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Abstract: In the average consensus a set of linear systems has to be driven to
the same final state which corresponds to the average of their initial states.
This mathematical problem can be seen as the simplest example of coordination
task. In fact it can be used to model both the control of multiple autonomous
vehicles which all have to be driven to the centroid of the initial positions,
and to model the decentralized estimation of a quantity from multiple measures
coming from distributed sensors. This contribution presents a consensus strategy in
which the systems can exchange information through a fixed strongly connected
digital communication network. Beside the decentralized computational aspects
induced by the choice of the communication network, here we also have to face
the quantization effects due to the digital links. We present and discuss two
different encoding/decoding strategies with theoretical and simulation results on
their performance.
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1. INTRODUCTION

A basic aspect in the analysis and in the design
of cooperative agents systems is related on the
effect of the agents information exchange on the
coordination performance. A coordination task
which is widely treated in the literature is the so
called average consensus. This is the problem of
driving the states of a set of dynamic systems to
a final common state which corresponds to the
average of initial states of each system.

This mathematical problem can be shown to be
relevant in the control of multiple autonomous
vehicles which all have to be driven to the centroid
of the initial positions, and in the decentralized
estimation of a quantity from multiple measures
coming from distributed sensors.

The way in which the information flow on the
network influences the consensus performance has
been already considered in the literature (Carli et
al., 2006a; Olfati et al., 2004), when the commu-
nication cost is modelled simply by the number
of active links in the network which admit the
transmission of real numbers. However, this model
can be too rough when the network links represent
actual digital communication channels. Indeed the
transmission over a finite alphabet requires the
design of efficient ways to translates real numbers
into digital information, namely smart quantiza-
tion techniques. Some seminal research has been
done on this problem (Kashyap et al., 2006) (Carli
et al., 2007), even though the results are still quite
preliminary due to the fact the quantizers are



discontinuous nonlinear maps which, inserted into
a dynamic system, produce complex behaviors.

While some efficient quantization methods have
already been proposed (Carli et al., 2006b), de-
termining the optimal way to quantize data in
this set-up is still a completely open problem. In
this contribution we show how some quantization
methods proposed in the field of control under
communication constraints can be adapted to the
average consensus problem. Namely, we will pro-
pose a first method based on a logarithmic quan-
tizer (Elia et al., 2001), and a second one, based
on the so called zooming-in/zooming-out method
(Brockett et al., 2000; Tatikonda et al., 2004; Nair
et al., 2005). In particular, this technique appears
to be very promising for the design of efficient
encoding/decoding communication schemes. For
both of them, we present a theoretical convergence
result, together with simulations.

2. PRELIMINARIES

Before defining the problem we want to solve, we
summarize some notions on graph theory and we
provide some notational conventions that will be
useful throughout the rest of the paper.

Let G = (V,W) be a directed graph where V =
(1, . . . , N) is the set of vertices and W ⊂ V × V
is the set of arcs. If (i, j) ∈ W we say that the
arc (i, j) is outgoing from i and incoming in j.
In our setup we admit the presence of self-loops.
A path in G consists of a sequence of vertices
i1i2 . . . . . . ir such that (i`, i`+1) ∈ W for every
` = 1, . . . , r−1; i1 (resp. ir) is said to be the initial
(resp. terminal) vertex of the path. A vertex i is
said to be connected to a vertex j if there exists
a path with initial vertex i and terminal vertex j.
A directed graph is said to be connected if, given
any pair of vertices i and j, either i is connected
to j or j is connected to i. A directed graph is
said to be strongly connected if, given any pair of
vertices i and j, i is connected to j. A direct graph
G = (V,W) is said to be a circulant directed graph
if (i, j) ∈ W implies that (i+p, j+p) ∈ W for any
p ∈ N, where the sum is meant mod N . A graph
is said to be undirected if (i, j) ∈ W implies that
also (j, i) ∈ W.
Now some notational conventions. Given a matrix
M ∈ RN×N , diag {M} means a diagonal matrix
with the same diagonal elements of the matrix
M . Given a vector m ∈ RN , diag {m} means
a diagonal matrix having the components of m
as diagonal elements. Given a vector x ∈ RN

with ‖x‖ and ‖x‖∞ we denote respectively the
euclidean norm and the sup-norm. Accordingly,
given a matrix M ∈ RN×N , with ‖M‖ and
‖M‖∞ we denote the induced euclidean norm and
the induced sup-norm.

3. PROBLEM FORMULATION

Consider N > 1 identical systems whose dynamics
are described by the following discrete time state
equations

xi(t + 1) = xi(t + 1) + ui(t + 1) i = 1, . . . , N

where xi ∈ R is the state of the i-th system and
ui ∈ R is the control input. More compactly we
can write

x(t + 1) = x(t) + u(t) (1)

where x, u ∈ RN . The goal is to design an input
control u yielding the consensus of the states,
namely a control such that all the xi’s become
equal asymptotically, i.e.

lim
t→∞

x(t) = α1 (2)

where 1 := (1, . . . , 1)T and α is a scalar depending
on x(0). Moreover, we also require that x(t) =
x(0) for all t ∈ N if x(0) = λ1. An interesting
case that has been widely studied in literature
(see (Olfati et al., 2004; Carli et al., 2006a))
corresponds to the case in which u(t) is a static
feedback function of x(t)

u(t) = Kx(t), K ∈ RN×N (3)

In such case the system (1) is described by the
following closed loop system

x(t + 1) = (I + K)x(t) . (4)

It is easy to see that the consensus problem for
system (4) is solved if and only if the following
three conditions hold:

(A) the only eigenvalue of I+K on the unit circle
is 1;

(B) the eigenvalue 1 has algebraic multiplicity
one (namely it is a simple root of the char-
acteristic polynomial of I + K) and 1 is its
eigenvector;

(C) all the other eigenvalues are strictly inside
the unit circle.

In the sequel we will restrict to matrices K such
that I + K is a nonnegative matrix, namely a
matrix with all elements nonnegative. Condition
(B) then says that I + K is a stochastic matrix.
Conditions (A) and (C) yield the asymptotic
behavior

(I + K)t → 1vT

where v ∈ RN is the unique probability vector
such that vT (I + K) = vT . This implies that

x(t) → vT x(0)1.

In the special case when v = N−11 we obtain
that the consensus is achieved at the average of
the initial conditions. In this case I + K is said
to be a doubly stochastic matrix and K a average
consensus controller.



We observe that the use of control law as in Equa-
tion (3) implies the exchange of perfect informa-
tion through the communication network. More
precisely, the fact that the element in position i, j
of the matrix K is different from zero, means that
the system i needs to know exactly the state of the
system j in order to compute its feedback action.
This implies that the agent j-th must communi-
cate his state xj to the system i. A good descrip-
tion of the communication effort required by a
specific feedback K is given by the directed graph
GK with set of vertices {1, . . . , N} in which there is
an arc from j to i whenever in the feedback matrix
K the element Kij 6= 0. The graph GK is said to
be the communication graph associated with K.
Conversely, given any directed graph G with set
of vertices {1, . . . , N}, a feedback K is said to be
compatible with G if GK is a subgraph of G (we will
use the notation GK ⊆ G). The average consensus
problem is said to be solvable on a graph G if there
exists a feedback K compatible with G solving the
average consensus problem. The following result
completely characterizes those graphs for which
the average consensus problem is solvable.

Proposition 3.1. Let G be a directed graph and
assume that G contains all loops (i, i). The follow-
ing conditions are equivalent:

(A) The average consensus problem is solvable on
G.

(B) G is strongly connected.

Furthermore, if the above conditions are satisfied,
any K such that I + K is doubly stochastic and
GI+K = G, solves the average consensus problem.

Now in our setup we assume that the commu-
nication network is constituted only of digital
links. This implies that the exchange of perfect
information between the systems is not allowed.
In fact, through a digital channel, the i-th agent
can only send to the j-th agent symbolic data
that will be used by the j-th agent to built at
most an estimate of the i-th agent’s state. Here we
consider a control law which has the same form
of (3) where, in place of the exact knowledge of
the states of the systems, we substitute estimates
calculated according to the symbols sent through
the communication network. More precisely, first
we assume we have a fixed strongly connected
graph G and a matrix K such that I + K is
doubly stochastic satisfying (A), (B) and (C) and
GI+K = G. The control input ui has then the
following form

ui =
N∑

j=1

Kij x̂ij , (5)

where x̂ij is the estimate of the state xj which has
been built by the agent i.

Now we proceed to explain how the estimate
x̂ij is obtained; we follow the treatment in the
survey (Nair et al., 2005). Suppose that the j-th
agent sends to the i-th agent, through a digital
channel, at each time instant t, a symbol sij(t)
belonging to a finite or denumerable alphabet Sij ,
called the transmission alphabet. It is assumed
that the channel is reliable, that is each symbol
transmitted is received without error.In general,
the structure of the coder by which the j-th agent
produces the symbol to be sent to the i-th agent
can be described by the following equations

{
ξij(t + 1) = Fij(ξij(t), sij(t))

sij(t) = Qij(ξij(t), xj(t))
(6)

where sij(t) ∈ Sij , ξij(t) ∈ Ξij , Qij : Ξij ×
R → Sij , and Fij : Ξ × Sij → Ξij . The decoder,
placed at the system i, coincides with the system

{
ξij(t + 1) = Fij(ξij(t), sij(t))

x̂ij(t) = Hij(ξij(t), sij(t)),
(7)

where Hij : Ξij × Sij → R.
Notice that the set Ξij serves as state space for
the coder/decoder, whereas the maps Fij , Qij , Hij

represent, respectively, the coder/decoder dynam-
ics, the quantizer function, and the decoder func-
tion. Coder and decoder are jointly initialized at
ξij(0) = ξ0.
In general, we may have different encoders at sys-
tem j, according to the various systems the system
j wants to send its data. For the sake of notational
convenience, we assume however, in this paper,
that system j uses the same encoder for all data
transmissions. Thus, system j will send the same
symbol sj(t) := sij(t) to all the other systems
i which receive information from it. In this case
all systems receiving data from j, will obtain the
same estimate of xj , namely we can define a single
state estimate x̂j := x̂ij . In this way, by letting
Fj = Fij ,Hj = Hij , Qj = Qij and Ξj = Ξij , the
previous coder/decoder couple can be represented
by the following state estimator with memory





ξj(t + 1) = Fj(ξj(t), sj(t))
sj(t) = Qj(ξj(t), xj(t))
x̂j(t) = Hj(ξj(t), sj(t))

(8)

Moreover (5) assumes the following form

ui =
N∑

j=1

Kij x̂j , (9)

It is worth observing that (9) preserves the aver-
age of the state x at each instant time as stated
in the following proposition.

Proposition 3.2. Consider the system (1) and let
u(t) = [u1(t), . . . , uN (t)]T where ui(t) is of the
form (5) for all i. Then

1T x(t + 1) = 1T x(t).



Proof 3.3. Notice that the control input can be
rewritten in a vector form as u(t) = Kx̂(t). Then

1T x(t + 1) = 1T x(t) + 1T Kx̂(t)

= 1T x(t)

where in the last equality we have used the fact
that 1T K = 0.

An immediate consequence of the above propo-
sition is that if u is a control input yielding the
consensus of (1) then it yields the average consen-
sus. The main objective of the present paper is to
understand whether it is possible to design some
smart encoding/decoding strategies such that a
control law of the form (9) yields the average
consensus for the overall system. In the sequel we
concentrate our attention on two particular ways
of exchanging information which fit into the pre-
vious scheme: the logarithmic quantized strategy
and the zoom in-zoom out strategy.

4. LOGARITHMIC QUANTIZERS

This strategy is based on the techniques proposed
in (Elia et al., 2001). For δ ∈ ]0, 1[, define the
logaritmic set of quantization levels

Sδ =

{(
1 + δ

1− δ

)`
}⋃

{0}
⋃ {

−
(

1 + δ

1− δ

)`
}

The corresponding logarithmic quantizer q(δ) :
R → Sδ works as follows. Suppose that x ∈ R+

and let i ∈ Z be such that (1+δ)i−1

(1−δ)i ≤ x ≤
(1+δ)i

(1−δ)i+1 , then define

q(δ)(x) =
(

1 + δ

1− δ

)i

.

If x < 0, define q(δ)(x) = −q(δ)(−x). Finally,
if x = 0, then q(δ)(x) = 0. Smaller values of
the parameter δ corresponds to more accurate
logarithmic quantizers q(δ). Suppose now that
the j-th agent is transmitting information to
the i-th agent. For δj ∈ ]0, 1[, the logarithmic
coder/decoder is defined by the space Ξj = R,
the initial state ξj(0) = 0, the alphabet Sj = Sδj

and by the maps




ξj(t + 1) = ξj(t) + sj(t)
sj(t) = q

(δj)
j (xj(t)− ξj(t))

x̂j(t) = ξj(t) + sj(t)
(10)

The coder/decoder pair is analyzed as follows.
One can observe that ξj(t + 1) = x̂j(t), that is,
the coder/decoder state contains the estimate of
xj(t). The transmitted message contain a quan-
tized version of the estimate error xj − ξj . The
estimate x̂j(t) satisfies the recursive relation

x̂j(t + 1) = x̂j(t) + q
(δj)
j (xj(t + 1)− x̂j(t)),

with initial condition x̂j(0) = q
(δ)
j (xj(0)) deter-

mined by ξj(0) = 0.
Finally define the function r : R → R by r(y) =
q(δ)(y)−y

y for y 6= 0 and r(0) = 0. Some elementary
calculations show that |r(y)| ≤ δ for all y ∈ R.
Accordingly, if we define the trajectory εj : N →
[−δ,+δ] by

εj(t) = r(xj(t + 1)− x̂j(t)), (11)

then we obtain that

x̂j(t + 1) = x̂j(t) + (1 + εj(t))(xj(t + 1)− x̂j(t)).
(12)

5. ZOOMING IN ZOOMING OUT STRATEGY

This second strategy is inspired by the quantized
stabilization technique proposed in (Brockettet
al., 2000), which is called zooming in - zoom-
ing out strategy. In this case the information
exchanged between the agents is quantized by
scalar uniform quantizers which can be described
as follows. For m ∈ N define uniform set of
quantization levels

Sm =
{
−1 +

2`− 1
m

|` ∈ {1, . . . ,m}
}

.

The corresponding uniform quantizer q(m) : R→
Sm works as follows. Let x ∈ R then

q(m)(x) = −1 +
2`− 1

m

if ` ∈ {1, . . . , m} satisfies −1 + 2(`−1)
m ≤ x ≤

−1 + 2`
m , otherwise q(m)(x) = 1 if x > 1 and

q(m)(x) = −1 if x < −1.
Suppose now that the j-th agent is transmitting
information to the i-th agent. For mj ∈ N, kin ∈
]0, 1[, kout ∈ ]1, +∞[, the zooming in- zooming
out uniform coder/decoder has the state space
Ξj = R ×R>0, the initial state ξ(0) = (0, ξ2

j (0)),
where ξ2

j (0) is a suitable positive real number, and
the alphabet Sj = Smj . The coder/decoder state
is written as ξj = (ξ1

j , ξ2
j ) and the coder/decoder

dynamics are

ξ1
j (t + 1) = ξ1

j (t) + ξ2
j (t)sj(t)

and

ξ2
j (t + 1) =

{
kinξ2

j (t) if |sj(t)| < 1
koutξ

2
j (t) if |sj(t)| = 1

The quantizer and decoder functions are, respec-
tively,

sj(t) = q
(mj)
j

(
xj(t)− ξ1

j (t)
ξ2
j (t)

)
, (13)

and
x̂j(t) = ξ1

j (t) + ξ2
j (t)sj(t). (14)

The coder/decoder pair is analyzed as follows.
One can observe that ξ1

j (t + 1) = x̂j(t), that is



the first component of the coder/decoder state
contains the estimate of x(t). The transmitted
messages contain a quantized version of the esti-
mate xj − ξj

1 scaled by the factor ξj
2. Accordingly,

the second component of the coder/decoder state
ξ2
j is referred to as the scaling factor : it grows

when |xj − ξ1
j | > ξ2

j (“zooming out step”) and
decreases when |xj−ξ1

j | ≤ ξ2
j (“zooming in step”).

6. CONVERGENCE ANALYSIS

In this section we provide two convergence re-
sults regarding the methods previously illustrated.
Consider first the logarithmic strategy. We assume
that all the agents use the same quantizer func-
tion, that is δj = δ for all j. The following result
holds.

Theorem 6.1. Consider the system (1) where u is
of the form (9) and where the estimates are built
according to (12). Let Y = I − 1

N 11
T . Then, if

δ ≤ 1− ‖(I + K)Y ‖
‖K‖2 + ρ‖I −K‖ (15)

we have that, for any initial condition x(0) ∈ RN ,

lim
t→+∞

x(t) = lim
t→

x̂(t) = α1

where α = 1
N 1

T x(0).

Proof 6.2. Let εj(t) be defined as in (11) and
let E(t) = diag {ε1(t), . . . , εN (t)} . Moreover let
x̂(t) = [x̂1(t), . . . , x̂N (t)]T . Then (12) can be
rewritten as

x̂(t + 1) = x̂(t) + (I + E(t))(x(t + 1)− x̂(t)).

Let us now to introduce the following new vari-
ables: e(t) = x̂(t)− x(t) and y(t) = Y x(t). Notice
that if e(t) → 0 and y(t) → 0 then x(t) → α1
where by Proposition 3.2 α = 1

N 1
T x(0). By

straightforward calculations one can show that
y(t) and e(t) satisfy the following recursive equa-
tions{

y(t + 1) = (I + K)Y y(t) + Ke(t)
e(t + 1) = E(t)(Ky(t) + (K − I)e(t))

By applying the sub-multiplicative and the trian-
gular inequalities to the above equations it follows
that{
‖y(t + 1)‖ ≤ ‖(I + K)Y ‖‖y(t)‖+ ‖K‖‖e(t)‖
‖e(t + 1)‖ ≤ δ‖K‖‖y(t)‖+ δ‖K − I‖‖e(t)‖

where we have used the fact that ‖E(t)‖ ≤ δ for
all t. Define now the sequences ȳ(t) and ē(t) as
follows. Let ȳ(0) = ‖y(0)‖ and ē(0) = ‖e(0)‖ and
let{

ȳ(t + 1) = ‖(I + K)Y ‖ȳ(t) + ‖K‖ē(t)
ē(t + 1) = δ‖K‖ȳ(t) + δ‖I −K‖ē(t) (16)

By straightforward calculations one can check
that (16) is stable if and only if

δ ≤ 1− ‖(I + K)Y ‖
‖K‖2 + ρ‖I −K‖ (17)

Moreover, by induction it can be proved that
‖y(t)‖ ≤ ȳ(t) and ‖e(t)‖ ≤ ē(t) for all t. Therefore,
if δ satisfies (17) we have that, also y(t) → 0 and
e(t) → 0, thus ensuring that the average consensus
is asymptotically reached.

Remark 6.3. Under the hypothesis made on K,
that is it satisfies the conditions (A), (B), (C), it
is possible to prove that ‖(I + K)Y ‖ < 1. Hence
the quantity in (15) is strictly greater than 0.

Consider now the zooming in/ zooming out strat-
egy. Again we assume that all the agents use
the same quantizer function, that is mj = m
for all j. Moreover we assume also that all the
coder/decoder pair have the same initial condi-
tions for the estimates and for the scaling fac-
tors: more precisely we impose x̂j(0) = 0 and
ξ2
j (0) = ξ0. We have the following result.

Theorem 6.4. Consider the system (1) where u is
of the form (9) and where the estimates are built
according to (14). Let Y = I − 1

N 11
T and let

ρ = ‖(I + K)Y ‖. Suppose that ρ < kin < 1,
kout = 1/kin, m ≥ (4+3kin)

√
N

kin(kin−ρ) and that ξ0 >
2(ρ+2)‖x(0)‖

kin− 3
√

N
m

. Then we have that, for any initial

condition x(0) ∈ RN ,

lim
t→+∞

x(t) = lim
t→

x̂(t) = α1

where α = 1
N 1

T x(0).

Proof 6.5. Let ξ(t) = diag
{
ξ2
1(t), . . . , ξ2

N (t)
}
,

that is ξ(t) is a diagonal matrix where (ξ)jj(t)
represents the scaling factor relative to quantizer
function of the j-th agent at the instant time t.
We want to prove that under the hypothesis of the
theorem, we have only zooming-in steps, namely
ξ(t) = kt

inξ0I for all t ≥ 0. In order to do so
we have to prove that for each instant time t the
relation |xi(t+1)−x̂i(t)| ≤ kt

inξ0 holds true for any
i. From now on, throughout the proof we use the
following notational convention: given two vec-
tors z = [z1, . . . , zN ]T , y = [y1, . . . , yN ]T ∈ RN ,
|z| ≤ |y| means that |zj | ≤ |yj | for all j.
Let us now to introduce the following variables
ỹ(t) = Kx(t) and e(t) = x(t)−x̂(t). One can show
that if e(t) → 0 and y(t) → 0 then x(t) → α1
where by Proposition 3.2 α = 1

N 1
T x(0). It is pos-

sible to see that ỹ satisfies the following recursive
equation

ỹ(t + 1) = (I + K)ỹ(t)−K2e(t) (18)

and that the condition |x(t + 1) − x̂(t)| ≤ ξ(t)1
translates into the condition |ỹ(t)−(K−I)e(t)| ≤



E(t)1. Moreover if we assume that this last con-
dition holds at the instant time t then ‖e(t +
1)‖ ≤ 1

m‖E(t)1‖.
Observe now that, since x̂(0) = 0 we have a
zooming step at t = 0 if and only if ‖x(0)‖∞ ≤ ξ0.
The validity of this last condition follows directly
from the hypothesis on ξ0, m and kin and by the
following calculations

‖x(0)‖ ≤

(
kin − 3

√
N

m

)
ξ0

2(ρ + 2)

≤ kin(4 + 3ρ)
2(ρ + 2)(4 + 3kin)

ξ0

≤ ξ0

We prove now by induction on t that the following
relations

‖ỹ(t)‖ ≤ kt
inξ0 (19)

and
|ỹ(t)− (K − I)e(t)| ≤ kt

inξ01, (20)
hold true, for each time step t. Observe that (20)
implies that

ξ(t) = kt
inξ0I.

Notice preliminarily that ‖ỹ(0)‖ ≤ 2‖x(0)‖,
‖e(0)‖ = ‖x(0)‖, ‖(I+K)ỹ(t)‖ = ‖(I+K)Y ỹ(t)‖,
‖K2‖ ≤ 4 and ‖K − I‖ ≤ 3 . Let now t = 1. We
have that

‖ỹ(1)− (K − I)e(1)‖ ≤
≤ ‖ỹ(1)‖+ ‖K − I‖‖e(1)‖
≤ ‖(I + K)Y ‖‖ỹ(0)‖+ ‖K2‖‖e(0)‖+

+ ‖K − I‖‖E(0)
1
m
1‖

≤ 2ρ‖x(0)‖+ 4‖x(0)‖+ 3
√

N
ξ0

m

= 2(ρ + 2)‖x(0)‖+ 3
√

N
ξ0

m

≤
(

kin − 3
√

N

m

)
ξ0 +

3
√

N

m
ξ0

= kinξ0

where in the last inequality we have used the fact
that by hypothesis 2(ρ+2)‖x(0)‖ ≤ ξ0

(
kin − 3

√
N

m

)
.

Since

‖ỹ(1)− (K − I)e(1)‖∞ ≤ ‖ỹ(1)− (K − I)e(1)‖
we have that also

|ỹ(1)− (K − I)e(1)| ≤ kinξ01.

Moreover

‖ỹ(1)‖ ≤ ‖(I + K)Y ‖‖ỹ(0)‖+ ‖K2‖‖e(0)‖
≤ ρ‖ỹ(0)‖+ 4‖e(0)‖
≤ 2ρ‖x(0)‖+ 4‖x(0)‖
≤ 2(ρ + 2)‖x(0)‖

≤ ξ0

(
kin − 3

√
N

m

)

≤ kinξ0

Hence (19) and (20) hold for t = 1. Consider now a
generic time step t and assume that (19) and (20)
hold true for all the previous instants time and
consider ‖ỹ(t+1)‖ and ỹ(t+1)− (K − I)e(t+1).
We have that

‖ỹ(t + 1)‖ ≤ ρ‖ỹ(t)‖+ ‖K‖2‖e(t)‖,
and

‖ỹ(t + 1)− (K − I)e(t + 1)‖ ≤
≤ ρ‖ỹ(t)‖+ ‖K‖2‖e(t)‖+ ‖K − I‖‖e(t + 1)‖,

By the inductive hypothesis it follows that

‖ỹ(t)‖ ≤ kt
inξ0,

‖e(t + 1)‖ ≤ 1
m
‖ξ(t)1‖

=
1
m

kt
inξ0

√
N

and

‖e(t)‖ ≤ 1
m
‖ξ(t− 1)1‖

=
1
m

kt−1
in ξ0

√
N

Hence

‖ỹ(t + 1)‖ ≤ ρkt
inξ0 + 4

kt
in(kin − ρ)ξ0

4 + 3kin

≤ 3ρ + 4
3kin + 4

kt+1
in ξ0

≤ kt+1
in ξ0

and

‖ỹ(t + 1)− (K − I)e(t + 1)‖ ≤

≤ ρkt
inξ0 +

1
m

(
4
√

N

kin
+ 3

√
N

)
kt

inξ0

≤ ρkt
inξ0 + (kin − ρ)kt

inξ0

= kt+1
in ξ0

Again, since

‖ỹ(t+1)−(K−I)e(t+1)‖∞ ≤ ‖ỹ(t+1)−(K−I)e(t+1)‖
we have that also

|ỹ(t + 1)− (K − I)e(t + 1)| ≤ kt+1
in ξ0I.

This concludes the proof.

7. SIMULATION RESULTS

In this section we illustrate the behavior of the
proposed algorithms by mean of simulations.

Namely we want to show how the performances
of both methods depend on the parameters, and
to compare them with the ideal communication
case, in which the agents are able to communi-
cate their state to their neighbors with a perfect
communication, instead of a digital channel.

The comparison is done in two cases. We consider
first a very special case, when the communication



graph is a directed circuit and, i. e. a circulant
directed graph with (i, i + 1) ∈ W and (i, i +
r) /∈ W ∀ r 6= 1. Then we choose Kij = 1

2δi,j +
1
2δi, j + 1, with δ the usual Kronecker delta.

Anyway, things are more interesting if we do not
choose such a graph with special symmetries, but
we take a graph closer to real problems. Since
we are interested in decentralized estimation, we
think to a wireless network, that we model as
a random geometric graph. Random geometric
graphs, with parameters N , R, are constructed
by dropping N points randomly uniformly into
the unit square and adding edges to connect any
two points distant at most R from each other.

For both kinds of graphs, simulations of the log-
arithmic quantizer method (Figure 2) show that
the method is convergent and that, increasing the
parameter δ, its speed of convergence decreases.
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Fig. 1. Performance (variance of states) for the loga-
rithmic quantizer method on a directed circuit of 20
agents for different values of δ.
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Fig. 2. Performance (variance of states) for the loga-
rithmic quantizer method on a directed circuit of 20
agents for different values of δ.

For the zooming in-zooming out method, simula-
tions are remarkable since they show that the it
can be effective in many interesting cases. In the
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Fig. 3. Performance (variance of states) for the zooming
in- zooming out method on a directed circuit of 20
agents for different values of m. kin = 0.9, kout = 2.
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Fig. 4. Performance (variance of states) for the zooming
in- zooming out method on a directed circuit of 20
agents for different values of kin. m = 10, kout = 2.

circuit case (Figures 4 and 3 1 ), a careful choice
of the parameters allows to obtain very good per-
formances in terms of the speed of convergence to
the agreement, which is comparable to the ideal
case.

Also in the geometric case the method performs
very well, also in comparison with the ideal case,
since it converges for a wide range of parameter
choices, and moreover its speed of convergence
seems to depend very slightly on the parameters,
as can be seen in figures 6 and 5. 2

8. CONCLUSIONS

In this paper we presented a new approach to the
average consensus problem, where we considered

1 For these simulations we averaged over 200 realizations
of N = 20 agents whose initial state were normally
distributed with zero mean and variance σ2 = 50.
2 For these simulations we averaged over 1000 realizations
of random geometric graph with radius R = 0.3 in the
unit square with N = 20 agents, whose initial state were
normally distributed as in the previous case.
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Fig. 5. Performance (variance of states) for the zooming
in- zooming out method on a random geometric graph
of 20 agents for different values of m. The convergence
is almost not dependent on m. kin = 0.8, kout = 2.
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Fig. 6. Performance (variance of states) for the zooming
in- zooming out method on a directed circuit of 20
agents for different values of kin. m = 4, kout = 4.

only quantized exchanges of information. In par-
ticular we considered two strategies, one based on
logarithmic quantizers, and the other one based
on a zooming in-zooming out strategy. We studied
them with theoretical and experimental results
proving that using these schemes the average con-
sensus problem can be efficiently solved even if
the agents can share only quantized information.
Though the theoretical results are still quite con-
servative the efficiency of these methods is evident
from simulations. Providing a more detailed the-
oretical analysis and extending these techniques
to other motion coordination algorithms, like ren-
dezvous in arbitrary dimension, deployment and
cyclic pursuit, will be the object of our future
investigations. An another field of future research
will be to look for encoding and decoding methods
which are able to solve the average problem also
with noisy digital channels.
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