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What is social influence?

What is the most influential node in a network?

Context-dependent question:
opinion dynamics // epidemic spread // cascading activation // resource

competition // ...
D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a
social network. ACM SIGKDD '03, 2003.
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In this talk:
A leader competes against an adversary field to influence the opinions of

the other individuals

Y. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, and A. Scaglione. Binary opinion
dynamics with stubborn agents. ACM Transactions on Economics and Computation,

2013



Our approach: harmonic influence

Which leader location (node) maximizes the influence?

00000

We define the harmonic influence of a node
We relate social and electrical networks
We derive a message-passing algorithm

We prove its convergence

We discuss a few simulations

L. Vassio, F. Fagnani, P. Frasca, and A. Ozdaglar. Message passing optimization of
harmonic influence centrality. /EEE Transactions on Control of Network Systems, 2014

W.S. Rossi and P. Frasca. The harmonic influence in social networks and its distributed
computation by message passing, 2016, http://arxiv.org/abs/1611.02955


http://arxiv.org/abs/1611.02955

Influence Maximization



Opinions in the social network

Each individual i has opinion x;(t) € R evolving with time

Opinions evolve through

@ social interactions between
individuals

@ influence of an external field

Weighted graph G = (I, E, C)
- node set | = {f,1,2,...,n}
- f is a special field node
- undirected edge set E
- non-negative weight matrix C
such that C;iC;; >0« {i,j} € E







Opinions dynamics in the social network

We introduce a leader against the field

@ The field § is stubborn
x;(t) = x5(0) for all t
@ The leader 7 is also stubborn

xp(t) = x¢(0) for all t




Opinions dynamics in the social network

We introduce a leader against the field

@ The field § is stubborn
x;(t) = x¢(0) for all t
@ The leader / is also stubborn
xp(t) = x¢(0) for all t

@ The remaining individuals do local
averaging

xi(t+1) = Qx(t)

J#i

where Q = D1C
with diagonal matrix D = diag(C1)



Harmonic influence

Let Laplacian matrix L= D — C
Normalize opinions in [0, 1]

Dirichlet problem

Equilibrium opinions solve Laplacian system with boundary conditions

Lx=0
Xg—l
Xf 0

The Harmonic Influence of ¢ is H(¢) := 1Tx
(x is said to be a harmonic function)

Computing H requires solving n linear systems, one for each possible leader



Computing the Harmonic Influence

Problem:
Find an algorithm that

@ solves all n systems at the same time
@ is distributed



Computing the Harmonic Influence

Problem:
Find an algorithm that

@ solves all n systems at the same time
@ is distributed

Solution:
Message-passing iterative algorithm that approximates H

@ with provable convergence

@ with insights on convergence speed and approximation error



Electrically-inspired Message-Passing Algorithm



Electrical analogy (assuming CT = C)

Equilibrium opinions x are
the potentials of an electrical network
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Electrical analogy (assuming CT = C)

Equilibrium opinions x are

the potentials of an electrical network
@ node f has potential 0
@ node £ has potential 1

@ conductances —w— of value
Cjj = Cj; substitute each edge

Computation of H(¢) on trees:

@ compute the effective resistances

@ compute the current leaving /¢
© compute all potentials

@ sum up potentials to get H(¢)



Propagation of potentials: from leaves to root

Also H(¢) can be computed recursively,
from the leaves to the root
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For simplicity, C; = 1 for all {i,j} € E
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Propagation of potentials: example

For simplicity, C; =1 for all {i,j} € E

Hk%i -1 Wkﬁi -1
H= =0 W =0

Hi—>j =14+ Wk—)in—ﬁ + Wf—>in—>i

Wi—>j — 1 i
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Hi—t — 1+ WiHjHiﬁj_i_ Wi’%jHi’ﬁj

j—l 1
w 1+ (1-Wi=d)+(1—-Wi' =)

H(¢) =1+ WimtHi=¢



Message Passing Algorithm

Generic graph G = (I, E, C) C needs not be symmetric

Node i sends to neighbor j two messages:
o WiJ(t): estimate of x; if £ =
o H™i(t): estimate of H(i) in the graph G\ {i,j}

boundary Wi=i(t) =0, H(t) =0
initialization W'7/(0) =1, H'7/(0) =1
update  Wi(t+1) = [1 + z Wk_”'(t))} 1
kEN_j
H’._”.(t—l— 1) =14+ Z Wk—)i(t) Hk—)i(t)
keN™

estimate H({) =1+ Z Wi=t(t) H=(t)
i€Np




Analysis of the MPA



Convergence

Let G = (I, E, C) be any connected graph with symmetric C.
Then, the Message Passing Algorithm converges

Proof outline:
© define an MPA-like dynamics on directed graphs M
@ define suitable message digraph Mg, that describes the topology of
the dependences between messages
© prove the convergence of the MPA-like dynamics induced on Mg:

o when acyclic (by construction)
o when strongly connected (more difficult)
e in general (combining the sub-proofs)

11/22



Proof 1/3: MPA-like dynamics

e Digraph M = (V, ®), its adjacency matrix M € {0,1}V*V

1

@ Vectorsr, s € RZO, such that r, = s, *, and

W = diag(r)M diag(s)

e Two sequences of non-negative vectors a(t), B(t), such that a(t) is
non-decreasing in every component and (3(t) is convergent.

MPA-like is w(t) € (0,1]Y and n(t) € [1,+0o0)" such that

w(0) =n(0) =1

1
wy(t+1)=

14+ ay(t) + >, Wi (1 —ww(t))
nv(t+1) =1+ Bu(t) + >, Muw ww(t) nw(t)

12 /22



Proof 2/3: Message digraph Mg

g

~ UJ} /\{’ k}f\ Social graph G = (I, E)

Mg (ji, ik) Message digraph Mg = (E, )

O —0 E={ji:{ijy€Ei#f)
0(ki,ij) o & = {(ji, ik) : ji, ik € E,j # k}

13 /22



Proof 2/3: Message digraph Mg

g WI=k()=0
Q{I’J}m{l7k}0 o 7 Social graph G = (I, E)
W:——;J(t) Wk;/ t) {kvf}
./\/lg ajk(t)>0 I\ilessage digraph Mg = (E,CD)
i /] E={ji:{ij}eEi#f}
wji(t) wik(t) & = {(ji, ik) : ji, ik € E,j # k}

The messages W/ J(t) and H'™(t) are associated to node ji in Mg
The counterpart of the constant message W/ ~k(t) = 0 is the (constant)
sequence ajx = Cij/Ci >0

13/22



Proof 3/3: analysis on any digraph M

If M acyclic = convergence
(follow partial order)

CSI

T o0

2

14 /22



Proof 3/3: analysis on any digraph M

If M acyclic = convergence

If M is strongly connected and con-
tains kh where ayp(t) > 0
= convergence

(W-messages have limits by monotonicity;

ayn >0
& update matrix for H-messages non-negative

i ? irreducible and eventually Shur stable)
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Proof 3/3: analysis on any digraph M

If M acyclic = convergence

If M is strongly connected and con-
tains kh where ayp(t) > 0
= convergence

If every node in a non-trivial strongly
connected component of M can reach
kh where ayp(t) >0

—> convergence

(condense components, use partial order,

compose previous results)

14 /22



Proof 3/3: analysis on any digraph M

3

!/

?
&

(1) =

If M acyclic = convergence

If M is strongly connected and con-
tains kh where ayp(t) > 0
= convergence

If every node in a non-trivial strongly
connected component of M can reach
kh where ayp(t) >0

= convergence

Mg satisfies these assumptions
—> the MPA converges

14 /22



Simulations



Simulations: random tree

Random tree graph: 50 nodes, 49 edges, diameter=13, C;f = 0.05 for all /

10*
102 L
10°F

102f

— | H(t) — H(o0)|
— W) = W (0)|

10° 10"
time

Convergence time = diameter
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Simulations: rand tree

Random tree graph: 50 nodes, 49 edges, diameter=13, C;; = 0.05
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Simulations: graph with few cycles

Random addition of 10 edges: 50 nodes, 59 edges, Cj; = 0.05

— || H(t) — H(c0)|}x
1018 W () = W (o0) 11
10° 10 10° 10°

time

Convergence time of W™/(t) increases slightly
Convergence time of H'7/(t) increases significantly
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Simulations: graph with few cycles

Random addition of 10 cycles: 50 nodes, 59 edges, Cj; = 0.05
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Simulations: Erd6s-Rényi random graph

Erd6s-Rényi random graph: 50 nodes, 131 edges, Cj; = 0.05

F=[H (t) — H(c0)|x
— W) = W (o)l

10° 10! 10° 10°
time

Convergence time of W'™/(t) almost unchanges
Convergence time of H'7/(t) increases significantly
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Simulations: Erd6s-Rényi random graph

Erd6s-Rényi random graph: 50 nodes, 131 edges, Cj; = 0.05
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Conclusions



Summary: computing the Harmonic Influence

Message-passing algorithm with two messages H, W
@ designed on trees by an electrical analogy
@ can be used on any undirected weighted graph (/, E, C)
@ proved to converge if CT = C
@ convergence in two phases: first messages W, then H

- cycles degrade convergence speed (of H)

@ cycles degrade (not too much) the accuracy of the approximation

More insights in:

W.S. Rossi and P. Frasca. Mean-field analysis of the convergence time of message-
passing computation of harmonic influence in social networks, IFACWC, Toulouse, 2017

21/22



Research outlook

Refine analysis of MPA

@ Extend convergence proof to non-symmetric networks
o Evaluate convergence time

@ Estimate the error between convergence value and actual H

Improve design of MPA

@ Accelerate convergence of H'™/ messages

Can similar ideas be used for other centrality measures?
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