \overrightarrow{C}}(\mathcal{R}_i) \\ \bullet \quad \overline{O_0 \overrightarrow{C}}(\mathcal{R}_0) = \overline{O_0 \overrightarrow{O_i}}(\mathcal{R}_0) + R_1^0 \overline{O_1 \overrightarrow{O_i}}(\mathcal{R}_1) + \dots + R_{i-1}^0 \overline{O_{i-1} \overrightarrow{O_i}}(\mathcal{R}_{i-1}) + R_i^0 \overline{O_i \overrightarrow{C}}(\mathcal{R}_i) \end{array}$$

• where R_i^{i+1} is the rotation matrix from \mathcal{R}_i to \mathcal{R}_{i+1} :

N. Marchand (gipsa-lab)

Robotics

ENSIT 76 / 139

Combination of rotations and translations

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

- Geometrical model
- Kinematic mode
- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- Let X be the orientation and position of the last segment in \mathcal{R}_0 (usually variable to control)
- **Orientation**: for any \vec{v}
 - $\vec{v}(\mathcal{R}_i) = R_{i-1}^i \vec{v}(\mathcal{R}_{i-1})$

•
$$\vec{v}(\mathcal{R}_i) = \prod_{k=1} R_{k-1}^k \vec{v}(\mathcal{R}_0) = R_0^i \vec{v}(\mathcal{R}_0)$$

• **Position**: for any point *C*

•
$$\overline{O_0}\overline{\mathcal{C}}(\mathcal{R}_0) = \overline{O_0}\overline{\mathcal{O}}_i(\mathcal{R}_0) + \overline{O_i}\overline{\mathcal{C}}(\mathcal{R}_0) = \overline{O_0}\overline{\mathcal{O}}_i(\mathcal{R}_0) + R_i^0\overline{O_i}\overline{\mathcal{C}}(\mathcal{R}_i)$$

• $\overline{O_0}\overline{\mathcal{C}}(\mathcal{R}_0) = \overline{O_0}\overline{\mathcal{O}}_i(\mathcal{R}_0) + R_1^0\overline{O_1}\overline{\mathcal{O}}_2(\mathcal{R}_1) + \dots + R_{i-1}^0\overline{O_{i-1}}\overline{\mathcal{O}}_i(\mathcal{R}_{i-1}) + R_i^0\overline{O_i}\overline{\mathcal{C}}(\mathcal{R}_i)$

• where R_i^{i+1} is the rotation matrix from \mathcal{R}_i to \mathcal{R}_{i+1} :

•
$$R_i^{i+1} = {R_{i+1}^i}^T$$
, $\det R_i^{i+1} = 1$

Robotics

N. Marchand

Int		± 1.	

Modeling

Cartesian coordinates Orientation Frames

Newton

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Computation of the geometrical model

Combination of rotations and translations

• Easy way to compute the geometrical model: homogeneous coordinates

Robotics

ENSIT 77 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

COMPUTATION OF THE GEOMETRICAL MODEL Combination of rotations and translations

- Easy way to compute the geometrical model: homogeneous coordinates
- Let $\vec{v} := \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$, then it is equivalent to the 4-dimension vector \vec{V} with $\omega = 1$: $V = \begin{pmatrix} v_1 \omega \\ v_2 \omega \\ v_3 \omega \\ v_3 \omega \end{pmatrix}$

ENSIT 77 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robot

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

COMPUTATION OF THE GEOMETRICAL MODEL Combination of rotations and translations

- Easy way to compute the geometrical model: homogeneous coordinates
- Let $\vec{v} := \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$, then it is equivalent to the 4-dimension vector \vec{V} with $\omega = 1$: $V = \begin{pmatrix} v_1 \omega \\ v_2 \omega \\ v_3 \omega \\ \omega \end{pmatrix}$

• Translation: a translation of vector $\begin{pmatrix} a & b & c \end{pmatrix}$ is given by: $Trans = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \end{pmatrix}$

$$\mathsf{rans} = \begin{pmatrix} 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Robotics

ENSIT 77 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robo

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

COMPUTATION OF THE GEOMETRICAL MODEL Combination of rotations and translations

- Easy way to compute the geometrical model: homogeneous coordinates
- Let $\vec{v} := \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$, then it is equivalent to the 4-dimension vector \vec{V} with $\omega = 1$: $V = \begin{pmatrix} v_1 \omega \\ v_2 \omega \\ v_3 \omega \\ \omega \end{pmatrix}$

• **Translation**: a translation of vector $\begin{pmatrix} a & b & c \end{pmatrix}$ is given by:

$$\text{Trans} = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Rotation: a rotation of matrix R is given by:

$$\mathsf{Rot} = egin{pmatrix} R & \mathsf{0}_{3 imes 1} \ \mathsf{0}_{1 imes 3} & 1 \end{pmatrix}$$

Note that still
$$R^{-1}=R^{\mathcal{T}}$$
 and $det(R)=1$

N. Marchand (gipsa-lab)

(日) (同) (三) (三)

Denavit-Hartenberg's convention

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Consider two successive articulations

ENSIT 78 / 139

Denavit-Hartenberg's convention

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation

Frames

Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical m

Path planning

Workspace and obstacles

patri planning

Mobile robotics

Visual servoing

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:

Denavit-Hartenberg's convention

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- IVEN

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical m

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}

Denavit-Hartenberg's convention

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mo

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}
 - One translation along z_k of distance d_{k+1}

N. Marchand (gipsa-lab)

Robotics

ENSIT 78 / 139

Denavit-Hartenberg's convention

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mo

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}
 - One translation along z_k of distance d_{k+1}
 - One translation along x_{k+1} of distance a_{k+1}

N. Marchand (gipsa-lab)

イロト イポト イヨト イヨト

Denavit-Hartenberg's convention

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mod

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}
 - One translation along z_k of distance d_{k+1}
 - One translation along x_{k+1} of distance a_{k+1}
 - One rotation around x_{k+1} of angle α_{k+1}

< 口 > < 同 > < 三 > < 三 >

Denavit-Hartenberg's convention

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mod

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

- Consider two successive articulations
- Then, to go from O_k to O_{k+1} and from \mathcal{R}_k to \mathcal{R}_{k+1} , one does successively:
 - One rotation around z_k of angle θ_{k+1}
 - One translation along z_k of distance d_{k+1}
 - One translation along x_{k+1} of distance a_{k+1}
 - One rotation around x_{k+1} of angle α_{k+1}
- The DH parametrization always exists and is unique

N. Marchand (gipsa-lab)

ENSIT 78 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Control with the geometrical model

• Compute the set of θ_i^r corresponding to the reference X^r

ENSIT 79 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Control with the geometrical model

Compute the set of θ^r_i corresponding to the reference X^r
θ_i as a function of X^r is often called "inverse kinematics"

ENSIT 79 / 139

- N. Marchand
- Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientatio

Frames

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*

ENSIT 79 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newto

X4

Kinematics

- Arm robot
- Geometrical model
- Kinematic mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing • Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about resolvable robots
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- Drawbacks: the actuators are in closed loop but the robot is in open-loop

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames

X4

Kinematics

- Arm robo
- Geometrical model
- Kinematic model Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- **Drawbacks:** the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Geometrical model
- Kinematic mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing • Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- Drawbacks: the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?
 - the trajectory is not well defined (obstacle avoidance, etc.)

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Geometrical model
- Kinematic mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing • Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- Drawbacks: the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?
 - the trajectory is not well defined (obstacle avoidance, etc.)

ENSIT 79 / 139

• dry friction if multiple X^d

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Geometrical model
- Kinematic mode
- Dynamical mo
- Conclusion

Path planning

- Workspace and obstacles path planning
- Mobile robotics

Visual servoing

• Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- Drawbacks: the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?
 - the trajectory is not well defined (obstacle avoidance, etc.)
 - dry friction if multiple X^d
 - what about the influence of the weight (that depends upon the configuration)

N. Marchand (gipsa-lab)

イロト イポト イヨト イヨト

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Geometrical model
- Kinematic mode
- Dynamical mo
- Conclusion

Path planning

- Workspace and obstacles
- Mobile robotics

Visual servoing • Compute the set of θ_i^r corresponding to the reference X^r

CONTROL WITH THE GEOMETRICAL MODEL

- θ_i as a function of X^r is often called "inverse kinematics"
 - The model must be invertible (for any X^r , there is some θ_i^r)
 - We talk about *resolvable robots*
 - Can be inverted using a optimization procedure
- Make a step in the inner control loop to go from θ_i^0 to θ_i^r
- Drawbacks: the actuators are in closed loop but the robot is in open-loop
 - what about the speed ?
 - the trajectory is not well defined (obstacle avoidance, etc.)
 - dry friction if multiple X^d
 - what about the influence of the weight (that depends upon the configuration)
 - inertia may cause overshoot or oscillations

N. Marchand (gipsa-lab)

Robotics

ENSIT 79 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Compute the matrix transformation of the Denavit-Hartenberg's convention

ENSIT 80 / 139

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Exercise

- Compute the matrix transformation of the Denavit-Hartenberg's convention
 - One rotation around z_k of angle θ_{k+1} :

$$R_1 = \begin{pmatrix} c\theta_{k+1} & -s\theta_{k+1} & 0 & 0\\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Exercise

- Compute the matrix transformation of the Denavit-Hartenberg's convention
 - One rotation around z_k of angle θ_{k+1} :

• One translation along Z_k of distance d_{k+1} $T_1 = \begin{pmatrix} zy_{k+1} & -sy_{k+1} & 0 & 0 \\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $T_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{k+1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$

ENSIT 80 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Exercise

- Compute the matrix transformation of the Denavit-Hartenberg's convention
 - One rotation around z_k of angle θ_{k+1} :

 $R_{1} = \begin{pmatrix} c\theta_{k+1} & -s\theta_{k+1} & 0 & 0\\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$ • One translation along z_{k} of distance d_{k+1} $T_{1} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & d_{k+1}\\ 0 & 0 & 0 & 1 \end{pmatrix}$ • One translation along x_{k+1} of distance a_{k+1} $T_{2} = \begin{pmatrix} 1 & 0 & 0 & a_{k+1}\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loor

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Exercise

- Compute the matrix transformation of the Denavit-Hartenberg's convention
 - One rotation around z_k of angle θ_{k+1} :

 $R_1 = \begin{pmatrix} c\sigma_{k+1} & -s\sigma_{k+1} & 0 & 0\\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$ • One translation along z_k of distance d_{k+1} $T_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{k+1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$ • One translation along x_{k+1} of distance a_{k+1} $T_2 = \begin{pmatrix} 1 & 0 & 0 & a_{k+1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ One rotation around x_{k+1} of angle α_{k+1} $R_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{k+1} & -s\alpha_{k+1} & 0 \\ 0 & s\alpha_{k+1} & c\alpha_{k+1} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

ENSIT 80 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop

Geometrical model

- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- Mobile robotics

Visual servoing

ling

convention

• One translation along z_k of distance d_{k+1}

• One rotation around z_k of angle θ_{k+1} :

 $T_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{k+1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$

 $R_1 = \begin{pmatrix} c\theta_{k+1} & -s\theta_{k+1} & 0 & 0\\ s\theta_{k+1} & c\theta_{k+1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$

Exercise
Compute the matrix transformation of the Denavit-Hartenberg's

- One translation along x_{k+1} of distance a_{k+1}
- $T_2 = \begin{pmatrix} 1 & 0 & 0 & a_{k+1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ • One rotation around x_{k+1} of angle α_{k+1} $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

$$R_2 = \begin{pmatrix} 0 & c\alpha_{k+1} & -s\alpha_{k+1} & 0\\ 0 & s\alpha_{k+1} & c\alpha_{k+1} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• The matrix transformation of the Denavit-Hartenberg's convention is: $R_2 \cdot T_2 \cdot T_1 \cdot R_1$

N. Marchand (gipsa-lab)

ENSIT 80 / 139

イロト イポト イヨト イヨト

OUTLINE

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Kinematic model

servoing

4 Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

N. Marchand (gipsa-lab)

Robotics

ENSIT 81 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

KINEMATIC MODEL OF ROBOTS

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{dA}{dA}$
- Sometimes called "velocity kinematics"
- Robotics N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ENSIT 82 / 139

< □ > < 同 > < 三 > < 三 >

 $\frac{d\theta}{dt}$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables

ENSIT 82 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

ENSIT 82 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

• J represents the instantaneous transformation between a vector of joint velocities and the linear and angular velocities of the end-effector

ENSIT 82 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robot

Commentational and

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{d\theta}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

- J represents the instantaneous transformation between a vector of joint velocities and the linear and angular velocities of the end-effector
- J can be decomposed into J_v and J_ω so that:

$$\begin{array}{llll} \dot{x}_{n}^{\mathcal{R}_{f}} & = & J_{v}\dot{\theta} \\ \omega_{n}^{\mathcal{R}_{f}} & = & J_{\omega}\dot{\theta} \end{array}$$

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Coomstrical mod

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{dv}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

- J represents the instantaneous transformation between a vector of joint velocities and the linear and angular velocities of the end-effector
- J can be decomposed into J_v and J_ω so that:

• The kinematic model can also be obtained using the composition of speed and decomposing the Denavit-Hartenberg's parametrization:

$$R(z,\theta)T(z,d)T(x^+,a)R(x^+,\alpha)$$

N. Marchand (gipsa-lab)

ENSIT 82 / 139

dθ

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots

Coomstrical mod

Kinematic model

Dynamical mode

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

KINEMATIC MODEL OF ROBOTS

- Express the infinitesimal mouvement dX as a function of speed of the actuators $\frac{dv}{dt}$
- Sometimes called "velocity kinematics"
- Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control variables
- The kinematic model is "simply" the derivation of the geometric model $X = f(\theta_0, \theta_1, \cdots, \theta_n)$:

$$\dot{X} = \frac{\partial f}{\partial \theta} \dot{\theta}$$

• $J := \frac{\partial f}{\partial \theta}$ is called the *Jacobian* of the robot

- J represents the instantaneous transformation between a vector of joint velocities and the linear and angular velocities of the end-effector
- J can be decomposed into J_v and J_ω so that:

• The kinematic model can also be obtained using the composition of speed and decomposing the Denavit-Hartenberg's parametrization:

$$R(z,\theta)T(z,d)T(x^+,a)R(x^+,\alpha)$$

• Fastidious in many cases but systematic ! See books for that

N. Marchand (gipsa-lab)

Robotics

ENSIT 82 / 139

 $d\theta$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

• Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)

ENSIT 83 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected

ENSIT 83 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinate

Eramor

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:

ENSIT 83 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - J is square and full rank: miracle !

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation

Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - J is square and full rank: miracle !
 - J is square but for some articulation position, det J = 0 (singularities), the singularities are usually avoided

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - J is square and full rank: miracle !
 - J is square but for some articulation position, det J = 0 (singularities), the singularities are usually avoided
 - J has more columns than rows: add a criterium to find the optimal path

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical model

Kinematic model

- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - *J* is square and full rank: miracle !
 - J is square but for some articulation position, det J = 0 (singularities), the singularities are usually avoided
 - J has more columns than rows: add a criterium to find the optimal path
 - J has more rows than columns: impossible configurations of nonholonomic constraints, nonlinear control theory to solve this problem

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical model

Kinematic model

- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

KINEMATIC MODEL OF ROBOTS

- Kinematic model can be used if "it can be stopped quasi instantaneously" (quickly w.r.t. the tasks to be done)
- As for geometrical model, the dynamics has to be neglected
- Many cases can happen:
 - *J* is square and full rank: miracle !
 - J is square but for some articulation position, det J = 0 (singularities), the singularities are usually avoided
 - J has more columns than rows: add a criterium to find the optimal path
 - J has more rows than columns: impossible configurations of nonholonomic constraints, nonlinear control theory to solve this problem

• The kinematic model is a state space representation of a controlled system

N. Marchand (gipsa-lab)

イロト イポト イヨト イヨト

• Example: the car in the plane

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 84 / 139

+ □ > < □ > < □ > < □ > < □ > < □ >

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Example: the car in the plane Characterizing variables (state variables): x, y and θ

Robotics

ENSIT 84 / 139

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientatio
- Frames

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Example: the car in the plane

- Characterizing variables (state variables): x, y and θ
- Control variables: speed of each wheels V_r and V_l

+ = + + = + + = + + =

Robotics

ENSIT 84 / 139

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robo

- Inner-loop
- Geometrical model

Kinematic model

Dynamical mod

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Example: the car in the plane

- Characterizing variables (state variables): x, y and θ
- Control variables: speed of each wheels *V_r* and *V_l*
- The kinematic model is given by the relation between \dot{x} , \dot{y} , $\dot{\theta}$ and the controls V_r and V_l

< ロ > < 同 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical model

Kinematic model

- Dynamical mod
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

• Example: the car in the plane

- Characterizing variables (state variables): x, y and θ
- Control variables: speed of each wheels V_r and V_l
- The kinematic model is given by the relation between \dot{x} , \dot{y} , $\dot{\theta}$ and the controls V_r and V_l
- What is the kinematic model of the car ?

< ロ > < 同 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical model

Kinematic model

Dynamical mod

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

Example of kinematic model

- Example: the car in the plane
 - Characterizing variables (state variables): x, y and θ
 - Control variables: speed of each wheels *V_r* and *V_l*
 - The kinematic model is given by the relation between \dot{x} , \dot{y} , $\dot{\theta}$ and the controls V_r and V_l
 - What is the kinematic model of the car ?
 - What is the expression of the Jacobian of this robot ?

ENSIT 84 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical model

Kinematic model

Dynamical mod

Path planning

Workspace and obstacles

Mobile

Visual

servoing

Example of kinematic model

- Example: the car in the plane
 - Characterizing variables (state variables): x, y and θ
 - Control variables: speed of each wheels V_r and V_l
 - The kinematic model is given by the relation between \dot{x} , \dot{y} , $\dot{\theta}$ and the controls V_r and V_l
 - What is the kinematic model of the car ?
 - What is the expression of the Jacobian of this robot ?
 - Is this system underactuated or overactuated ? Explain why $\cos \theta$ $J = \frac{1}{2} \begin{pmatrix} \sin \theta & \sin \theta \\ -\frac{2}{2} & \frac{2}{2} \end{pmatrix}$

Relation between workspace forces and joint torques

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical model

Kinematic model

- Dynamical mode
- Conclusion

Path planning

- Workspace and obstacles
- path planning
- Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• The workspace forces and joint torques are linked with the relation:

$$\tau = J_v^T F$$

Robotics

A D > A B > A B > A B >

Relation between workspace forces and joint torques

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots
- Geometrical mode

Kinematic model

Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing • The workspace forces and joint torques are linked with the relation:

$$\tau = J_v^T F$$

• the Jacobian must be derived at each origin O_i of each link frame

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing When a robot is given by its kinematic model $\dot{X} = J\dot{ heta}$

- J is usually $n \times p$ with $X \in \mathbb{R}^n$ and $\theta \in \mathbb{R}^p$
- r = p n is called the kinematic redundancy number

Kinematic redundancy

- When r < 0, the robot is underactuated, usually the case with mobile robots ⇒ advanced control
- When r > 0, the robot is overactuated. It has redundancy. For a robot with redundancy, one can write:

• $J = \begin{pmatrix} J_n & J_{p-n} \end{pmatrix}$ with J_n invertible

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

patri planning

Mobile robotics

Visual servoing Control with J^t Take a robot given by its kinematic model $\dot{X}=J\dot{\theta}$

Control through the kinematic equation

- Control with J^t
 - Apply a fictive force $F = K(X X_d)$ with K positive and symmetric
 - Take $\dot{\theta} = J^t F = J^t K(X X_d) = J^t Ke$
 - Then the elastic potential $\Phi(e) = \frac{1}{2}e^t K e$ is such that

$$\dot{\Phi}(e) = -e^t K J J^t K e < 0$$

N. Marchand (gipsa-lab)

ENSIT 87 / 139

イロト イポト イヨト イヨト

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

Control with J^+ Take a robot given by its kinematic model $\dot{X} = J\dot{\theta}$

Control through the kinematic equation

- Control with $J^+ := J^t (JJ^t)^{-1}$
 - J⁺ is the Moore-Penrose pseudo-inverse (pinv in Matlab)
 - Can be obtained through SVD decomposition. $J = U\Delta V^t$, Δ diagonal $\implies J^+ = V\Delta^+ U^t$, Δ^+ is the inverse of the nonzero coefficient of Δ
 - Taking $\dot{\theta} = J^+ \dot{X}$ minimizes the energy $\dot{\theta}^t \dot{\theta}$
 - Taking $\dot{\theta} = J_M^+ \dot{X}$ with $J_M^+ := M^{-1} J^t (JM^{-1} J^t)^{-1}$ minimizes the kinetic energy $T = \frac{1}{2} \dot{\theta}^t M(\theta) \dot{\theta}$

OUTLINE

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Dynamical model

servoing

4 Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

N. Marchand (gipsa-lab)

Robotics

ENSIT 89 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Newton

X4

Kinematics

Arm robot

Inner-loor

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODEL OF ROBOTS

• Express the accelerations of movement as a function of the actuation variables

イロト イポト イヨト

ENSIT 90 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robo

Inner-loop

Geometrical model

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)

Robotics

ENSIT 90 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation Frames
- Newton

X4

Kinematics

Arm robots

Geometrical mode

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinat Orientation Frames
- Newton

X4

Kinematics

- Arm robots
- Geometrical model
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

Mobile

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)

ENSIT 90 / 139

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinat Orientation Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop
- Geometrical mode
- Rinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)

Robotics

• simplifications are required:

ENSIT 90 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinat Orientation Frames
- Newton

X4

Kinematics

- Arm robots
- Geometrical mode
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:
 - based on relative speed of the \neq parts of the robot

N. Marchand (gipsa-lab)

ENSIT 90 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinat Orientation Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:
 - based on relative speed of the \neq parts of the robot
 - thanks to inner-loops that can render parts instantaneous w.r.t. other parts of the robot

N. Marchand (gipsa-lab)

Robotics

ENSIT 90 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinat Orientation Frames
- Newton

X4

Kinematics

- Arm robot
- inner-ioop
- Geometrical mode
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:
 - based on relative speed of the \neq parts of the robot
 - thanks to inner-loops that can render parts instantaneous w.r.t. other parts of the robot
- Almost never used for arm-robots

ENSIT 90 / 139

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

DYNAMICAL MODEL OF ROBOTS

- Express the accelerations of movement as a function of the actuation variables
- The dynamical model is obtained writing the mechanical equations of the system (conservation of momentum)
- Sometimes also includes the actuators dynamics (mainly electrical or pneumatical)
- Very complex and most of the time impossible to control (too complex to design a control)
- simplifications are required:
 - based on relative speed of the \neq parts of the robot
 - thanks to inner-loops that can render parts instantaneous w.r.t. other parts of the robot
- Almost never used for arm-robots
- Widely used for flying or diving robots (UAVs, AUVs, etc.) or walking robots

ENSIT 90 / 139

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical model
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

 $D(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = r$

ENSIT 91 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical model
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

• Obtained thanks to the Euler-Lagrange formalism

ENSIT 91 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

Obtained thanks to the Euler-Lagrange formalism
q are the generalized coordinates

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

ENSIT 91 / 139

- Obtained thanks to the Euler-Lagrange formalism
- q are the generalized coordinates

•
$$C(q,\dot{q})\dot{q} = \sum_{i}\sum_{j}c_{ij}(q)\dot{q}_{i}\dot{q}_{j}$$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

Obtained thanks to the Euler-Lagrange formalism
q are the generalized coordinates

•
$$C(q,\dot{q})\dot{q} = \sum_{i}\sum_{j}c_{ij}(q)\dot{q}_{i}\dot{q}_{j}$$

• Centrifugal effect when i = j (term in \dot{q}_i^2)

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

- Obtained thanks to the Euler-Lagrange formalism
- q are the generalized coordinates

•
$$C(q,\dot{q})\dot{q} = \sum_{i}\sum_{j}c_{ij}(q)\dot{q}_{i}\dot{q}_{j}$$

• Centrifugal effect when i = j (term in \dot{q}_i^2)

ENSIT 91 / 139

• Coriolis effect when $i \neq j$ (terms in $\dot{q}_i \dot{q}_j$)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

DYNAMICAL MODELS OF ROBOTS *n*-link manipulator

• The dynamical equations are of the form:

$$D(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=r$$

- Obtained thanks to the Euler-Lagrange formalism
- q are the generalized coordinates

•
$$C(q,\dot{q})\dot{q} = \sum_{i}\sum_{j}c_{ij}(q)\dot{q}_{i}\dot{q}_{j}$$

- Centrifugal effect when i = j (term in \dot{q}_i^2)
- Coriolis effect when $i \neq j$ (terms in $\dot{q}_i \dot{q}_j$)
- An important literature on the control of this type of systems can be found

N. Marchand (gipsa-lab)

ENSIT 91 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Geometrical mode

Kinematic model

Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODELS OF ROBOTS flying and diving robots

• The dynamical equations are of the form:

Robotics

 $\begin{cases} \dot{\vec{p}} = \vec{v} \\ m \dot{\vec{v}} = -mg \vec{e}_3 + R \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} \\ \dot{\vec{R}} = R \vec{\omega}^{\times} \\ J \dot{\vec{\omega}} = -\vec{\omega}^{\times} J \vec{\omega} + \begin{pmatrix} \Gamma_r \\ \Gamma_\rho \\ \Gamma_y \end{pmatrix} \end{cases}$

ENSIT 92 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop

Dynamical model

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DYNAMICAL MODELS OF ROBOTS flying and diving robots

• The dynamical equations are of the form:

 $\begin{cases} \dot{\vec{p}} = \vec{v} \\ m\dot{\vec{v}} = -mg\vec{e}_3 + R\begin{pmatrix}F_x\\F_y\\F_z\end{pmatrix} \\ \dot{\vec{R}} = R\vec{\omega}^{\times} \\ J\dot{\vec{\omega}} = -\vec{\omega}^{\times}J\vec{\omega} + \begin{pmatrix}\Gamma_r\\\Gamma_p\\\Gamma_y\end{pmatrix} \end{cases}$

• The number of available controls depends upon the system

Robotics

ENSIT 92 / 139

イロト イポト イヨト イヨト

OUTLINE

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Conclusion

servoing

4 Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

Path planning

N. Marchand (gipsa-lab)

Robotics

ENSIT 93 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DIFFERENT MODELS OF ROBOTS

• Geometrical model (or forward kinematic model):

Position of the robot = f(position of the actuators)

Robotics

ENSIT 94 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical n Kinematic mo

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DIFFERENT MODELS OF ROBOTS

• Geometrical model (or forward kinematic model):

Position of the robot = f(position of the actuators)

Inverse geometrical model (or inverse kinematic model):
 Position of the actuators = f(position of the robot)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing DIFFERENT MODELS OF ROBOTS

• Geometrical model (or forward kinematic model):

Position of the robot = f(position of the actuators)

- Inverse geometrical model (or inverse kinematic model):
 Position of the actuators = f(position of the robot)
- Kinematic model (state space representation) (or velocity kinematic model):

Speed of the robot = f(position, actuation speed)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mod Kinematic model Dynamical model
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

DIFFERENT MODELS OF ROBOTS

• Geometrical model (or forward kinematic model):

Position of the robot = f(position of the actuators)

- Inverse geometrical model (or inverse kinematic model):
 Position of the actuators = f(position of the robot)
- Kinematic model (state space representation) (or velocity kinematic model):

Speed of the robot = f(position, actuation speed)

• Dynamical model (state space representation):

Robot acceleration = f(position and speed, forces/torques)

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Frames
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical mo
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Introduction

- Modeling
- Cartesian coordinates
- Orientation
- Frames
- Newton
- The quadrotor case

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

6 Path planning

• Workspace and obstacles

- Path planning problem formulation
- 6 Mobile robotics

Outline

Robotics

ENSIT 95 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

PATH PLANNING

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Need to choose a path for the end effector that avoids

Robotics

ENSIT 96 / 139

< □ > < 同 > < 三 > < 三 >

PATH PLANNING

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Need to choose a path for the end effector that avoids collisions

< □ > < 同 > < 三 > < 三 >

PATH PLANNING

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Need to choose a path for the end effector that avoids

- collisions
- singularities of the robot

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Neuton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PATH PLANNING

- Need to choose a path for the end effector that avoids
 - collisions
 - singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space
- The complexity of obstacle avoidance grows exponentially with the number of DOF

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space
- The complexity of obstacle avoidance grows exponentially with the number of DOF
- The method used are (usually):

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space
- The complexity of obstacle avoidance grows exponentially with the number of DOF
- The method used are (usually):
 - Potential field: renders the obstacle repulsive

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Need to choose a path for the end effector that avoids

PATH PLANNING

- collisions
- singularities of the robot
- Collision are easy to characterize in the workspace but may need to be transformed in the configuration space
- The complexity of obstacle avoidance grows exponentially with the number of DOF
- The method used are (usually):
 - Potential field: renders the obstacle repulsive
 - Gradient descent or Probabilistic roadmaps to generate the path

WORKSPACE AND OBSTACLES

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• The workspace is the volume *W* the end effector can reach. Usually divided into:

Robotics

ENSIT 97 / 139

WORKSPACE AND OBSTACLES

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- The workspace is the volume *W* the end effector can reach. Usually divided into:
 - Reachable

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

X4

Kinematics

Arm robot

Inner-Ioop

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- The workspace is the volume *W* the end effector can reach. Usually divided into:
 - Reachable
 - Dexterous

WORKSPACE AND OBSTACLES

ENSIT 97 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• The workspace is the volume *W* the end effector can reach. Usually divided into:

WORKSPACE AND OBSTACLES

- Reachable
- Dexterous
- The "configuration" is the "location" of all points of the robot

ENSIT 97 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mod Dynamical mod Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

as were and affector a

WORKSPACE AND OBSTACLES

- The workspace is the volume W the end effector can reach. Usually divided into:
 - Reachable
 - Dexterous
- The "configuration" is the "location" of all points of the robot
 - Configuration answers the question: where is the robot

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• The workspace is the volume *W* the end effector can reach. Usually divided into:

WORKSPACE AND OBSTACLES

- Reachable
- Dexterous
- The "configuration" is the "location" of all points of the robot
 - Configuration answers the question: where is the robot
 - The configuration can be adapted to the problem: from the set of all points of the robot to the sole the effector

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• The workspace is the volume *W* the end effector can reach. Usually divided into:

WORKSPACE AND OBSTACLES

- Reachable
- Dexterous
- The "configuration" is the "location" of all points of the robot
 - Configuration answers the question: where is the robot
 - The configuration can be adapted to the problem: from the set of all points of the robot to the sole the effector
 - The θ_i's are sufficient to characterize the configuration of an arm robot for arm robots

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mode Dynamical mod

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• The workspace is the volume *W* the end effector can reach. Usually divided into:

WORKSPACE AND OBSTACLES

- Reachable
- Dexterous
- The "configuration" is the "location" of all points of the robot
 - Configuration answers the question: where is the robot
 - The configuration can be adapted to the problem: from the set of all points of the robot to the sole the effector
 - The θ_i's are sufficient to characterize the configuration of an arm robot for arm robots
- $\bullet\,$ The set of $\theta_i{\,}'{\rm s}$ corresponding to a possible configuration is noted Q

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

Χ4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Obstacles are denotes O_i and the set of obstacle is $O = \cup O_i$

WORKSPACE AND OBSTACLES

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

WORKSPACE AND OBSTACLES

- Obstacles are denotes O_i and the set of obstacle is $O = \cup O_i$
- Let $\theta \in Q$ and $C(\theta)$ denote the corresponding configuration

ENSIT 98 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

WORKSPACE AND OBSTACLES

- Obstacles are denotes O_i and the set of obstacle is $O = \cup O_i$
- Let $\theta \in Q$ and $C(\theta)$ denote the corresponding configuration
- Then the workspace can be divided into:

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

WORKSPACE AND OBSTACLES

- Obstacles are denotes O_i and the set of obstacle is $O = \cup O_i$
- Let $\theta \in Q$ and $C(\theta)$ denote the corresponding configuration
- Then the workspace can be divided into:
 - the collision-free configuration subspace $Q_f = \{\theta \in Q | C(\theta) \cap O = \emptyset\}$

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mode Dynamical mod Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Obstacles are denotes O_i and the set of obstacle is $O = \bigcup O_i$

WORKSPACE AND OBSTACLES

- Let $\theta \in Q$ and $C(\theta)$ denote the corresponding configuration
- Then the workspace can be divided into:
 - the collision-free configuration subspace $Q_f = \{\theta \in Q | C(\theta) \cap O = \emptyset\}$
 - the collision configuration subspace
 - $Q_c = \{ \theta \in Q | C(\theta) \cap O \neq \emptyset \}$

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

EXAMPLE: THE CAR

Robotics

≣ ▶ ≣ ∽ ९ (ENSIT 99 / 139

EXAMPLE: THE CAR

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-Ioop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 99 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mode Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

EXAMPLE: THE CAR

• The collision configuration subspace is the convex hull in which the robot and an obstacle make vertex to vertex contact

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mod

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

EXAMPLE: THE CAR

- The collision configuration subspace is the convex hull in which the robot and an obstacle make vertex to vertex contact
- Can be much more complicate to obtain

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mod

Dynamical m

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

EXAMPLE: THE CAR

- The collision configuration subspace is the convex hull in which the robot and an obstacle make vertex to vertex contact
- Can be much more complicate to obtain
- Numerical simulation can easily solve this problem (systematic simulation)

EXAMPLE: ARM ROBOT

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinate

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

◆ ■ ▶ ■ ⑦ Q (ENSIT 100 / 139)

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Creation
- Newton

X4

Kinematics

- Arm robo
- Inner-loop
- Geometrical mo
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton
- The quadrotor case

Kinematics and dynamics of robots

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical model
- Conclusion

6 Path planning

- Workspace and obstacles
- Path planning problem formulation
- Mobile robotics

OUTLINE

Robotics

ENSIT 101 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A RECALL ON GRADIENT DESCENT • $F(x, y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$

ENSIT 102 / 139

A D > A B > A B > A B >

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

- Arm robots
- Inner-loon
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A RECALL ON GRADIENT DESCENT • $F(x, y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$ • z := (x, y), F(x, y) = F(z)

ENSIT 102 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

A RECALL ON GRADIENT DESCENT

$$F(x,y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$$

•
$$z := (x, y), F(x, y) = F(z)$$

• Aim: finding z^* such that $F(z^*)$ is minimum

ENSIT 102 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

A RECALL ON GRADIENT DESCENT

$$F(x,y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$$

•
$$z := (x, y), F(x, y) = F(z)$$

• Aim: finding z^* such that $F(z^*)$ is minimum

• Maximum/minimum obtained iteratively by :

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

N. Marchand (gipsa-lab)

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

A RECALL ON GRADIENT DESCENT • $F(x, y) = \sin(\frac{1}{2}x^2 - \frac{1}{4}y^2 + 3)\cos(2x + 1 - e^y)$

$$z := (x, y), F(x, y) = F(z)$$

• Aim: finding z^* such that $F(z^*)$ is minimum

• Maximum/minimum obtained iteratively by :

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

N. Marchand (gipsa-lab)

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Commentational and
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A RECALL ON GRADIENT DESCENT

About the stop criteria

• Many solutions to stop the iteration

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

ENSIT 103 / 139

A D > A B > A B > A B >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

Χ4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A RECALL ON GRADIENT DESCENT About the stop criteria

• Many solutions to stop the iteration

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

Better from the criteria point of view:
 stops if F(z_{k+1}) > F(z_k)

ENSIT 103 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

A RECALL ON GRADIENT DESCENT About the stop criteria

• Many solutions to stop the iteration

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

Better from the criteria point of view: stops if F(z_{k+1}) > F(z_k)
No more improvement in the criteria:

stops if
$$|F(z_{k+1}) - F(z_k)| < \varepsilon$$

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mod Dynamical moo

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

A RECALL ON GRADIENT DESCENT About the stop criteria

• Many solutions to stop the iteration

$$z_{k+1} = z_k - \gamma \nabla F(z_k)$$

- Better from the criteria point of view:
 stops if F(z_{k+1}) > F(z_k)
- No more improvement in the criteria: stops if |F(z_{k+1}) - F(z_k)| < ε
 No more slope (almost the same as previous condition)
 - stops if $||\nabla F(z_k)|| < \varepsilon$

A RECALL ON GRADIENT DESCENT

About the step size γ

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

$\bullet~{\rm On}$ the step size γ

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

A RECALL ON GRADIENT DESCENT About the step size γ

- $\bullet\,$ On the step size $\gamma\,$
- Newton-Euler method: H, Hessian of F

$$z_{k+1} = z_k - \nabla F(z_k) H(x_k)^{-1}$$

ENSIT 104 / 139

A D > A B > A B > A B >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

A RECALL ON GRADIENT DESCENT About the step size γ

- On the step size γ
- Newton-Euler method: H, Hessian of F

$$z_{k+1} = z_k - \nabla F(z_k) H(x_k)^{-1}$$

$$z_{k+1} = z_k - \rho_k B_k \nabla F(z_k)$$

B_k: approximation of the Hessian
http://en.wikipedia.org/wiki/Quasi-Newton_method)

N. Marchand (gipsa-lab)

ENSIT 104 / 139

< □ > < 同 > < 回 > < 回 > < 回 >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

Χ4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PATH PLANNING PROBLEM FORMULATION

• Want to go from one configuration θ_0 (position) to another one θ_f

ENSIT 105 / 139

+ □ > < □ > < □ > < □ > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that

ENSIT 105 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma: [0,1] \rightarrow Q_f$ such that

•
$$\gamma(0) = heta_0$$
 and $\gamma(1) = heta_f$

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that

•
$$\gamma(0) = \theta_0$$
 and $\gamma(1) = \theta_0$

• γ will represent a configuration between the initial configuration and the final

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that
 - $\gamma(0) = heta_0$ and $\gamma(1) = heta_f$
- γ will represent a configuration between the initial configuration and the final
- The aim will be to fin successive γ that remain in Q_f : $\tau \to \gamma(\tau)$ is a path from θ_0 to θ_f

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic mod Dynamical mo Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that

•
$$\gamma(0) = \theta_0$$
 and $\gamma(1) = \theta_0$

- $\bullet ~\gamma$ will represent a configuration between the initial configuration and the final
- The aim will be to fin successive γ that remain in Q_f :

 $au
ightarrow \gamma(au)$ is a path from $heta_0$ to $heta_f$

• We define a potential field (criterium):

$$U(\theta) = U_{att}(\theta) + U_{rep}(\theta)$$

The aim will be to minimize the criterium

N. Marchand (gipsa-lab)

Robotics

ENSIT 105 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic moo Dynamical moo Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that

•
$$\gamma(0) = \theta_0$$
 and $\gamma(1) = \theta_f$

- $\bullet ~\gamma$ will represent a configuration between the initial configuration and the final
- The aim will be to fin successive γ that remain in Q_f :

 $au
ightarrow \gamma(au)$ is a path from $heta_0$ to $heta_f$

• We define a potential field (criterium):

$$U(\theta) = U_{att}(\theta) + U_{rep}(\theta)$$

• $U_{att}(\theta)$ will attract γ to θ_f : the goal configuration

The aim will be to minimize the criterium

N. Marchand (gipsa-lab)

Robotics

ENSIT 105 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic mo Dynamical mo Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

PATH PLANNING PROBLEM FORMULATION

- Want to go from one configuration θ_0 (position) to another one θ_f
- We define a continuous function $\gamma : [0,1] \rightarrow Q_f$ such that

•
$$\gamma(0) = \theta_0$$
 and $\gamma(1) = \theta_f$

- $\bullet ~\gamma$ will represent a configuration between the initial configuration and the final
- The aim will be to fin successive γ that remain in Q_f :

 $au
ightarrow \gamma(au)$ is a path from $heta_0$ to $heta_f$

• We define a potential field (criterium):

$$U(\theta) = U_{att}(\theta) + U_{rep}(\theta)$$

U_{att}(θ) will attract γ to θ_f: the goal configuration
 U_{rep}(θ) will repulse the system away from obstacle
 The aim will be to minimize the criterium

Robotics

ENSIT 105 / 139

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

SIMPLE EXEMPLE OF OBJECTIVE FUNCTION

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

e e

Newton

Χ4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic mo Dynamical mo

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

```
N. Marchand (gipsa-lab)
```

• Take $U_{att}(\theta) = ||\theta - \theta_f||$: U_{att} is the distance to the final destination

A D > A B > A B > A B >

SIMPLE EXEMPLE OF OBJECTIVE FUNCTION

Robotics

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- ~

Kinematics

- Arm robots Inner-loop Geometrical mo Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Take $U_{att}(\theta) = ||\theta - \theta_f||$: U_{att} is the distance to the final destination

• Take
$$U_{rep}(\theta) = \frac{1}{d(\theta, Q_c)}$$
: U_{rep} is infinite if there is a risk of obstacle

N. Marchand (gipsa-lab)

ENSIT 106 / 139

A D > A B > A B > A B >

ATTRACTIVE/REPULSIVE FIELDS

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Trying to minimize or maximize the distance is not necessary appropriate

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE/REPULSIVE FIELDS

- Trying to minimize or maximize the distance is not necessary appropriate
- Inappropriate criterium may:

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- Trying to minimize or maximize the distance is not necessary appropriate
- Inappropriate criterium may:
 - generate local minima

ATTRACTIVE/REPULSIVE FIELDS

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic moo Dynamical moo Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- Trying to minimize or maximize the distance is not necessary appropriate
- Inappropriate criterium may:
 - generate local minima
 - be delicate to minimize

ATTRACTIVE/REPULSIVE FIELDS

ENSIT 107 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical n
- Duranial mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Trying to minimize or maximize the distance is not necessary appropriate

ATTRACTIVE/REPULSIVE FIELDS

- Inappropriate criterium may:
 - generate local minima
 - be delicate to minimize
 - have singularities

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Trying to minimize or maximize the distance is not necessary appropriate

ATTRACTIVE/REPULSIVE FIELDS

- Inappropriate criterium may:
 - generate local minima
 - be delicate to minimize
 - have singularities
- The main problem consist in finding a criterium that will be convex (or close to)

MANIPULATOR ROBOTS

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Geometrical mo

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• We define a potential field for each articulation

+ □ > < □ > < □ > < □ > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model Dynamical mode Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

MANIPULATOR ROBOTS

- We define a potential field for each articulation
- The attractive field is a monotonically increasing function of the distance of the *i*th frame to the goal position

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing • We define a potential field for each articulation

• The attractive field is a monotonically increasing function of the distance of the *i*th frame to the goal position

MANIPULATOR ROBOTS

• The attractive field applies a fictitious force that push the manipulator into its goal position

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• We define a potential field for each articulation

• The attractive field is a monotonically increasing function of the distance of the *i*th frame to the goal position

MANIPULATOR ROBOTS

- The attractive field applies a fictitious force that push the manipulator into its goal position
- The repulsive field will create a fictitious force that will prevent collisions by repelling the robot from the obstacles

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE FIELDS

• Simple potential field: *conic well potential*

$$U_{att_i}(\theta) = \zeta_i ||O_i(\theta) - O_i(\theta_f)||$$

ENSIT 109 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE FIELDS

• Simple potential field: *conic well potential*

$$U_{\mathsf{att}_i}(heta) = \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\zeta_i \nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i \frac{O_i(\theta) - O_i(\theta_f)}{||O_i(\theta) - O_i(\theta_f)||}$$

+ □ > < □ > < □ > < □ > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE FIELDS

• Simple potential field: *conic well potential*

$$U_{\mathsf{att}_i}(heta) = \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\zeta_i \nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i \frac{O_i(\theta) - O_i(\theta_f)}{||O_i(\theta) - O_i(\theta_f)||}$$

• it is a ζ_i -norm vector pointing to the objective

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ATTRACTIVE FIELDS

• Simple potential field: *conic well potential*

$$U_{att_i}(heta) = \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\zeta_i \nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i rac{O_i(\theta) - O_i(\theta_f)}{||O_i(\theta) - O_i(\theta_f)||}$$

• it is a ζ_i -norm vector pointing to the objective

• has a singularity at the objective

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic moo

Dynamical mod

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE FIELDS

• Simple potential field: *conic well potential*

$$U_{att_i}(heta) = \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|$$

• The corresponding force is:

$$F_{att_i}(heta) = -\zeta_i
abla ||O_i(heta) - O_i(heta_f)|| = -\zeta_i rac{O_i(heta) - O_i(heta_f)}{||O_i(heta) - O_i(heta_f)||}$$

- it is a ζ_i -norm vector pointing to the objective
- has a singularity at the objective
- ζ_i is a ponderation between articulations

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

Robotics

N. Marchand

$$U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) - O_i(\theta_f)||^2$$

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 110 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

ENSIT 110 / 139

+ □ > < □ > < □ > < □ > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

• this force is defined everywhere

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical Kinematic m
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

- this force is defined everywhere
- Or the hybrid potential:

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

$$U_{att_i}(heta) = rac{1}{2} \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|^2$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

- this force is defined everywhere
- Or the hybrid potential:

• $U_{att_i}(\theta) = rac{1}{2}\zeta_i \left|\left|O_i(\theta) - O_i(\theta_f)\right|\right|^2$ if $\left|\left|O_i(\theta) - O_i(\theta_f)\right|\right| \le d$

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots
- Geometrical mo
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

$$U_{att_i}(heta) = rac{1}{2} \zeta_i \left| \left| O_i(heta) - O_i(heta_f)
ight|
ight|^2$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

- this force is defined everywhere
- Or the hybrid potential:
 - $U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) O_i(\theta_f)||^2$ if $||O_i(\theta) O_i(\theta_f)|| \le d$ • $U_{att_i}(\theta) = -d\zeta_i ||O_i(\theta) - O_i(\theta_f)|| - \frac{1}{2}\zeta_i d^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$

N. Marchand (gipsa-lab)

ENSIT 110 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Geometrical mo
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

- this force is defined everywhere
- Or the hybrid potential:
- $U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) O_i(\theta_f)||^2$ if $||O_i(\theta) O_i(\theta_f)|| \le d$ • $U_{att_i}(\theta) = -d\zeta_i ||O_i(\theta) - O_i(\theta_f)|| - \frac{1}{2}\zeta_i d^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$ • The corresponding force is:

N. Marchand (gipsa-lab)

ENSIT 110 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Geometrical mo
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

- this force is defined everywhere
- Or the hybrid potential:
 - $U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) O_i(\theta_f)||^2$ if $||O_i(\theta) O_i(\theta_f)|| \le d$ • $U_{att_i}(\theta) = -d\zeta_i ||O_i(\theta) - O_i(\theta_f)|| - \frac{1}{2}\zeta_i d^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$
- The corresponding force is:
 - $F_{att_i}(\theta) = -\zeta_i(O_i(\theta) O_i(\theta_f))$ if $||O_i(\theta) O_i(\theta_f)|| \le d$

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robot
- Coomotrical me
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

ATTRACTIVE FIELDS

• Instead we use: parabolic well potential

$$U_{att_i}(heta) = rac{1}{2} \zeta_i ||O_i(heta) - O_i(heta_f)||^2$$

• The corresponding force is:

$$F_{att_i}(\theta) = -\nabla ||O_i(\theta) - O_i(\theta_f)|| = -\zeta_i(O_i(\theta) - O_i(\theta_f))$$

- this force is defined everywhere
- Or the hybrid potential:
 - $U_{att_i}(\theta) = \frac{1}{2}\zeta_i ||O_i(\theta) O_i(\theta_f)||^2$ if $||O_i(\theta) O_i(\theta_f)|| \le d$ • $U_{att_i}(\theta) = -d\zeta_i ||O_i(\theta) - O_i(\theta_f)|| - \frac{1}{2}\zeta_i d^2$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$
- The corresponding force is:
 - $F_{att_i}(\theta) = -\zeta_i(O_i(\theta) O_i(\theta_f))$ if $||O_i(\theta) O_i(\theta_f)|| \le d$ • $F_{att_i}(\theta) = -d\zeta_i \frac{O_i(\theta) - O_i(\theta_f)}{||O_i(\theta) - O_i(\theta_f)||}$ if $||O_i(\theta) - O_i(\theta_f)|| \le d$

N. Marchand (gipsa-lab)

REPULSIVE FIELDS

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Again, one repulsive field by articulation is given

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Again, one repulsive field by articulation is given

Repulsive Fields

• Should *strongly* repel the robot close to obstacles

ENSIT 111 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical me

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

REPULSIVE FIELDS

- Again, one repulsive field by articulation is given
- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle

N. Marchand

Introduction

Modeling

- Cartesian coordinat Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

REPULSIVE FIELDS

- Again, one repulsive field by articulation is given
- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence $\rho_i > \rho_0$

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

REPULSIVE FIELDS

- Again, one repulsive field by articulation is given
- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence $\rho_i > \rho_0$
- Define the repulsive field:

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

REPULSIVE FIELDS

- Again, one repulsive field by articulation is given
- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence $\rho_i > \rho_0$
- Define the repulsive field:

• $U_{rep_i}(\theta) = 0$ if $d(\theta, O) > \rho_i$

ENSIT 111 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mod Dynamical mod

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

REPULSIVE FIELDS

- Again, one repulsive field by articulation is given
- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence $\rho_i > \rho_0$
- Define the repulsive field:

•
$$U_{rep_i}(\theta) = 0$$
 if $d(\theta, O) > \rho_i$
• $U_{rep_i}(\theta) = \frac{\zeta_i}{2} \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right)^2$ if $d(\theta, O) \le \rho_i$

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mo Kinematic mod Dynamical mod
- conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Repulsive fields

- Again, one repulsive field by articulation is given
- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence $\rho_i > \rho_0$
- Define the repulsive field:

•
$$U_{rep_i}(\theta) = 0$$
 if $d(\theta, O) > \rho_i$
• $U_{rep_i}(\theta) = \frac{\zeta_i}{2} \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right)^2$ if $d(\theta, O) \le \rho_i$

• The corresponding fictive force is:

N. Marchand (gipsa-lab)

ENSIT 111 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newtor

X4

Kinematics

- Arm robots Inner-loop Geometrical mo Kinematic moo Dynamical moo
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Repulsive fields

- Again, one repulsive field by articulation is given
- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence $\rho_i > \rho_0$
- Define the repulsive field:

•
$$U_{rep_i}(\theta) = 0$$
 if $d(\theta, O) > \rho_i$
• $U_{rep_i}(\theta) = \frac{\zeta_i}{2} \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right)^2$ if $d(\theta, O) \le \rho_i$

• The corresponding fictive force is:

•
$$F_{rep_i}(heta) = 0$$
 if $d(heta, O) >
ho_i$

N. Marchand (gipsa-lab)

ENSIT 111 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical m Kinematic mon Dynamical mo
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Again, one repulsive field by articulation is given

Repulsive fields

- Should strongly repel the robot close to obstacles
- Usually, should not have any influence far from the obstacle
- First define a radius of influence $\rho_i > \rho_0$
- Define the repulsive field:

•
$$U_{rep_i}(\theta) = 0$$
 if $d(\theta, O) > \rho_i$
• $U_{rep_i}(\theta) = \frac{\zeta_i}{2} \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right)^2$ if $d(\theta, O) \le \rho_i$

• The corresponding fictive force is:

•
$$F_{rep_i}(\theta) = 0$$
 if $d(\theta, O) > \rho_i$
• $F_{rep_i}(\theta) = -\zeta_i \left(\frac{1}{d(\theta, O)} - \frac{1}{\rho_0}\right) d(\theta, O)^{-2} \nabla d(\theta, O)$ if $d(\theta, O) \le \rho_i$

N. Marchand (gipsa-lab)

ENSIT 111 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Frames

Newton

Χ4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic moo Dynamical moo Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• The total joint torques acting on a robot is the sum of the torques from all attractive and repulsive potentials:

FROM ATTRACTIVE/REPULSIVE FORCES TO ACTUATOR TORQUES

$$au(heta) = \sum_{i} J_{O_i}^{T}(heta) \left(F_{\textit{att}_i}(heta) + F_{\textit{rep}_i}(heta)
ight)$$

ENSIT 112 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

GRADIENT DESCENT

• Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mode Dynamical mod Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

GRADIENT DESCENT

Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 First, determine your initial configuration

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

GRADIENT DESCENT

- Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 - First, determine your initial configuration
 - Second, given a desired point in the workspace, calculate the final configuration using the inverse kinematics: Use this to create an attractive potential field

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

GRADIENT DESCENT

- Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 - First, determine your initial configuration
 - Second, given a desired point in the workspace, calculate the final configuration using the inverse kinematics: Use this to create an attractive potential field
 - Ocate obstacles in the workspace: Create a repulsive potential field

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

- Arm robots Inner-loop Geometrical m Kinematic moo Dynamical mo
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

GRADIENT DESCENT

- Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 - First, determine your initial configuration
 - Second, given a desired point in the workspace, calculate the final configuration using the inverse kinematics: Use this to create an attractive potential field
 - Ocate obstacles in the workspace: Create a repulsive potential field
 - Sum the joint torques in the configuration space

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

- Arm robots Inner-loop Geometrical m Kinematic mo Dynamical mo
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

GRADIENT DESCENT

- Now that we can formulate the total torques acting on the joints in the configuration space due to the artificial potentials, we can formulate a path planning algorithm
 - First, determine your initial configuration
 - Second, given a desired point in the workspace, calculate the final configuration using the inverse kinematics: Use this to create an attractive potential field
 - Ocate obstacles in the workspace: Create a repulsive potential field
 - Sum the joint torques in the configuration space
 - **O** Use gradient descent to reach your target configuration

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical I Kinematic me
- Dynamical mod
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

$\bullet \quad i=0, \ \theta[0]=\theta_0$

- 2 if $||\theta[i] \theta_f|| > \varepsilon$, then:
 - $\theta[i+1] =$ $\theta[i] + \alpha[i] \frac{\tau(\theta[i])}{||\tau(\theta[i])||}$ • i = i+1
 - goto 2

else:

• return $\theta[0], \ldots, \theta[i]$

- Many other algorithm are possible
 - steepest descent (gradient) (Euler)
 - Newton
 - ... see optimization books
- the θ[0],...,θ[i] are the successive configuration to track = path
- It is possible to add random to escape local minima

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand (gipsa-lab)

Robotics

GRADIENT DESCENT

ENSIT 114 / 139

PROBABILISTIC ROADMAP

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Inner-Ioop

....

Dynamical mou

. . . .

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Randomly sample the configuration space

ENSIT 115 / 139

PROBABILISTIC ROADMAP

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo

Kinematic mode

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

- Randomly sample the configuration space
- Enables to roughly separate Q_f from O

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Randomly sample the configuration space

PROBABILISTIC ROADMAP

- Enables to roughly separate Q_f from O
- Discards the points "too close" from O

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Randomly sample the configuration space

- Enables to roughly separate Q_f from O
- Discards the points "too close" from O
- Connect using straight line segments that do not intersect obstacles

PROBABILISTIC ROADMAP

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Frames

X4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic moo Dynamical mo Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Randomly sample the configuration space

- Enables to roughly separate Q_f from O
- Discards the points "too close" from O
- Connect using straight line segments that do not intersect obstacles

PROBABILISTIC ROADMAP

• Eventually resample until Q_f is sufficiently covered

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mo Kinematic moo Dynamical moo
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Randomly sample the configuration space

- Enables to roughly separate Q_f from O
- Discards the points "too close" from O
- Connect using straight line segments that do not intersect obstacles

PROBABILISTIC ROADMAP

- Eventually resample until Q_f is sufficiently covered
- Chose the path in the connected space

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Some final remarks

• All the previous methods assume an a priori knowledge of the environnement

ENSIT 116 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Some final remarks

- All the previous methods assume an a priori knowledge of the environnement
- Predictive control can also be used to handle constraints "on line"

ENSIT 116 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Χ4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model Dynamical model

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Some final remarks

- All the previous methods assume an a priori knowledge of the environnement
- Predictive control can also be used to handle constraints "on line"
- Adding fictive force is a very power tool also widely used in formation control or robotics with communication constraints (mainly range)

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

pacir planning

Mobile robotics

Visual servoing

• Born in the 50s, aiming to autonomously moving robots

Grey Walter's "Turtle" (machina speculatrix): attracted by light

N. Marchand (gipsa-lab)

Robotics

ENSIT 117 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

• Born in the 50s, aiming to autonomous mobile robots

John Hopkins Univ. "Beast" robot: first use of transistor based sensing (ultrasound and photodiodes)

N. Marchand (gipsa-lab)

Robotics

ENSIT 118 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Born in the 50s, aiming to autonomous mobile robots

Shakey robot from Stanford Univ. Platform used to show first results on AI (1969)

Robotics

ENSIT 119 / 139

イロト イポト イヨト イヨト

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Bio inspired locomotion: first biped robot

Honda E0 first biped robot (1986)

Robotics

ENSIT 120 / 139

Robotics

• Bio inspired locomotion: first biped walk

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

Χ4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Rabbit robot CNRS-Grenoble (2004)

Robotics

ENSIT 121 / 139

+ □ > < □ > < □ > < □ > < □ >

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• Bio inspired locomotion: more about mobility

Boston Dynamics (SoftBank)

Robotics

ENSIT 122 / 139

+ □ > < □ > < □ > < □ > < □ >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mode

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• SLAM: Simultaneous localization and mapping

MOBILE ROBOTICS

https://github.com/erik-nelson/blam

Robotics

ENSIT 123 / 139

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• SLAM: Simultaneous localization and mapping

Robotics

ENSIT 124 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 125 / 139

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Robotics

N. Marchand

Bionics

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

Robotics

ENSIT 126 / 139

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

BASIS OF NAVIGATION

Navigation gathers different problems

- Approach of a given visible target, going to the target. Each new sensing produces an action. Typically what some insects do. Usually based on a gradient approach
- Guidance Ability to go to some position characterized by a visible environnement.

Usually based on a gradient approach

To goal navigation In that case, the target don't need to be visible but the robot has a representation of the world. *Graph or gradient approach*

Topological navigation Same as previous one with a memory of the possible the spatial relationship between positions: the robot can go back) *Graph or gradient approach*

Metric navigation Same as above but the robot is capable to memorize the metric positions: the robot can go back to a point without taking the same path.

- The 3 first strategies: reactiv navigation
- The 2 last enable trajectory planification also called path planning

N. Marchand (gipsa-lab)

Robotics

ENSIT 127 / 139

イロト イポト イヨト イヨト

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic mode Dynamical mode Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

BASIS OF NAVIGATION

Three key words of navigation

- Navigation relies on
 - Perception where am i ? Planification where should i go ? Action how can i move ?
- The order of Perception/Planification/Action is not trivial
- Sometimes it may be necessary to move to see where to go: perception depends upon control
- Sometimes it may be necessary see to know where to go: navigation depends upon perception

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical r Kinematic mo
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

BASIS OF NAVIGATION

the perception

• Two kind of perceptions:

Proprioceptive information Everything that the robot can measure independently from the environnement, typically the rotation of its wheels, accelerometers, gyrometers, etc.

Exterioceptive information Everything that the robot sense in the outside world, typically distance to obstacles. Sensors are cameras, infrared/laser/ultra sound sensors, etc.

• Two type of problems

Perception variability The perception of the same place can vary (e.g. because of the sun)

Perceptual aliasing The same perception signals can correspond to 2 different places

• Perception is merged via a fusion step

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

Different kind of usage of perception information Direct

BASIS OF NAVIGATION the perception

N. Marchand (gipsa-lab)

Robotics

ENSIT 130 / 139

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical mode Kinematic model Dynamical model
- Conclusion

Path planning

- Workspace and obstacles
- path planning

Mobile robotics

Visual servoing

• Different kind of usage of perception information

BASIS OF NAVIGATION the perception

- Direct
- To built a metric map

N. Marchand (gipsa-lab)

Robotics

ENSIT 130 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical more Kinematic mode Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Different kind of usage of perception information

BASIS OF NAVIGATION the perception

- Direct
- To built a metric map
- To built a metric map with objects

N. Marchand (gipsa-lab)

Robotics

ENSIT 130 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic mo

Dynamical mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

• Different kind of usage of perception information

BASIS OF NAVIGATION the perception

- Direct
- To built a metric map
- To built a metric map with objects
- To built a metric map with objects of known typology

N. Marchand (gipsa-lab)

Robotics

ENSIT 130 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

X4

Kinematics

Arm robots Inner-loop Geometrical mod Kinematic model Dynamical mode

Path planning

Workspace and obstacles

Mobile

robotics

Visual servoing

BASIS OF NAVIGATION

Navigation key words of navigation

- Navigation relies on
 - Perception where am i ? Planification where should i go ? Action how can i move ?
- The order of Perception/Planification/Action is not trivial
- Sometimes it may be necessary to move to see where to go: perception depends upon control
- Sometimes it may be necessary see to know where to go: navigation depends upon perception

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

• An arm robot equipped with a camera

ENSIT 132 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration

ENSIT 132 / 139

< □ > < 同 > < 三 > < 三 >

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration
- The configuration is defined by a *final* image feature to reach

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

Kinematics

Arm robots Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration
- The configuration is defined by a *final* image feature to reach
- Two possible configurations

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration

Robotics

- The configuration is defined by a *final* image feature to reach
- Two possible configurations
- Eye in hand configuration

ENSIT 132 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile

robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

- An arm robot equipped with a camera
- Aim: bring the final effector to a given predefined configuration
- The configuration is defined by a *final* image feature to reach
- Two possible configurations
- Eye in hand configuration

• Eye to hand configuration

ENSIT 132 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING The key points

- Being able to extract feature from the image: "recognize" points of the object
- Being able to characterize the relation between the robot movement and the image changes

ENSIT 133 / 139

Image based visual servoing

THE INTERACTION MATRIX

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop

Geometrical mode

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

The interaction matrix links the mouvement of O_c (lateral and rotational) to the movement of the feature points (f_i^c)

Robotics

ENSIT 134 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

Arm robots

Inner-loon

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

$$e(t) = s(q(t), a) - s^{\star}$$

Robotics

ENSIT 135 / 139

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames

Newton

X4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

$$e(t) = s(q(t), a) - s^{\star}$$

• s denotes the current feature depending upon

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical mode
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)

< □ > < 同 > < 回 > < 回 > < 回 >

ENSIT 135 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinate
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical m Kinematic mod
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)

N. Marchand

Introduction

Modeling

- Cartesian coordinates
- Orientation
- Frames
- Newton

X4

Kinematics

- Arm robot
- Inner-loop
- Geometrical model
- Kinematic model
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

• Positioning error:

$$e(t) = s(q(t), a) - s^{\star}$$

- $\bullet\ s$ denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)
- s* denotes the target feature

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical r

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

where

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)

< □ > < 同 > < 回 > < 回 > < 回 >

ENSIT 135 / 139

- s^{*} denotes the target feature
- The relation between the image and the real world is given by the interaction matrix:

$$\dot{s} = L_s \nu_c$$

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinate Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop

Geometrical mot

Domestical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)
- s^{*} denotes the target feature
- The relation between the image and the real world is given by the interaction matrix:

$$\dot{s} = L_s \nu_c$$

where

• $\nu_c := (v_c, \omega_c) = (\text{linear veloc}_{cam frame}, \text{angular veloc}_{cam frame})$

Robotics

ENSIT 135 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinate Orientation
- Frames
- Newton

X4

Kinematics

- Arm robots
- Geometrical mod
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

INTRODUCTION TO VISUAL SERVOING

A short mathematical background

$$e(t) = s(q(t), a) - s^{\star}$$

- s denotes the current feature depending upon
 - the robot configuration q(t)
 - a set of parameters a gathering all additional information (coarse camera intrinsic parameters, three-dimensional model of objects, etc.)
- s* denotes the target feature
- The relation between the image and the real world is given by the interaction matrix:

$$\dot{s} = L_s \nu_c$$

where

ν_c := (ν_c, ω_c) = (linear veloc_{cam frame}, angular veloc_{cam frame})
 L_s ∈ ℝ^{k×6}: interaction matrix (Jacobian)

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

CONTROL IN VISUAL SERVOING

A simple control approach

• Coupling the error and the interaction relation, one gets:

$$\dot{e} = L_s \nu_c$$

ENSIT 136 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Frames

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic mod

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

CONTROL IN VISUAL SERVOING

A simple control approach

• Coupling the error and the interaction relation, one gets:

 $\dot{e} = L_s \nu_c$

• Take the linear velocities and angular velocities as control variable

ENSIT 136 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation

Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mo Kinematic moo Dynamical moo

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

CONTROL IN VISUAL SERVOING

A simple control approach

Coupling the error and the interaction relation, one gets:

 $\dot{e} = L_s \nu_c$

- Take the linear velocities and angular velocities as control variable
- Let $L_s^+ := (L_s^T L_s)^{-1} L_s^T$ be the Moore–Penrose pseudo-inverse of L_s

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile

Visual servoing

N. Marchand (gipsa-lab)

CONTROL IN VISUAL SERVOING

A simple control approach

Coupling the error and the interaction relation, one gets:

$$\dot{e} = L_s \nu_c$$

- Take the linear velocities and angular velocities as control variable
 - Let $L_s^+ := (L_s^T L_s)^{-1} L_s^T$ be the Moore–Penrose pseudo-inverse of L_s
 - To force an exponential decrease of the error:

$$\dot{e} = -\lambda e$$

we must chose

$$\nu_{c} := -\lambda L_{s}^{+} e$$

ENSIT 136 / 139

N. Marchand

Introduction

Modeling

- Cartesian coordinates Orientation Frames
- Newton

X4

Kinematics

Arm robots Inner-loop Geometrical model Kinematic model Dynamical model Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

CONTROL IN VISUAL SERVOING

A simple control approach

Coupling the error and the interaction relation, one gets:

$$\dot{e} = L_s \nu_c$$

- Take the linear velocities and angular velocities as control variable
 - Let $L_s^+ := (L_s^T L_s)^{-1} L_s^T$ be the Moore–Penrose pseudo-inverse of L_s
 - To force an exponential decrease of the error:

$$\dot{e} = -\lambda e$$

we must chose

$$\nu_c := -\lambda L_s^+ e$$

• Practically, *L_s* is never known perfectly and we use an approximation

Robotics

ENSIT 136 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates

-

Newton

Χ4

Kinematics

Arm robot

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

IMAGE-BASED VISUAL SERVOING

• Take a 3D point of coordinates P = (X, Y, Z) in the camera frame

ENSIT 137 / 139

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

IMAGE-BASED VISUAL SERVOING

• Take a 3D point of coordinates P = (X, Y, Z) in the camera frame

• Its coordinates in the image will be p = (x, y):

$$x = X/Z = (u - c_u)/f\alpha$$

$$y = Y/Z = (v - c_v)/f$$

where f is the focal length, α is the ratio of the pixel dimensions, c_u and c_v are the coordinates of the principal point.

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical mode Kinematic model

Conclusion

Path planning

Workspace and obstacles

Mobile

robotics

Visual servoing

N. Marchand (gipsa-lab)

IMAGE-BASED VISUAL SERVOING

• Take a 3D point of coordinates P = (X, Y, Z) in the camera frame

• Its coordinates in the image will be p = (x, y):

$$x = X/Z = (u - c_u)/f\alpha$$

$$y = Y/Z = (v - c_v)/f$$

where f is the focal length, α is the ratio of the pixel dimensions, c_u and c_v are the coordinates of the principal point.

Derivating, we get

$$\dot{x} = \dot{X}/Z - X\dot{Z}/Z^2 = (\dot{X} - x\dot{Z})/Z$$

$$\dot{y} = \dot{Y}/Z - Y\dot{Z}/Z^2 = (\dot{Y} - y\dot{Z})/Z$$

Robotics

ENSIT 137 / 139

IMAGE-BASED VISUAL SERVOING

Robotics

• Using the Varignon's formula

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

X4

Kinematics

Arm robots

Inner-loop

Geometrical model

Kinematic model

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical m Kinematic mo
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

IMAGE-BASED VISUAL SERVOING

• Using the Varignon's formula

$$\dot{X} = -v_c - \omega_c^{\times} X$$

• Mixing the two last equation, we get the interaction matrix form *P*

$$\dot{p} = L_p \nu_c$$

with

$$L_{p} = \begin{pmatrix} -1/Z & 0 & x/Z & xy & -(1+x^{2}) & y \\ 0 & -1/Z & y/Z & 1+y^{2} & -xy & -x \end{pmatrix}$$

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

. . . .

robotics

Visual servoing

N. Marchand (gipsa-lab)

IMAGE-BASED VISUAL SERVOING

• Using the Varignon's formula

$$\dot{X} = -v_c - \omega_c^{\times} X$$

$$\dot{p} = L_p \nu_c$$

with

$$L_{
ho} = egin{pmatrix} -1/Z & 0 & x/Z & xy & -(1+x^2) & y \ 0 & -1/Z & y/Z & 1+y^2 & -xy & -x \end{pmatrix}$$

• Z is the depth and is usually not known

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

Arm robots Inner-loop Geometrical

Kinematic mode

Dynamical mode

Conclusion

Path planning

Workspace and obstacles

Mobile robotics

Visual servoing

IMAGE-BASED VISUAL SERVOING

• Using the Varignon's formula

$$\dot{X} = -v_c - \omega_c^{\times} X$$

• Mixing the two last equation, we get the interaction matrix form *P*

$$\dot{p} = L_p \nu_c$$

with

$$L_{p} = \begin{pmatrix} -1/Z & 0 & x/Z & xy & -(1+x^{2}) & y \\ 0 & -1/Z & y/Z & 1+y^{2} & -xy & -x \end{pmatrix}$$

- Z is the depth and is usually not known
- To control six degrees of freedom, at least three points are required (p₁, p₂, p₃)

N. Marchand (gipsa-lab)

ENSIT 138 / 139

N. Marchand

Introduction

Modeling

Cartesian coordinates Orientation Frames Newton

X4

Kinematics

- Arm robots Inner-loop Geometrical
- Kinematic mode
- Dynamical mode
- Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

IMAGE-BASED VISUAL SERVOING

• Using the Varignon's formula

$$\dot{X} = -v_c - \omega_c^{\times} X$$

• Mixing the two last equation, we get the interaction matrix form *P*

$$\dot{p} = L_p \nu_c$$

with

$$L_{p} = \begin{pmatrix} -1/Z & 0 & x/Z & xy & -(1+x^{2}) & y \\ 0 & -1/Z & y/Z & 1+y^{2} & -xy & -x \end{pmatrix}$$

- Z is the depth and is usually not known
- To control six degrees of freedom, at least three points are required (p₁, p₂, p₃)
- Camera parameters can be obtained by calibration

IMAGE-BASED VISUAL STEREO SERVOING

Robotics

N. Marchand

Introduction

Modeling

Cartesian coordinates

Orientation

Frames

Newton

Χ4

Kinematics

Arm robots Inner-loop Geometrical m Kinematic mod

Conclusion

Path planning

Workspace and obstacles

path planning

Mobile robotics

Visual servoing

N. Marchand (gipsa-lab)

• We assume now that we have two cameras

ENSIT 139 / 139

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A