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Abstract—This work studies how uniform quantization in quantization. The question of the magnitude of such errat, a
communications affect the linear diffusion algorithm for average of its dependence on the number of agents, is addressedpand a
consensus problem. Starting from the well-known linear difusion answer is given by a theoretical analysis and by simulatians

algorithm, we analyze a simple and effective adaptation wigh . . .
is able to preserve the average of states and to drive the sgsn MO'® complete study is being presented in [10]. Some remarks

near to the consensus value. The error is estimated by a worst On the related literature are given in Section V.
case analysis, which suggests that it can increase as the noen
of agents goes to infinity. The algorithm is also compared wit A. Notations and recalls

the existing literature. . -
g Before proceeding we collect some definitions and nota-

|. INTRODUCTION tions which are used through the paper. The communications
] ] o between agents are modeled by a directed gaph(V, E).
In the last years, we have noticed an increasing intergst _ {1,...,N} is the set of vertices and is the set of

for studying control, estimation and algorithmic problemmirected) edges, i.e. a subset Bfx V. If (j,i) € E, it
over networks. A common feature of these problems is thigeans thatj can transmit information about its state o

fact that there is a fundamental constraint on the flux Glfheadjacency matrix A of G is a {0, 1}-valued square matrix

information: data are distributed among a large number pfyavaq by the elements il defined by lettingd;; = 1 if and
nodes communicating among themselves through some Willy if (j,i) € E andj # i. Define thein-degree of a vertexi
work communication scheme. A prototype of such problen&gz - A;; and theout-degree of a vertexj as3", A;;. A graph
is the so-called consensus problem. . is said to beundirected (or symmetric) if (i,7) € E implies
Suppose we have a (directed) gra@hwith set of nodes hat(; ) € E. A graph is strongly connected if for any given

V'={L...,N} and a real quantity; for every node € V.  hair of vertices(i, j) there exists a path which conne¢t ;.
The average consensus problem consists of computing $ath in G consists in a sequence of verticgs, i, . . ., i,)
averagery, = N~ ! > x; in an iterative and distributed way, sch that(i;,i,.1) € E for everyj € {1,...,r —1}.
exchanging information among nodes exclusively along the A matrix 1/ is said to benonnegative if M;; > 0 for all i
available edges iw. This problem appears in a number of,q ; and is said to beloubly stochastic if it is nonnegative
different contexts since the early 80's (decentralized@ot@ .4 the sums along each row and column are equal #

tion [20], load balancing [7]) and, more recently, has &t®é ya4ix 1/ is said to benormal if, denoting with the star the

much attention for possible applications to sensor networgonjugate transpose\/*M = MM?*. Given a nonnegative
(data fusion problems [21], clock synchronization [16])danyatrix 17 ¢ R¥*N . we can define an induced gragh; by

to coordinated control of mobile autonomous agents [13], [?taking N nodes and putting an eddg, i) in E if M;; > 0.

(2], [9] . Given a graplg on 'V, M is said to beadapted or compatible
Suppose now that the links between agents do not allgy ¢ if G,, c G. Given a matrixd € RV*N, Jet o (M)

a perfect exchange of information, but are noiseless dligit§note the set of eigenvalues df and p(M) the spectral
channels on which symbols are sent. This is to say that thgi,s of M:p(M) = max{|\| : X € o(M)}. When the matrix
agents can just exchange quantized values. The simplest Wayiochastic, it is also worth to define tlessential spectral

of performing such a quantization is to decompose the domaiyi,s aSess (M) = max{|\| : A € o(M) \ {1}}.
of possible values in bins of equal size, and assign a symbol

to each bin. This is uniform quantization. Up to a suitable Il. STATEMENT OF THE PROBLEM

rescaling, we may assume that the agents can exchange theK h h ; q
values rounded to the nearest integer. ssume that we have a set of agefitsand a grapty on

The consensus problem under quantization transmission IYaéjeS,C”b'ng thz avallaklile I'nki among the agf1err]1ts. For each
first appeared in the final section of [21]. In principle, wdgent € Vv we denote yi(t) the estimation of the average

could simply try to take the usual linear algorithm Whicﬁ)]c age_ntz at tlr_net._ ) ) )
yields average consensus and try to apply it with quantizati In dls_crete time, if we have ideal exchange of mformatl(_)n,
transmission. However, this turns out not to be a good idd3 typical approach is to set as dynamics the following
since in the new setting the algorithm leads in general to §Uations N

approximate consensus which may be far though from the

average. This was noted in [21] and in [4], [6], where a zi(t+1) =) Pyz;(®), (1)
new algorithm was proposed and partially analyzed. In this =t

note, namely in Section Ill, we show that it is able to drivevherez;(t) € R is the state of the-th agent at the time
the system to average consensus, up to a small error due &nd P;; are coefficients belonging to a doubly stochastic



matrix P € RY*Y_ More compactly we can write [1l. WORST CASE ANALYSIS

a(t +1) = Pa(t), An exact analysis of the _dynami_cs of system (3) is_ an ha_rd
task and can be done only in special cases [10]. In this sectio
wherez(t) is the column vector whose entries(t) represent We undertake a worst case analysis which is very general
the agents states. and proves that the proposed method drives the agents to a
It is well known in the literature [19], [3] that, if? is Neighborhood of consensus, providing a bound on its size.
a doubly stochastic matrix with positive diagonal and with We start by observing that (3) can be rewritten in the
Gp strongly connected, then the algorithm with exchange &#llowing way

perfect information (1) solves thaerage consensus problem,
namely z(t+1) = Pa(t) + (P — I)(q(z(t) —z(t), (4

N .
. 1 whereq(x(t)) —z(t) is such thaf|g(z(t)) —x(t)|lcc < 1/2.1In
tETooI(t) - N (Z xi(o)) L, @) order to carry out a worst-case analysis of (4), we introduce
=t the following bounded error model

{ T (t + 1) = Py (t) + (I — P)e(t), 2,(0) = x(0)
Ay (t) = Ya,(t),

where1l is the (column) vector of all ones.
Assumption 1: The matrix P is doubly stochastic and such

thatP; > 0,i=1,...,N, andGp is strongly connected. 5)
This will be assurpeo! in j[he squel of the paper. wheree(t) € RN is such thatle(t)]|o < 1/2 for all ¢t > 0
When communication is quantized, we propose that at eaghy where we recall that = I — %11*' Notice that in this
time step each agentadjourn its state following casec(t) is no more a quantization error, but instead represents
N an unknown bounded disturbance. Clearly, wh@n = x(t)—
zi(t+1) = 24(t) + Z Py [q(z;(t) — q(z: (1)), gflsct(ti) (;t turns out thatz,, (t) = z(t) and A, (t) = A(t) for
j=1 =

We define now a performance index for (5), consider-
where P;; are the entries of a matri® compatible withG, ing the worst asymptotic disagreement, worst with respect
and whereg(-) denotes rounding to the nearest integer. If wg all the possible choices of the time sequence of the
have a vector: € RV, with a slight abuse of notation, wevectors e(t). To be more precise, let us introduég® =
will use the notationg(z) € RY to denote the vector SUCh{{e(-)}fio lle®)loo < %, V> 0}, namely the set of all the
thatq(z); = q(x:). Hence more compactly we can write sequences ai-dimensional vectors having sup norm less than

1/2. Then, for the system (5), we define
x(t+1)=z(t) + (P —1)q(x(t)). 3) ,
wherex(t) is the column vector whose entrieg(t) represent doo (P, 2 (0)) = S;i? h?iiglp \/—N”Aw(tm'
the agents states. ) S
The algorithm (3) preserves the average of the initijote thatlim ... Y'P* = 0. This implies that the asymp-

conditions, that is, defining.,(t) = N~'1*z(t), za(t) = tqtﬁc behavior of A, (t) is ﬁndgpendent of the initial con-
2.(0), ¥t € N. Indeed, by Assumption refAssMatrixP,d_'t'on x4,(0) and hence this is the case also fqr the quan-
1*P = 1*, and we have that, for all > 0, a4 (t + 1) = tity dg”o(P,xw((_))). Thus, from now on we will denote
N-'1%z(t + 1) = N~'1*z(t) + N-11* (P — I) q(z(t)) = d¥ (P, x,(0)) simply by d2 (P). As a preliminary remark,
N=11%2(t) = 2q(t). note that

It is clear that the algorithm (3), because of the quantirati doo (P) < d5,(P).

effects, is not expected to converge in the sense (2). What _ )

we can hope is for the agents to reach real estimates whig start from the following result that provides a general

are close to each other and close to the averag@). Pound fords. R .

To measure this asymptotic disagreement, we introduce thé’roposition 1. Let P be a matrix satisfying Assumption 1.

following quantity A; (£) := z;(t) — 24(0). Since the average Then|[PY]| <1 and

is preserved,A;(t) = x;(t) — z,(t), and this represents 1

the distance, at time, of the i-th agent from the average dy, (P) < =k (6)

of the initials conditions. Let noww = [ — N~'11* and

A(t) = [Ad(t),. .., An(D)]". Then A(t) = Yx(t).IWe define Proof: We have thatPY| = +/p ((PY)*PY). Since

the per_formance inded( P, z(0)) = 1_1.Hlsuptﬁfx? WHA(t)H. PY = YP andY? = Y we can write that(PY)*PY =

To avoid a dependence on the initial condition, we prefer o« py” Notice that the fact thaP satisfies Assumption 1 im-

consider plies both that P*P); > 0 andGp- p is strongly connected.
doo (P) = supd(P, z(0)). Therefore we can write that(P*P) = {1,A1,...,An-1},

z(0) where|\;| <1, 1 < i < N — 1. Observe that(P*PY) =



{o(P*P) — {1}} U{0}. Hence||PY|| < 1. Proposition 3: Let P be a normal matrix satisfying the
Consider nowA,,(t). From (3), by simple algebra we have Assumption 1. LetR be such that0 < R < 1 and

1 o(P) C Bi_gr,r and letp = p.ss(P) denote the essential
Aw(t) = Y Pz (0) + szs I—Pe(t—s—1) spectral radius of?. Then
s=0 [e'e]
1 S8R
-1 p(P*(I — P)) < + —~. (8)
= (PY)'A(0)+ ) (PY)*(I = Ple(t —s — 1), 2 1-R (1-R)(1-p)

s=0 Proof: Assume thato(P) = {\ = 1 /\1,.. JAN_1)-

where in the last equality we have used again the facts thgé want to upper boungd(P*(I — P)) = maxk |/\s(1 _
PY =Y P and thaty'* = Y for all k > 0. Now we have that ),)|. In order to do so we consider the functl(fn C —

t—1 R defined asf(z) = 2°(1 — z). Let us consider the closed
| AL )] = |[(PY) A, (0) + Z(PY)S(I — P)e(t—s—1)|| balls Bi_g,r and By ;. By Gershgorin’s Theoremg(P) C
5=0 Bi_r,r, and by definition of essential spectral radiaéP) \
=t {1} C By,;. Henceo(P) \ {1} C By ;N Bi_g,r- Let A :=
t s
< PY) ([ [ A 0)] + ([ — P ; [(PY)[|*[le(t — s — 1) Bi_r.rNBo . Clearlyrj}[laxp\s(l k)| < meaX|f( z)|. Since
. —|PYIt f is an analytic functlon andl is a compact set, from the
= [[(PY)"[[ | Aw(0)[| + \/_ Py Maximum Modulus Principle it follows that
where in the last inequality we used the facts thiat P|| < 2 frvla>1< IAn(1— )| < max [f(2)],
and|le(t)|| < vN/2forallt > 0. By lettingt — oo we obtain B 2o
(6). m WheredA denotes the boundary of.
Note that, if P is normal we have thaf PY|| = p..,(P) Consider now the curves,f : [0,27] — C, ~(t) =
and hence (6) becomes 1 - R+ Redt, and_@(t) = pe’t, which represent, respec-
tively, the boundaries ofB;_r r and of By ;. In the fol-
dv (P) < ; lowing, since |f(z)] = |f(z*)], we will consider~ and
L — pess(P) 6 only on the intervall0, n]. Define ¢ = 12’(2113}?2. Com-
However, whenP is a normal matrix the bound od (P) puting the intersection betweemn and 6, we get9A =
can be improved as stated in the next proposition. FUBO wheredy = {z=2,+1izy € v: 2, <&} and b =
Proposition 2: If P is normal, then {z =12, +izy € 0 : 2z, > &} . We consider nowf(z)| on4.
) By direct calculations one can show that
P) < §Zop(Ps(I_P))' 7 If(y(t)]* = 2R*(1 — cost) [1 — 2R(1 — R)(1 — cost)]’.

Now let z = Rcost +1 — R and let F(z) = 2R(1 —
z)[1 —2(1 - R)(1 —z)]°. Remark that studyingf(z)|*> on
4 is equivalent to studying? onZ:=[1-2R,¢.

. it . Definexy =1 — m F' is such that it reaches its
[Aw@I < [(PY) Aw(0)]] + | Z(PY) (I = Pe(t = s = Dllmaximum onZ in 1—2R |% ey <1-2R,inzp if 1—2R <

Proof: Starting from the expression ak,,(¢) provided
along the proof of Proposition 1 we can write that

\/3_0 ey < € and ing if x> €. We have thatry, <1 — 2R2<:>
1-2R 1-2R

<PV D) + LYY (T~ P). 5 < i L= 2R < ow < € (il <5 < L
p = M ands* = L .

Since P is normal we have that|(PY)*(I — P)| = Then LR = =)

p((PY)*(I — P)) = p(P*(I — P)). By lettingt — oo in ’ b

the last inequality, we obtain (7). N 4R? (1 - 2R) if s<s

It is worth noting that, from the sub_—multiplicgtive ingqm max F(x) = 1RR(5+51W if 5+1<s<s*

|(PY)3(I — P)|| < ||[PY|*||I — P|, it follows immediately Lp? (1-p2) if s>s"+1.

that 5 3 2 p(P*(I = P)) < 1=,y Which shows that the . , . _ S

bound (6) is indeed an improvement of the bound (7).  Consider now(z)[* oné. By S|mple algebralc manipulations

In general it is quite hard to evaluate (7). We provide tw8n€e can Seg thallf (0(¢))]* = p** (1 + p° — 2pcost) . Note
results which permit us to approximate (7) under some mitgat|f(6(¢))|" is monotone increasing fére [0, 7] and hence

assumptions. First a notational definition. Givenc C and it reaches its maximum dhwhencost = 12(214}’; Therefore
r € R such thatr > 0, we denote we can conclude that
S H —
Ber:={z € Cl|z—¢|| <r}, o 2R|}1%—2R| if s<s
% T if 5+1<s<s*
the closed ball of complex numbers of radiusind centered maXM’f(l k)l < 1R (41" _
in c. ViZEp2 (1—p?) if s>s" 41



Notice now that i  2R|l —2R|° < %

1 d  that oo [TR_ 25 (1 2 - logarithm of the number of agents. - .
iy an at > rfp (1=7%) - Example 3: The n-hypercube graph is the graph obtained
VAT =2 Y2 = \/(fg)sz;y < \/(17}%’?17@. drawing the edges of a-dimensional hypercube. It has

. N = 2™ nodes which can be identified with the binary words
m 1 /
Moreover, sinced_i_; /77 < 2vm+1, we can argue length n. Two nodes are neighbors if the corresponding

s" R s¢ R s" 1 1 i i i
that >0 .. [ TR < Vg DIy \/; = < binary words differ in only one component. Thus every node
4R

IN

to hypercube graphs. Also in this case the bound scales as the

has degreen. A matrix P can be constructed, adapted to

TR = \/(1—1%2)}?1—5)' Putting together these threeye hypercube, taking its adjacency matrix and defining
inequalities we obtain (8). B p=_1:(A+1I). For such matrix, we can prove the following
Example 1 (Direct circuit): Suppose we have a dynamicgegylt.
like Theorem 5: Let P be as above. Then
zi(t+1) =z;(t) + 1[—Q(~’Cz(t)) +q(Tiy1(1))], 4o (P) =2 = log, N
2 0 D) 5
wherei = 1,..., N, and the summation of indexes is intended Th fis deferred to th di
modN. Such dynamics is also callepursuing. It can be € prootis deterred to the appendix.
written in compact form (3) with a suitable matrik whose IV. SCALING PROPERTIES
eigenvalues are (details in [3)),(P) = 3 + % exp (3Fh) for o _ _
h=1,...,N. Consider the bound introduced in Proposition Theorem 5 implies that there exist sequences of matrices

1. Sincepess(P) = 1— %2# +0(5L) and since such matrix such that/’ (Py) diverges withN and the estimate (7)-(9) is
. - v _ tight. However, simulations on the hypercube, Figure 1, 0o n
is normal, we have that—rsor = 1= = O (N? g yp 9

|PY]| ss(P) ) i i i
Observe now that all the eigenvaluesBfare inside the ball ShOW fords, thatis for the true system (3), this poor scaling.

. As a further example we consider the random geometric
1 / 8R _
4+ Hence we obtain that—r + (1-R)(1-p) O(N). graph. The random geometric graph is a graph of great

5.’ .
_Th|s means that the bound (8)_ IMProves th_e l_Jound IQr()postﬁsjplicative interest, since it is commonly used to model
in (6). It is worth notn;g tha_‘t |n_th|s case It IS poss!ble Quireless networks [11]. It is constructed by placing, unifidy
prove ([10]) thatds; < 5: estimatingd.. by dz; is not tight random,N nodes in the unit square, and joining them

in general! with edges whenever their distance is below a threshold

If P is symmetric we can provide a stronger result. R— G(W) for N — oo. Also in these simulations,
Proposition 4: Let P be a symmetric stochastic matriXFigure 2, performance scales nicely with
satisfying Assumption 1. IzeR be such thall < R < 1, Hence, we conclude that the bounded error approach has
ando(P) © Bi-r.r and letp = pess(F°) denote the essentialyoop sefyl to prove that the algorithm gets near to consgnsu
spectral radius of>. Then, but is too pessimistic in evaluating its performance. A more
complete analysis of the algorithm, which copes with this
)- (9) difficulty, and establishes more precise convergence teesul
is going to appear in [10].
The proof is similar to the previous one, and we skip it here.
It can be found in [10] Hypercubes with N nodes

“+o0

3 1 1 1
N p(P(I-P) <54 ——+=log [ ——
S_Op( ( ))_2+1—R+20g(1—p

Example 2 (Undirect circuit): We apply this result toa | e
concrete example. Suppose we have a dynamics like 2
1 a0
it +1) = i(t) + 3la(@i-1(t)) = 29(x:(t)) + a(zira (1)), as}
wherei =1, ..., N, and the summation of indexes is intended o
modN. It is clear that this dynamics corresponds to agents 25p = d,, average
arranged like in a necklace (ring topology), and that it can 2p - "d:m’s‘“se
be written in compact form (3) with a suitable matrx It 71 n— ‘
is possible to prove (details in [3]) that its eigenvalues ar W
An =%+ 2cos (%h) for h =1,...,N. By considering the oshe -
bound (6), SiNC&.ss(P) =1 — %17{[—2 (see [3]) we obtain that N — —— — ‘
ﬁ = 1—,— = O(N?). Observe that all the eigenvalues o 200 40 60 800 1000
of P are greater thaw%. Hence it results, lettind? = 2/3,
that% + ﬁ + %log ﬁz = O(log N). Fig. :LI Ehe performanze r(])f the algorithrgpsca(le)s) nicely onhquelrcufbes.
. . plot the average and the worst cased¢P, z(0)) over 100 trials, from
We shall remark that there are cases in which the bouﬁﬁulaﬁms’ andi>. from theory.

given by (7-9) is a tight estimate of (P). Actually we
show that this happens for a sequence of matrices adapted
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Fig. 2. The performance of the algorithm scales nicely on rdmedom Fig. 3. Performance on a random geometric graph Witk= 50 nodes, for
geometric graph. We plot the average and the worst casg®fxz(0)) over the methodsACR [1], dashed lines, and (3), solid lines. Red lines represent

100 trials, and agl%2, we plot the bound (7). the average off, and black lines the worst case, with respect to the initial
conditions.
V. THIS CONTRIBUTION IN THE LITERATURE In some sense, using either our method, or that of probabilis

The effects of quantization in feedback control problemt%c quantization [1], one trades qﬁ the precision in reagthe
have been widely studied in the past [17], mainly in th@greement among states and in preserving the average. Thus

stabilization problem. Notice moreover that granularifeets quantization seems 1o bring into the networked system some

different from quantization in the consensus problems hajaccuracy in estimating the average, that no know method

been tackled in few papers, especially in the load balanciﬁg"’lbltfa tct)_ av;ng. Alret.we facwg)g ?n mérl_nsm limit oirur.nfotrm
applications [8], [15] guantization? A solution can be found in a more efficient use

In the last months, different quantized algorithms havOf the digital channel, as in [S], or in the time-varying $tgy

appeared in the literature [15], [1], [18]. In [15], the aoith of [14], which allows to trade off the error from average and

study systems having integer-valued states and proposéh%Speed of convergence.
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APPENDIX

The appendix is devoted to the proof of Theorem 5. Con-
sider the hypercube graph and the matfas defined above.

First we give the following preliminary result.
Lemma 6: Let P be as above. Then

> p(P*(I - P))=n=log, N.
s=0

2k

n+1 k =

Proof: The eigenvalues of” are A\, = 1 —
0...n, with multiplicities p, = (}).
Then, 3532 p(P*(I' — P)) = 33 pess (P)p(I ~ P)

Dol — n_+1) (2 - n_+1) =n.
We are able now to provide the proof of Theorem 5.
Proof: First we rewrite the expression @f., (P). SinceP
is symmetric,P is dla%onahzable
can write that? = >, " " Anqnqj;, Whereg,, are orthonormal.
These facts are true also fét*(I — P).
that p (P*(I — P)) = ||P*(I - P)||.

Let A (t) := X'21 PS(I — P)e(t — s — 1). Then,
t—1
AL O =11 P = Ple(t—s—1)|* =
s=0
t—1 N—1
=133 M= A)angie(t — s —1)|
s=0 h=0
N—-1 t—1
= 1> @@= 2) > Xgrelt —s — 1) =
h=0 s=0

2

MH

1 — )\h Z Ahqhe
0 =

—s—1)
h

Hence,[d% (P)]? = maxg~ limsup,_ . &[|AY (#)]|2.

by an orthogonal matrix. We

With this indexing, for eacll C {1...n} the corresponding
eigenvalue isA\; = 1 — 2‘—Jﬂ and the eigenvector is the
2" —dimesional vectog"), such that its7—th component is
equal tog|”) = 2-m/2(—1)l10J1,

Let T be any positive integer and consider the sequence of
vectorse(0),e(1),...,e(t),... such thatJ-th component of
the vectore(t) is equal tol(—1)7=1="(—1)l/l, wherer is
the remainder in the euclidean division ©obverT'. Observe
thate(t + T) = e(t) for all t > 0. Observe, moreover, that
e(t) is an eigenvector ofP corresponding to the eigenvalue
L:—Z for all ¢ > 0. Hence we have that
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Assume now thaf" is an even positive integer. By recalling
thate(t +T) = e(t) for all t > 0, for t = kT wherek € N

it turns out that
n2 1 n—1 T
4 n+1

n? n—1 ?
= |1-
4 <n+1)

2 k-1

1_n uTﬁ
u2_%<n+1) B

2

1
—|AD (kT)|? =
18w (KT

n+1

kT2
n2 n—1
Moreover we have T ll - ( ) ]

Letting & — oo we obtain that, for the particular sequence
considered

1
im — AW 2_
lim AP k1)) (10)
Therefore we have proved that
~ L AD (BT 12
limsup || AL (kT) 2 > -
t—o00 N
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and hence[dw (P)? > %-. Now, Lemma 6 implies that
[d@ (P)]? < ”— and then the claim follows. [ |

Now we start using combinatorial tools. Indeed the vertices
of the hypercube, as well as the eigenvalues and eigengector
of P, can be indexed by the subsets{df...,n} (see [12]).



