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What is social influence?

What is the most influential node in a network?

Context-dependent question:
opinion dynamics // epidemic spread // cascading activation // resource
competition // ...

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a
social network. ACM SIGKDD ’03, 2003.

In this talk:
A leader competes against an adversary field to influence the opinions of
the other individuals

Y. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, and A. Scaglione. Binary opinion
dynamics with stubborn agents. ACM Transactions on Economics and Computation,
2013
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Our approach: harmonic influence

Which leader location (node) maximizes the influence?

1 We define the harmonic influence of a node

2 We relate social and electrical networks

3 We derive a message-passing algorithm

4 We prove its convergence

5 We discuss a few simulations

L. Vassio, F. Fagnani, P. Frasca, and A. Ozdaglar. Message passing optimization of
harmonic influence centrality. IEEE Transactions on Control of Network Systems, 2014

W.S. Rossi and P. Frasca. The harmonic influence in social networks and its distributed
computation by message passing, 2016, http://arxiv.org/abs/1611.02955
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Influence Maximization



Opinions in the social network

Each individual i has opinion xi (t) ∈ R evolving with time

Opinions evolve through

social interactions between
individuals

influence of an external field

Weighted graph G = (I ,E ,C )
- node set I = {f, 1, 2, . . . , n}
- f is a special field node
- undirected edge set E
- non-negative weight matrix C

such that CijCji > 0⇔ {i , j} ∈ E f
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Opinions dynamics in the social network

We introduce a leader against the field

The field f is stubborn

xf(t) = xf(0) for all t

The leader ` is also stubborn

x`(t) = x`(0) for all t

The remaining individuals do local
averaging

xi (t + 1) =
∑
j 6=i

Qij xj(t)

where Q = D−1C
with diagonal matrix D = diag(C1)

f

4 / 22



Opinions dynamics in the social network

We introduce a leader against the field

The field f is stubborn

xf(t) = xf(0) for all t

The leader ` is also stubborn

x`(t) = x`(0) for all t

The remaining individuals do local
averaging

xi (t + 1) =
∑
j 6=i

Qij xj(t)

where Q = D−1C
with diagonal matrix D = diag(C1)

`

f

4 / 22



Opinions dynamics in the social network

We introduce a leader against the field

The field f is stubborn

xf(t) = xf(0) for all t

The leader ` is also stubborn

x`(t) = x`(0) for all t

The remaining individuals do local
averaging

xi (t + 1) =
∑
j 6=i

Qij xj(t)

where Q = D−1C
with diagonal matrix D = diag(C1)

`

f

4 / 22



Harmonic influence

Let Laplacian matrix L = D − C
Normalize opinions in [0, 1]

Dirichlet problem

Equilibrium opinions solve Laplacian system with boundary conditions
L x = 0
x` = 1
xf = 0

The Harmonic Influence of ` is H(`) := 1>x
(x is said to be a harmonic function)

Computing H requires solving n linear systems, one for each possible leader
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Computing the Harmonic Influence

Problem:
Find an algorithm that

solves all n systems at the same time

is distributed

Solution:
Message-passing iterative algorithm that approximates H

with provable convergence

with insights on convergence speed and approximation error
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Electrically-inspired Message-Passing Algorithm



Electrical analogy (assuming C> = C )

`

f

Equilibrium opinions x are
the potentials of an electrical network

node f has potential 0

node ` has potential 1

conductances of value
Cij = Cji substitute each edge

Computation of H(`) on trees:

1 compute the effective resistances

2 compute the current leaving `

3 compute all potentials

4 sum up potentials to get H(`)
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Propagation of potentials: from leaves to root

`

f

j

i

Also H(`) can be computed recursively,
from the leaves to the root

Notation:

H i→j : H(i) on the graph without
edge {i , j}

W i→j : potential of i if j is at
potential 1
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Propagation of potentials: example

For simplicity, Cij = 1 for all {i , j} ∈ E

k

i

f

j

i ′

`

Hk→i = 1

W k→i = 1
H f→i = 0 W f→i = 0

H i→j = 1 + W k→iHk→i + W f→iH f→i

W i→j = 1
1+(1−W k→i )+(1−W f→i )

H j→` = 1+W i→jH i→j +W i ′→jH i ′→j

W j→` = 1
1+(1−W i→j )+(1−W i′→j )

H(`) = 1 + W j→`H j→`
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Message Passing Algorithm

Generic graph G = (I ,E ,C ) C needs not be symmetric

Node i sends to neighbor j two messages:

W i→j(t): estimate of xi if ` = j
H i→j(t): estimate of H(i) in the graph G \ {i , j}

Message-Passing Algorithm

boundary W f→j(t) = 0, H f→j(t) = 0

initialization W i→j(0) = 1, H i→j(0) = 1

update W i→j(t + 1) =

[
1 +

∑
k∈N−j

i

Cik

Cij

(
1−W k→i (t)

) ]−1
H i→j(t + 1) = 1 +

∑
k∈N−j

i

W k→i (t)Hk→i (t)

estimate Ht(`) = 1 +
∑
i∈N`

W i→`(t)H i→`(t)
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Analysis of the MPA



Convergence

Theorem

Let G = (I ,E ,C ) be any connected graph with symmetric C.
Then, the Message Passing Algorithm converges

Proof outline:

1 define an MPA-like dynamics on directed graphs M
2 define suitable message digraph MG , that describes the topology of

the dependences between messages
3 prove the convergence of the MPA-like dynamics induced on MG :

when acyclic (by construction)
when strongly connected (more difficult)
in general (combining the sub-proofs)
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Proof 1/3: MPA-like dynamics

Digraph M = (V ,Φ), its adjacency matrix M ∈ {0, 1}V×V

Vectors r, s ∈ RV
>0, such that rv = s−1v , and

W = diag(r)M diag(s)

Two sequences of non-negative vectors α(t), β(t), such that α(t) is
non-decreasing in every component and β(t) is convergent.

MPA-like is ω(t) ∈ (0, 1]V and η(t) ∈ [1,+∞)V such that

ω(0) = η(0) = 1

ωv (t + 1) =
1

1 + αv (t) +
∑

w Wvw (1− ωw (t))

ηv (t + 1) = 1 + βv (t) +
∑

wMvw ωw (t) ηw (t)
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Proof 2/3: Message digraph MG

G
j i k f
{i , j} {i , k}

{k , f}

MG
ji ik

kiij
(ki , ij)

(ji , ik)

W i→j(t) W k→i (t)

ωji (t) ωik(t)

W f→k(t)=0

αik(t)>0

Social graph G = (I ,E )

Message digraph MG = (~E ,Φ)
~E = {ji : {i , j} ∈ E , i 6= f}
Φ = {(ji , ik) : ji , ik ∈ ~E , j 6= k}

The messages W i→j(t) and H i→j(t) are associated to node ji in MG
The counterpart of the constant message W f→k(t) = 0 is the (constant)
sequence αik = Ckf/Cki > 0
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Proof 3/3: analysis on any digraph M

kh

ik

ji

If M acyclic =⇒ convergence
(follow partial order)

If M is strongly connected and con-
tains kh where αkh(t) > 0
=⇒ convergence
(W-messages have limits by monotonicity;

update matrix for H-messages non-negative

irreducible and eventually Shur stable)If every node in a non-trivial strongly
connected component ofM can reach
kh where αkh(t) > 0
=⇒ convergence
(condense components, use partial order,

compose previous results)

MG satisfies these assumptions
=⇒ the MPA converges
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ikik
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1
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3
4
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Simulations



Simulations: random tree

Random tree graph: 50 nodes, 49 edges, diameter=13, Ci f = 0.05 for all i

Radial Plot

100 101

time

10-6

10-4

10-2

100

102

104

kH(t)!H(1)k1

kW!(t)!W!(1)k1

Convergence time = diameter
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Simulations: random tree

Random tree graph: 50 nodes, 49 edges, diameter=13, Ci f = 0.05
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Left: true H(`) vs. estimate H∞(`) Right: true potential W i→` vs. W i→`
∞

MPA is exact on trees
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Simulations: graph with few cycles

Random addition of 10 edges: 50 nodes, 59 edges, Ci f = 0.05

Radial Plot

100 101 102 103

time

10-15

10-10

10-5

100

kH(t)!H(1)k1

kW!(t)!W!(1)k1

Convergence time of W i→j(t) increases slightly
Convergence time of H i→j(t) increases significantly
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Simulations: Erdős-Rényi random graph

Erdős-Rényi random graph: 50 nodes, 131 edges, Ci f = 0.05

Radial Plot

100 101 102 103

time

10-15

10-10

10-5

100

105

kH(t)!H(1)k1

kW!(t)!W!(1)k1

Convergence time of W i→j(t) almost unchanges
Convergence time of H i→j(t) increases significantly

19 / 22



Simulations: Erdős-Rényi random graph

Erdős-Rényi random graph: 50 nodes, 131 edges, Ci f = 0.05
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Conclusions



Summary: computing the Harmonic Influence

Message-passing algorithm with two messages H, W

designed on trees by an electrical analogy

can be used on any undirected weighted graph (I ,E ,C )

proved to converge if C> = C

convergence in two phases: first messages W , then H

- cycles degrade convergence speed (of H)

cycles degrade (not too much) the accuracy of the approximation

More insights in:

W.S. Rossi and P. Frasca. Mean-field analysis of the convergence time of message-
passing computation of harmonic influence in social networks, IFACWC, Toulouse, 2017

21 / 22



Research outlook

Refine analysis of MPA

Extend convergence proof to non-symmetric networks

Evaluate convergence time

Estimate the error between convergence value and actual H

Improve design of MPA

Accelerate convergence of H i→j messages

Can similar ideas be used for other centrality measures?
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