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Models of opinion dynamics

A population of individuals, or agents, A is given

Agents have opinions xa(t)

Opinions evolve through interactions between agents

then, we have to model

the set of allowed interactions: the social network

the interaction process: discrete-time, deterministic/randomized

the effects of interactions: positive/negative/no influence
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Social network example

A social network is represented by a graph:

nodes are individuals a ∈ A

edges are potential interactions, i.e., pairs (a, b) ∈ A× A
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Diffusive coupling: Deterministic updates

Assumption: interactions bring opinions closer to each other

=⇒ (discrete-time) dynamics: local averaging

xa(t + 1) =
∑

b∈A

Cab xb(t)

positive couplings Cab ≥ 0,
∑

b
Cab = 1, Cab = 0 if (a, b) is not an edge

Result:

x(t) converges to a consensus on one opinion

J. R. P. French. A formal theory of social power. Psychological Review, 63:181–94, 1956
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Diffusive coupling: SRW matrix (example)

If we choose equal coupling weights, then the matrix C corresponds to the
simple random walk
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Diffusive coupling: Gossip updates

Synchronous rounds of updates are a poor description of real interaction
processes: we can instead use sparse randomized interactions

Gossip approach: at each time t, choose a random edge (a, b) for
interaction and update

xa(t + 1) =
1

2
xa(t) +

1

2
xb(t)

xb(t + 1) =
1

2
xa(t) +

1

2
xb(t)

xc(t + 1) =xc(t) if c 6∈ {a, b}

Result:

x(t) almost surely converges to a consensus on one opinion

The convergence analysis is based on the average dynamics

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE

Transactions on Information Theory, 52(6):2508–2530, 2006
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Diffusive coupling: Examples and discussion

deterministic gossip
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+ easy, well understood

– societies do not exhibit consensus
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+ easy, well understood

– societies do not exhibit consensus

We need to model the reasons for persistent disagreement in societies
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Antagonistic interactions

Assumption: interactions bring opinions either closer to each other, or
more apart from each other – depending on friendship or enmity

=⇒ xa(t + 1) =
∑

b∈A

Cab xb(t)

where now Cab may also be negative!

Result:

x(t) converges to a polarization with two opinion parties,
if and only if the network is structurally balanced

C. Altafini. Consensus problems on networks with antagonistic interactions. IEEE Transac-

tions on Automatic Control, 58(4):935–946, 2013
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Antagonistic interactions: Examples and discussion
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+ opinion parties are formed

– two opinion parties are too few

– structural balance is a fragile property
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Bounded confidence

Assumption: interactions bring opinions closer to each other, if they are
already close enough

Interaction graph depends on confidence threshold R :

xa(t + 1) =
1

|{b : |xa(t)− xb(t)| ≤ R}|

∑

b:|xa(t)−xb(t)|≤R

xb(t)

Result:

x(t) converges to a clusterization with several opinion parties;

the number of parties is (roughly) ∝ 1
2R

V. D. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis. On Krause’s multi-agent consen-
sus model with state-dependent connectivity. IEEE Transactions on Automatic Control,
54(11):2586–2597, 2009
F. Ceragioli and P. Frasca. Continuous and discontinuous opinion dynamics with bounded
confidence. Nonlinear Analysis: Real World Applications, 13(3):1239–1251, 2012
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Bounded confidence: Examples and discussion
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+ many opinion parties

– non-linear dynamics → difficult to study

– opinion parties are disconnected from each other (|x1 − x2| > R)
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Prejudices and stubborn agents

Assumption: interactions bring opinions closer to each other, but the
initial opinions are never forgotten

p ∈ R
A is a vector of prejudices

w ∈ [0, 1]A is a vector of obstinacies

xa(0) =pa

xa(t + 1) =(1− wa)
∑

b∈A

Cab xb(t) + wapa

Result:

x(t) converges to a non-trivial opinion profile

x(∞) =
(

I − (I − diag(w))C
)−1

diag(w)p

N. E. Friedkin and E. C. Johnsen. Social influence networks and opinion change. In E. J.
Lawler and M. W. Macy, editors, Advances in Group Processes, volume 16, pages 1–29.
JAI Press, 1999
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Prejudices: Example and discussion
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+ linear dynamics → easy to study

+ complex limit opinion profiles (no consensus)
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Steady-state analysis & electrical networks

Special case: w ∈ {0, 1}A: agents are either stubborn or open-minded

Result: the final opinions x(∞) can be described by an electrical

analogy:

consider the edges of the graph as resistors (with suitable resistance)
define a potential W : A → R

such that Ws = ps if ws = 1 (s is stubborn)

Then, the opinions equal the induced potential: xa(∞) = Wa ∀a ∈ A
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Gossips and prejudices

We can also define sparse random interactions:

for a randomly chosen edge (a, b)

xa(t + 1) =(1− wa)
(1

2
xa(t) +

1

2
xb(t)

)

+ wapa

xb(t + 1) =(1− wb)
(1

2
xb(t) +

1

2
xa(t)

)

+ wbpb

xc(t + 1) =xc(t) if c 6∈ {a, b}

Result:

x(t) persistently oscillates

oscillations are ergodic (around the average dynamics)

oscillations can be smoothed away by time-averaging

D. Acemoglu, G. Como, F. Fagnani, and A. Ozdaglar. Opinion fluctuations and disagree-
ment in social networks. Mathematics of Operations Research, 38(1):1–27, 2013

P. Frasca, C. Ravazzi, R. Tempo, and H. Ishii. Gossips and prejudices: Ergodic randomized
dynamics in social networks. In IFAC Workshop on Estimation and Control of Networked

Systems, pages 212–219, Koblenz, Germany, September 2013
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Gossips and prejudices: Example

opinions x(t) time-averages
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Opinion control (?)
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Open problems: dynamics

More complex models of opinion dynamics, including:

concurrent obstinacy and bounded confidence

asymmetric asynchronous interactions

heterogeneous agents

multidimensional opinions

discrete or binary opinions

C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. Reviews
of Modern Physics, 81(2):591–646, 2009

A. Mirtabatabaei and F. Bullo. Opinion dynamics in heterogeneous networks: Convergence
conjectures and theorems. SIAM Journal on Control and Optimization, 50(5):2763–2785,
2012
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Open problems: control

Which control actions are allowable?
Only sparse controls (acting on few nodes/edges)

inputs in selected nodes

removal/addition of edges

removal/addition of nodes

Which are the control goals?

“classical” control of states to a prescribed vector

qualitative changes to the limit profile (e.g., merge clusters together)

quantitative changes to some observable (e.g., average opinion, target
nodes)

R.D. Braatz. The management of social networks [from the editor]. IEEE Control Systems

Magazine, 33(2):6–7, 2013
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Controlling opinions: System-theoretic approaches

Which nodes can control the network?

General approaches based on system-theoretic notions of controllability:

“driver nodes” are (often) those with low degree
Y.Y. Liu, J.J.E. Slotine, and A.L. Barabasi. Controllability of complex networks. Na-
ture, 473(7346), 2011

controllability depends on graph topology (via “equitable partitions”)
M. Egerstedt, S. Martini, M. Cao, K. Camlibel, and A. Bicchi. Interacting with net-
works: How does structure relate to controllability in single-leader, consensus net-
works? IEEE Control Systems Magazine, 32(4):66–73, 2012

more intuitive results on special graph topologies
G. Parlangeli and G. Notarstefano. On the reachability and observability of path and
cycle graphs. IEEE Transactions on Automatic Control, 57(3):743 –748, 2012

finding the sparsest controller is hard
A. Olshevsky. Minimal controllability problems. Available at
http://arxiv.org/abs/1304.3071, 2014

quantifying controllability
F. Pasqualetti, S. Zampieri, and F. Bullo. Controllability metrics, limitations and
algorithms for complex networks. IEEE Transactions on Control of Network Systems,
1(1):40–52, 2014
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Optimization approach: stubborn placement

What is the most influential node?

Optimization problem:

Given a graph and a set of nodes which are stubborn with state 0

we can choose one node to be stubborn with state 1

find for this “controlled stubborn” the location on the graph which
maximizes the average opinion 1

|A|

∑

a
xa(∞)

E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, and A. Scaglione. Binary opinion dynamics with
stubborn agents. ACM Transactions on Economy and Computation, 1(4):1–30, 2013
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Optimal stubborn placement: Examples

Stubborn with state 0 are filled in black. Where would you put the agent
with state 1?

Use the electrical analogy!
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Optimal stubborn placement: Examples

Stubborn with state 0 are filled in black. Where would you put the agent
with state 1?

Can we use this intuition?
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Algorithmic solution

Yes!

the electrical analogy leads to design an algorithm to solve the stubborn
placement problem, which is

distributed: agents can run it online, only communicating with
neighbors

fast: runs in O(diameter)

To be presented at
- CWTS & UT workshop (next week)
- European Control Conference (in two weeks)

- Symposium on Mathematical Theory of Networks and Systems (next month)

L. Vassio, F. Fagnani, P. Frasca, and A. Ozdaglar. Message passing optimization of harmonic
influence centrality. IEEE Transactions on Control of Network Systems, 1(1):109–120, 2014
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