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The averaging problem

Given

• a strongly connected graph G = (V ,E ), |V | = N
• nodes are agents;
• edges are available communication channels.

• ∀ v ∈ V , θv ∈ R.

We want to compute the average

y =
1

N

∑
v∈V

θv .

in spite of the communication limitations.
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Linear averaging algorithm

Proposition

Let x(k + 1) = P x(k), and x(0) = θ, with P adapted to G. If
P is doubly stochastic and has positive diagonal

=⇒ the algorithm converges to the average:

lim
k→∞

xv (k) = y ∀v ∈ V .

Moreover, let

n(δ) := inf
{
n ∈ N : N−1‖x(m)− y1‖2 ≤ δ, ∀m ≥ n

}
.

Then,

n(δ) ≤ C
log δ−1

log ρ−1
,

where ρ is the second largest eigenvalue of P.

But this algorithm requires communication of real numbers!
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Can a network of digital noisy channels be used to compute
averages?

To answer this question we need

• a model for digital communication and computation;

• useful convergence and performance notions;

• (possibly) algorithms solving the problem.
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Digital broadcast communication

At each time instant t ∈ N,

• every agent v ∈ V broadcasts a binary signal
av (t) ∈ {0, 1} to its out-neighbourhood N+

v ;

• every agent w ∈ N+
v receives a possibly erased version

bv→w (t) ∈ {0, 1, ?} of av (t);

• each agent v ∈ V makes an estimate ŷv (t) of y .

We assume that

• the communication network is memoryless;

• for every v ∈ V , w ∈ N+
v , and t ∈ N,

bv→w (t) =

{
? w.p. ε

av (t) w.p. 1− ε .
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Performance measures I

Given a required precision δ ∈]0, 1], we define two complexity
figures.

• Communication complexity

τ(δ) := inf
{
t ∈ N : N−1E

[
||ŷ(s)− y1||2

]
≤ δ, ∀s ≥ t

}
,

the minimum number of binary transmissions each agent
has to perform in order to guarantee that the average
mean squared estimation error does not exceed δ.
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Performance measures II

• Computational complexity:
denote by κv (t) the minimum number of operations
required by agent v for to compute αv (t) and ŷv (t); define

κ(δ) := max

 ∑
1≤t≤τ(δ)

κv (t) : v ∈ V

 ,

the maximum, over all agents v ∈ V , of the total number
of operations required to be performed, in order to achieve
an average mean squared estimation error not exceeding δ.
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Algorithm I

We want to adapt to the digital setting the linear update

xv (j + 1) =
∑

w∈N−
v

Pvwxw (j) + Pvvxv (j) .

But xw can not be transmitted as such on a noisy channel!
Instead, v ∈ N+

w can only obtain, after some binary

transmissions, an estimate x̂
(v)
w .

A solution consists in alternating

• transmission phases of increasing length `j = SL j

• averaging steps

xv (j + 1) =
∑

w∈N−
v

Pvw x̂
(v)
w (j) + Pvvxv (j) .
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Algorithm II

• During transmission, agents use linear tree codes,
which [CFZ08] allow u ∈ R to be transmitted with
precision

E
[
(u − û`)

2
]
≤ β2`L ,

requiring a number of operations kL` ≤ B`3 , for all ` ≥ 0,
where βL ∈ (0, 1), and B > 0 are constants depending on
the erasure probability ε only.

• why increasing length of transmission phases?
Increasing length, precision is increased.
If precision is not increased, the committed errors
accumulate, and x(t) does not converge [XBK07].
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Result

Theorem
For any SL, there exists a real-valued random variable ŷ s. t.

• E
[
(y − ŷ)2

]
≤ α2

(1− α)2
, where α = βSLL , and

• with probability one,

lim
t→∞

ŷv (t) = ŷ , ∀v ∈ V .

Moreover, for all δ ∈]0, 1], one can choose SL so that

τL(δ) ≤ C1 + C2
log3 δ−1

log2 ρ−1
, κL(δ) ≤ C3 + C4

log7 δ−1

log4 ρ−1
,

where {Ci : i = 1, . . . , 4} are positive constants depending on ε
only.
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Algorithm variation

Using

• sub-exponential repetition codes, which have linear
complexity,

• `j = SR j
2,

one obtains a performance

τR(δ) ≤ C5 + C6
log5 δ−1

log3 ρ−1
, κR(δ) ≤ C7 + C8

log5 δ−1

log3 ρ−1
,

for all δ ∈]0, 1].
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Feedback channels
If the channels allow communication feedback, the state
update step can be replaced by

xv (j + 1) = xv (j)−
∑

w∈N+
v

Pwv x̂
(w)
v (j) +

∑
w∈N−

v

Pvw x̂
(v)
w (j) .

Theorem
For any SL, then with probability one,

lim
t→∞

ŷv (t) = y , ∀v ∈ V .

Moreover, for all δ ∈]0, 1], one can choose SL so that

τ ′L(δ) ≤ C ′1 + C ′2
log2 δ−1

log2 ρ−1
, κ′L(δ) ≤ C ′3 + C ′4

log4 δ−1

log4 ρ−1
,

where {C ′i : i = 1, . . . , 4} are positive constants depending on
ε only.
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Remarks

About the presented algorithms:

• Results can be extended from erasure channels to
symmetric memoryless channels.

• Why log3(δ) communication complexity?
(# update steps × initial precision × increasing precision )

• Performance depends on topology, via ρ.

• No global knowledge (e.g., topology) is required to the
agents.

• Communication feedback can be effectively exploited.

Open problem: Is there hope for an algorithm with log(δ)
communication complexity?
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