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This document consists in notes concerning the use of RKHS in nonlinear signal processing. It is
intended to be a brief introduction. We try however to give some precise mathematical facts when
necessary.

1 Motivations

Escaping from linearity in science is not an easy task. However, it is necessary since Nature acts
mostly in a nonlinear way. Linearity is interesting since it is quite simple, and yet it provides good
models to understand many phenomena. However, it cannot grasps fine details and cannot explain
several fundamental laws. Turbulence in fluids is a highly nonlinear phenomenon. Frequency
doubling in optics is a nonlinear phenomenon. Chaos arises in nonlinear systems. Stochastic
resonance (constructive role of noise) is present only in nonlinear systems.

But if linearity is well defined (superposition principle), nonlinearity is not: It is a nonproperty.
There are infinitely many ways of performing nonlinearly!

Imposing linearity in signal processing leads to the powerful concept of linear filtering, a class
of operation that can be handled nicely with the notion of correlation function, power spectral
densities. . . When dealing with random signals, almost all linear operations can be performed and
understood by using only second order statistics. This is not the case for nonlinear processing in
general.

However, certain classes of nonlinear processing can be handled quite easily: Classes where the
processing can be described in some linear spaces. This is the case for example of Volterra filters.

Volterra filters generalize Taylor expansion to functionals. In a finite dimensional setting, Volterra
filters can even be precisely viewed as a Taylor expansion of a multivariate function. If two discrete
time, jointly stationary, signals x(t) and y(t) are linked by a finite order Volterra filter, we can
write

y(t) = h0 +
∑

1≤n≤q

∑
k1,...,kn≤M

hn(k1, . . . , kn)x(t− k1) . . . x(t− kn)
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The link between x and y is clearly nonlinear. However, the link is said to be linear in the
parameters, since for a fixed input x, the weigthed sum of two finite order Volterra expansion is again
a finite order Volterra expansion.Thus the space (indexed by x) of all signals that admit a Volterra
expansion like above is a linear space, which can be given a Hilbert structure using an appropriate
scalar product. To practically see this, it suffices to work in a a sufficiently high dimensional space,
whose element will be ‘vectors’ containing as entries the monomials x(t − k1) . . . x(t − kn) for all
orders n, and all times k. Doing alike for the filter parameters h, y(t) can be written as h>X, a
linear relation!

Doing so we have embedded the input x, which for a memory m lies in a M dimensional space,
into a larger linear space of very high dimension. Now, since the relation is linear in parameters,
all the linear processing known can be performed. These linear processing will require evaluation
of scalar product like E[XX>], which can be very difficult to evaluate in practice, given the high
dimensionality of the embedded vectors.

RKHS techniques elaborates on this idea of nonlinearly embedding data into a high (even infinite)
dimensional linear space, but add the constraint of having a very efficient way of calculating the
scalar products that will be needed for processing! Precisely, RKHS techniques will allow nonlinear
processing without explicitly embed the data!

2 Kernels, RKHS

We will work extensively using the concept of Hilbert spaces. We just recall that a Hilbert space
is a linear space endowed with a scalar product (bilinear, symmetric and definite positive form),
complete with respect to the metric induced by the scalar product.

2.1 Kernels

We will consider an abstract space X and this space is embedded into a larger one H, possibly
of infinite dimension, of functions of X into R. The embedding is supposed to be performed by a
map that we denote as Φ. As discussed in the previous section, it will be easy to work with the
embedded vectors if we can easily calculate an inner product in the feature space. This motivates
the formal definition of a kernel :

Definition A function k : X × X −→ R is called a kernel on X if there exists a Hilbert space H
and a map Φ : X −→ H such that

∀x, x′ ∈ X2,
〈
Φ(x)

∣∣Φ(x′)
〉
H = k(x, x′)

Let us present example of kernels.

Example Polynomial kernels.
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Let X = Rn equipped with the euclidean scalar product. Define k(x, y) = (1+ < x|y >)m. To show that this bivariate
function is a kernel on Rn we must exhibit the map Φ and the Hilbert space H such that k(x, y) =< Φ(x)|Φ(y) >.
We do it first for the simpler kernel k(x, y) =< x|y >m. We have

< x|y >m =
(∑

i

xiyi
)m

=
∑

i1,...,im

xi1yi1xi2yi2 . . . ximyim

=
∑

j1+j2+...+jn=m

m!

j1! . . . jn!
(x1y1)j1(x2y2)j2 . . . (xnyn)jn

=
∑

j1+j2+...+jn=m

√
m!

j1! . . . jn!
xj11 x

j2
2 . . . xjnn ×

√
m!

j1! . . . jn!
yj11 y

j2
2 . . . yjnn

Let φj(x) =
√

m!
j1!...jn!

xj11 x
j2
2 . . . xjnn where

∑n
i=1 ji = m and ji ∈ {0, . . . ,m}.

Let Φ be a mapping from X to the Hilbert space of square integrable sequences of Nn defined by Φ(x) = (φj(x))j∈{0,...,m}n

with
∑n
i=1 ji = m. Then we have

< x|y >m = < Φ(x)|Φ(y) >`2(Nn)

Thus, k(x, y) = (< x|y >)m is a kernel.

An example using this map is provided in figure (1) where in the space R2 two sets of points are not linearly separable
whereas they become linearly separable in the feature space associated with the map Φ(x, y) = (x2, y2,

√
2xy).
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Figure 1: Illustration of linear separability in the feature space

If we consider (1+ < x|y >)m then we get the same result by considering all the monomials of all orders up to m.
Thus, from a signal processing point of view, the Hilbert space Hx corresponds in that case to the Hilbert space of
the Volterra filters of finite memory.

Note that the Hilbert spaces obtained using polynomial kernels are finite dimensional.

Standard operations on kernels can be used to define new kernels, or can be used to prove that
some bilinear function is a kernel.
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Proposition 2.1 Building kernels.

1. Let fn : X −→ R be a series of functions such that fn(x) ∈ l2(N),∀x ∈ X. Then
∑

n≥0 fn(x)fn(x′)
is a kernel on X.

2. The sum of two kernels on X is a kernel on X. The product between a positive number and a
kernel on X is a kernel on X.

3. If f is an arbitrary function on X, f(x)k(x, x′)f(x′) is a kernel on X.

4. The product of two kernels on X1 and X2 is a kernel on X1 ⊗ X2. In particular, the product
of two kernels on a same space is a kernel on that space.

5. Let a : X1 −→ X2 be a map. If k(x, y) is a kernel on X2, then k(a(x), a(y)) is a kernel on X1.

Proof 1. Using Hlder inequality in the space of sequences `1(N) and `2(N) we have∑
n

∣∣fn(x)fn(x′)
∣∣ ≤ ∣∣∣∣fn(x)

∣∣∣∣
2

∣∣∣∣fn(x′)
∣∣∣∣
2
< +∞

and thus k(x, x′) is well defined since the sum defining it converges absolutely for all x, x′. If
we set Φ(x) = (f0(x), f1(x), . . .),∀x ∈ X and set H = `2(N), then k(x, x′) =< Φ(x)|Φ(x′) >`2
and k is a kernel on X.

2. Let α ≥ 0. We have k(x, x′) = k1(x, x
′)+αk2(x, x

′) =< Φ1(x)|Φ1(x
′) >H1 + <

√
αΦ2(x)|

√
αΦ2(x

′) >H2 .
Let H = H1 ⊕ H2 with the scalar product < (x, y)|(x′, y′) >H=< x|x′ >H1 + < y|y′ >H2 .
Then Φ(x) := (Φ1(x),

√
αΦ2(x)) from X to H satisfies k(x, x′) =< Φ(x)|Φ(x′) >H and k is

therefore a kernel on X.

3. f(x)k(x, x′)f(x′) =< f(x)Φ(x)|f(x′)Φ(x′) >.

4. Let H1 ⊗H2 stands for the tensorial product of the Hilbert spaces.

A formal definition is the following.

There is one vector space H1⊗H2 and one bilinear application π : H1×H2 −→ H1⊗H2 such
for any other other vector space and bilinear form f : H1 ×H2 −→ F , f is uniquely written
as ϕ ◦ π where ϕ is linear from H1 ⊗H2 to F .

A more constructive definition which provides more intuition (roughly, it is the linear space
generated by the terms x1x2, x1 ∈ H1, x2 ∈ H2) is the following.

For x1 ∈ H1, x2 ∈ H2, consider the bilinear form x1 ⊗ x2 : H1 × H2 → R defined by (x1 ⊗
x2)(u1, u2) =

〈
x1
∣∣u1〉H1

〈
x2
∣∣u2〉H2

. The set of linear combination of such forms {
∑

i αixi⊗yi}
with the scalar product 〈

x1 ⊗ x2
∣∣y1 ⊗ y2〉 =

〈
x1
∣∣y1〉H1

〈
x2
∣∣y2〉H2

is a preHilbert space, transformed into a complete Hilbert space by completion. The resulting
space is the tensor product noted H1 ⊗H2.

Coming back to the proposition, we have k1(x1, x
′
1)k2(x2, x

′
2) =< Φ1(x1)|Φ1(x

′
1) >H1<

Φ2(x2)|Φ2(x
′
2) >H2=< Φ1(x1) ⊗ Φ2(x2)|Φ1(x

′
1) ⊗ Φ2(x

′
2) >H1⊗H2 . In particular the prod-

uct of two kernels on a same set is a kernel on that set.
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5. k(a(x1), a(y1)) = k(x2, y2) =< Φ2(x2)|Φ2(y2) >=< Φ1(x1)|Φ1(y1) > where Φ1 = Φ2 ◦ a and
the Hilbert space is the same.

Example Gaussian kernel.

Consider k(x, y) = exp(−‖x− y‖2/η) where η > 0 for x and y in some subspace of Rn. The kernel can be written as

k(x, y) = exp(−‖x‖
2

η
) exp(−‖y‖

2

η
) exp(2

< x|y >
η

)

= exp(−‖x‖
2

η
) exp(−‖y‖

2

η
)
∑
k≥0

2k

ηkk!
< x|y >k

= exp(−‖x‖
2

η
) exp(−‖y‖

2

η
)
∑
k≥0

2k

ηkk!

∑
j1+j2+...+jn=k

k!

j1! . . . jn!
xj11 x

j2
2 . . . xjnn y

j1
1 y

j2
2 . . . yjnn

= exp(−‖x‖
2

η
) exp(−‖y‖

2

η
)

∑
j1,j2,...,jn≥0

2j1+...+jn

ηj1+...+jnj1! . . . jn!
xj11 x

j2
2 . . . xjnn y

j1
1 y

j2
2 . . . yjnn

Let φj(x) =
√

2j1+...+jn

ηj1+...+jn j1!...jn!
xj11 x

j2
2 . . . xjnn where ji ≥ 0. Then Φ(x) = exp(− ‖x‖

2

η
)(φ1(x), φ2(x), . . .) satisfies

k(x, y) =< Φ(x)|Φ(y) >.

Note that the feature map is not unique. Indeed, it can be verified that

Φη(x) =
2

n
2

π
n
4 η

n
4

exp(−2

η
‖x− .‖2)

is a feature map for the kernel, that is
〈
Φη(x)

∣∣Φη(y)
〉

= exp(−‖x− y‖2/η).

A fondamental property of kernel lies in their positive-definite character.

Definition A function k : X × X −→ R is positive definite if for all n ∈ N, all (α1, . . . , αn) ∈ Rn
and all (x1, . . . , xn) ∈ Xn we have

∑
i,j αiαjk(xi, xj) ≥ 0. If there is equality for mutually distinct

xi only for α1 = 0 = α2 = . . . = αn then k is strictly definite positive.

In other words, k is positive definite if and only if all the gram matrices Ki,j = k(xi, xj) are positive
definite. Now we can state the link between kernels and positive-definite functions.

Theorem 2.2 Kernel are symmetric positive-definite functions.

A function k is a kernel on X if and only if it is a symmetric positive definite function.

Proof Let k be a kernel on X. Then there is an Hilbert space H and a map Φ : X −→ H such
that k(x, y) =< Φ(x)|Φ(y) >H. Consider an arbitrary n ∈ N and two arbitrary n-uplets αi and xi.
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Then ∑
i,j

αiαjk(xi, xj) =
∑
i,j

αiαj < Φ(xi)|Φ(xj) >H

= <
∑
i

αiΦ(xi)
∣∣∑

j

αjΦ(xj) >H

= ‖
∑
i

αiΦ(xi)‖2H ≥ 0

Furthermore, as a scalar product in H, k is symmetric.

For the converse, let k(x, y) be a symmetric positive definite function on X× X. Consider

H =
{
f : X −→ R/f(.) =

n∑
i=1

αik(., xi), n ∈ N, (α1, . . . , αn) ∈ Rn, (x1, . . . , xn) ∈ Xn
}

For two functions f(.) =
∑n

i=1 αik(., xi) and g(.) =
∑n

i=1 βik(., yi) of H, define

< f |g >H=
∑
i,j

αiβjk(xi, yj)

We want to show that this function is a scalar product.

Note that using the symmetry of k, < f |g >H=
∑

i αig(xi) which show that the scalar product
does not depend on the representation of g. Likewise,< f |g >H=

∑
j βjf(yj) does not depend on

the particular representation of f . Furthermore, symmetry and bilinearity of < f |g >H is evident.
< f |f >H≥ 0 since k is positive definite. It remains to show that < f |f >H= 0 implies f = 0.
This uses the following lemma.

Lemma 2.3 A positive (not necessarily definite) symmetric bilinear function satisfies the Cauchy-
Schwartz inequality

|k(x, y)|2 ≤ k(x, x)k(y, y)

The proof is immediate by noting that for x1 and x2 the matrix Ki,j = k(xi, xj) is positive (definite)
so that its determinant is positive. Note that the definite character is not necessary.

Coming back to the proof, remark that f(x) =
∑

i αik(x, xi) =< f |k(., x) >H since as seen above
< f |g >H=

∑
i αig(xi). Note that since it is positive < | >H satisfies the Cauchy-Schwartz

inequality (see the lemma) Thus,

|f(x)|2 = | < f |k(., x) >H |2 ≤< k(., x)|k(., x) >H< f |f >H

Therefore, < f |f >H= 0 implies f = 0 and < | >H is definite and defines a scalar product.

Finally, we have seen that f(x) =
∑

i αik(x, xi) =< f |k(., x) >H for any function in H. In
particular, f(x) = k(y, x) satisfies k(y, x) = f(x) =< k(y, .)|k(., x) >H=< k(., y)|k(., x) >H. Thus
identifying Φ(x) = k(., x) gives the feature map and finishes the proof that k is a kernel on X.
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Note that we have just used preHilbert spaces. Thus we should add in the proof the completion
step in order to make the associated metric space complete.

We have noted in the proof above the strange property for function in H that f(x) =< f |k(., x) >H.
Usually this relation holds for the Dirac δ function. However, as proved above, it also holds in
certain spaces, an example of which was constructed in the proof, which are called Reproducing
Kernel Hilbert Spaces. The Reproducing term comes from the fact that the evaluation equation
f(x) =< f |k(., x) >H is also true for the kernel and reads in that case k(x, y) =< k(., y)|k(., x) >H,
a property know as the reproducing property.

2.2 Reproducing Kernel Hilbert Spaces

We begin with a formal definition of a Reproducing Kernel Hilbert Space, abbreviated RKHS in
the sequel. The formal definition will highlight the importance of the Riesz representation theorem
that we will recall, as it will be also useful later, when introducing covariance operators.

Definition Let X a set and H a Hilbert space of functions of X into R.

1. k : X × X −→ R is a reproducing kernel of H if k(., x) ∈ H and for all f ∈ H and all x ∈ X
the reproducing property f(x) =

〈
f
∣∣k(., x)

〉
holds.

2. H is called a reproducing kernel Hilbert space if the evaluation functional

δx : H −→ R
f 7−→ δx(f) = f(x)

is continuous.

The fact that the evaluation functional is continuous implies that the RKHS has a unique repro-
ducing kernel. This comes from the Riesz representation for bounded linear functional. Recall that
a linear functional a : H → R is bounded if ‖a‖ = supf/‖f‖=1 |a(f)| < +∞. Recall also that a linear
functional is bounded if and only if it is continuous. The Riesz representation theorem states that
a bounded linear function can be represented as a scalar product. Precisely,

Theorem 2.4 Let ` be a bounded linear functional from H to R. Then there is a unique element
g of H such that for all f ∈ H, `(f) =

〈
f
∣∣g〉

Proof If ` = 0, g = 0 satisfies the requirement. Let ` 6= 0. Let g̃ ∈ (ker`)⊥ such that ‖g̃‖ = 1. Then,
g̃`(f)−f`(g̃) ∈ ker` since `(g̃`(f)−f`(g̃)) = `(g̃)`(f)−`(f)`(g̃) = 0. Thus writing this orthogonality
using the scalar product we get

〈
g̃`(f) − f`(g̃)

∣∣g̃〉 = 0 or, solving for `(f), `(f) =
〈
f
∣∣`(g̃)g̃

〉
.

Then choosing g = g̃`(g̃) proves the existence. If two elements are solutions, then this implies
< (g1 − g2)|f >= 0 for all f ∈ H, and thus g1 − g2 ∈ H⊥ = {0}.
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Boundedness does not seem to be used. In fact it is. Its equivalence to continuity implies that
the kernel of ` is a closed subspace (lim `(un) = `(limun) = 0), and this ensures that there is an
element in its orthogonal complement by application of the projection theorem (if a subspace is
closed, any element of the space is uniquely written as the sum of an element of this subspace plus
an element in its orthogonal complement).

Coming back to RKHS, since the evaluation functional is a linear continuous functional, it is
bounded, and therefore the Riesz representation theorem state that there is a unique element of
H such that δx(f) =

〈
f
∣∣gx〉. Obviously here, the unique element is indexed by x. This equation

is precisely the reproducing property, and therefore, gx is a reproducing kernel. We denote it as
k(., x). This shows that any reproducing kernel Hilbert space has a unique reproducing kernel.
The last thing to show to close the loop is that a reproducing kernel is a kernel (in the sense of
the previous section). It suffices to show the existence of a map Φ(x) from X to H such that
k(x, y) =

〈
Φ(x)

∣∣Φ(y)
〉
. But this is evident since using the reproducing property of the kernel we

have k(x, y) =
〈
k(., x)

∣∣k(., y)
〉
, such that choosing Φ(x) = k(., x) solves the problem.

Finally, the completion of the space introduced in the previous section

H =
{
f : X −→ R/f(.) =

n∑
i=1

αik(., xi), n ∈ N, (α1, . . . , αn) ∈ Rn, (x1, . . . , xn) ∈ Xn
}

is the RKHS associated with the reproducing kernel k.

3 Application in ML

The aim of this section is to present the representer theorem which basically states that when using
a RKHS of functions to optimize some empirical risk functions, even if of infinite dimension, it
suffices to search for the solution in a finite dimensional subspace of the RKHS. We will not discuss
the notion of empirical risk and of regularization. We refer to books on statistical learning theory
for that.

We suppose that we have a learning set L = (xi, yi) of N examples where typically xi ∈ X and
yi ∈ Y, and we want to find a function f such that ŷi = f(xi) approximate correctly the observation
yi. If Y is a continuum we typically face a problem of regression whereas if Y is a finite set we deal
with a classification problem. Obviously, f will be chosen by optimizing some criteria that depends
on the application considered. We will use a cost function c : X× Y× Y −→ R+ which assign the
cost c(x, y, f(x)) to the particular example x, y when using function f . The average cost cannot be
optimized in practice, so that the empirical risk is used and writes

R(f) =
1

N

N∑
i=1

c(xi, yi, f(xi))

Furthermore, for problems of overfitting, the set over which f is search for has to be constrained.
A usual approach is to add a penalty term to the empirical risk. This may for example limit the
norm of the function f . We assume that if f is searched for in an Hilbert space, the penalty added
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to regularize is a strictly increasing function of the norm. Thus the risk reads R(f) + Ω(‖f‖H) and
has to be minimized over H.

We can now state and prove the representer theorem.

Theorem 3.1 Let c : X × R × R −→ R+ a cost function and Ω : R+ −→ R a stricly increasing
function. Let N couples xi, yi ∈ X× R be observed, and let H be a RKHS with reproducing kernel
k on X. Then, a solution of

f = arg min
f∈H

1

N

N∑
i=1

c(xi, yi, f(xi)) + Ω(‖f‖H)

satisfies

f(x) =
N∑
i=1

αik(x, xi)

Thus, even if we look for a function in an infinite dimensional space, it suffices to look for it in the
space spanned by the features k(., xi) associated to the observed data.

Proof Let f ∈ H. Then f can be decomposed into the sum of its part belonging to the subspace
of H generated by the k(., xi), i = 1, . . . , N and its part belonging to the orthogonal complement.
Thus

f(x) = f‖(x) + f⊥(x)

=
N∑
i=1

αik(x, xi) + f⊥(x)

To evaluate the empirical risk we need to evaluate f(xj), j1, . . . , N . We have using the reproducing
property

f(xj) =
〈
f
∣∣k(., xj)

〉
=

〈
f‖ + f⊥

∣∣k(., xj)
〉

=
〈
f‖
∣∣k(., xj)

〉
=

〈 N∑
i=1

αik(, xi)
∣∣k(., xj)

〉
=

N∑
i=1

αi
〈
k(, xi)

∣∣k(., xj)
〉

=

N∑
i=1

αik(xi, xj)

from which we see that f(xj) does not depend on f⊥. Then the empirical risk does not depend on
f⊥. Furthermore, since Ω is stricly increasing we have

Ω(‖f‖H) = Ω
(√
‖f‖‖2H + ‖f⊥‖2H

)
≥ Ω(‖f‖‖H)
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and the minimum will be obtained when f⊥ = 0. Since choosing f⊥ = 0 does not affect the
empirical risk but strictly decreases the penalty term, any minimizer must have f⊥ = 0.

4 Regression

We present here the problem of regression in a simple setting. We will use the quadratic loss
function and a power limitation on the function chosen. Thus, given a learning set of N examples
(xi, yi) we want to find a regression function f in order to minimize

R(f) =
∑
i

(yi − f(xi))
2 + λ‖f‖2H

where H is some RKHS of functions from X to R, whith reproducing kernel k. Application of the
representer theorem leads to the conclusion that a function minimizing the empirical risk will be
written as

f(x) =
N∑
i=1

αik(x, xi)

Thus if we introduce the vector kx = (k(x, x1), . . . , k(x, xN ))> and the vector α = (α1, . . . , αN )>,
we will have f(x) = k>xα. Furthermore, the vector f containing the f(xi) can be written as

f =

 k>x1
...

k>xN

α = Kα where K =

 k>x1
...

k>xN


Note that due to symmetry, the matrix K is self adjoint, and furthermore Kij = k(xi, xj) =
k(xj , xi). This matrix is called the Gram matrix.

From these notations, we get
∑

i(yi− f(xi)) = (y−Kα)>(y−Kα). Furthemore, the square norm
of f is evaluated as

‖f‖2H =
〈
f
∣∣f〉 =

∑
i,j

αiαj
〈
k(., xi)

∣∣k(., xj)
〉

=
∑
i,j

αiαjk(xi, xj) = α>Kα

Therefore solving f = arg minR(f) is equivalent to solving

α? = arg min
α

(y −Kα)>(y −Kα) + λα>Kα

Setting the gradient of the objective to zero we get −2Ky + 2(K2 + λK)α = 0 so that we obtain
α? = (K + λI)−1y. If we want to predict the value y at a test point x, we will then propose
y = kx

>(K + λI)−1y.

5 Classification: SVM and their kernel counterparts

Suppose we are given N training samples (xi, yi) ∈ X× {−1, 1}. yi is called the class to which the
corresponding element xi belongs. The aim of supervised classification is to learn a classification
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rule from the examples provided. The basic idea is to find a partition of the space X into two
subsets such that each of the subset is a class. In linear classification, the set of observation is cut
into two pieces by an hyperplane. We thus suppose that X is equipped with a scalar product, and
we can define an hyperplane w as the set of points such that

〈
x
∣∣w〉+ b = 0 where b is a scalar. The

hyperplane is the set of point that project orthogonally on the same point on the line defined by
w. w is orthogonal to the hyperplane. The set of training examples is said to be linearly separable
is the classes can be separated by an hyperplane. In that case the decision function

f : X −→ {−1,+1}
x 7−→ fw,b(x) = Sign(

〈
x
∣∣w〉+ b)

will give the good decision for the training examples. Note however that multiplying w and b by the
same scalar will give the same hyperplane. Thus to eliminate this degree of freedom, something has
to be fixed. A way is to require that the points closest to the hyperplane give exactly±1 =

〈
x
∣∣w〉+b.

Choose two such points, each one being on each side of the hyperplane. Then we have〈
x1

∣∣w〉+ b = 1 = −(
〈
x2

∣∣w〉+ b)

and thus
〈
x1 − x2

∣∣w〉 = 2 meaning that the distance between those points and the hyperplane is
1/‖w‖2. Since this is the distance between the closest points to the separating hyperplane, this
quantity is called the margin.

Thus the ideas of linear classification is to find an hyperplane that correctly classifies the training
examples and that is chosen in order to maximize the margin. A training example is correctly
classified if yi(

〈
xi
∣∣w〉) ≥ 1. Thus the classification approach can be stated as

max
w∈X,b∈R

1

‖w‖2

subject to yi(
〈
xi
∣∣w〉+ b) ≥ 1,∀i = 1, . . . , N

or equivalently

min
w∈X,b∈R

1

2
‖w‖2

subject to yi(
〈
xi
∣∣w〉+ b) ≥ 1,∀i = 1, . . . , N

To solve this problem, consider the Lagrangian

L(w, b,α) =
1

2
‖w‖2 +

∑
i

αi
(
1− yi(

〈
xi
∣∣w〉+ b)

)
where the N dual variables αi are positive. Recall that the KKT conditions for optimality are given
by

∇wL = 0
∂L

∂b
= 0

yi(
〈
xi
∣∣w〉+ b) ≥ 1,∀i = 1, . . . , N

αi ≥ 0,∀i = 1, . . . , N

αi
(
1− yi(

〈
xi
∣∣w〉+ b)

)
= 0,∀i = 1, . . . , N

12



The two first lines leads to

w =
∑
i

αiyixi∑
i

αiyi = 0

Furthermore, from the last KKT conditions, for all i = 1, . . . , N we have either αi = 0 and
yi(
〈
xi
∣∣w〉+b) ≥ 1, or αi > 0 and yi(

〈
xi
∣∣w〉+b) = 1. The points xi for which αi > 0 and yi(

〈
xi
∣∣w〉+

b) = 1 lies precisely on the plane defined by the margins and are the only one participating in w
since the other are characterized by αi = 0. The points for which αi > 0 are called the support
vectors of the classifier.

The dual problem is obtained by injecting in the original Lagrangian the optimality conditions in
w and b and maximizing the result (this come from the saddle-point sufficient condition on the
Lagrangian for optimality).

Thus inserting w =
∑

i αiyixi and
∑

i αiyi = 0 into L we obtain

L(α) =
∑
i

αi −
1

2

∑
i

αiαjyiyj
〈
xi
∣∣xj〉

which has to be maximized subjected to the constraints αi ≥ 0,∀i = 1, . . . , N and
∑

i αiyi = 0.

Now the decision function writes

fw,b(x) = Sign(
〈
x
∣∣w〉+ b)

= Sign(
∑
i

αiyi
〈
x
∣∣xi〉+ b)

and it only depends on the scalar product between the point to test and the data.

The dual formulation is very important if we want to generalize the approach using kernel. Indeed
everything which has been written up to this point would be valid if we replace xi by a nonlinear
transform Φ(xi) of it, it is to say if we embed the data in another space, where hopefully linear
separability would be attained. But this is precisely the setting we described to motivate RKHS
and the use of kernels to evaluate scalar products between nonlinearly transformed data points.
Therefore if we want to use the support vector classifier in a nonlinear setting, it will be easy if we
use a description wich only uses scalar product. This is precisely obtained in the dual formulation.
Thus, the nonlinear classifier decision function with kernel k will be

fw,b(x) = Sign(
∑
i

αiyik(x,xi) + b)

where the α solve

max
α

∑
i

αi −
1

2

∑
i

αiαjyiyjk(xi,xj)

subject to
∑
i

αiyi = 0 and αi ≥ 0∀i = 1, . . . , N

13



Furthermore, b is found from the KKT conditions αi
(
1− yi(

〈
xi
∣∣w〉+ b)

)
= 0, since for the support

vectors (αi > 0)

yi(
〈
xi
∣∣w〉+ b) = 1

⇐⇒
∑
j

αjyjk(xi,xj) + b = yi

Thus we can average yi −
∑

j αjyjk(xi,xj) over the support vectors xi to estimate b.

To illustrate, we generate 100 samples from a linear separable case and from the example of the
first section. Data points from the first class are obtained as i.i.d. samples from a two dimensional
Gaussian random variable with variance σ2I = 0.04I. Their label is -1. The second class labelled by
1 is generated by equispacing the N points on the unit circle and addin g to each a two dimensional
random Gaussian perturbation of variance σ2I = 0.04I. To train the classifier, we select 50 data
points at random. The results are plotted in figure 2. Circles are +1 labelled points. The big dots
represents the support vectors obtained by the algorithm. For the kernel example on the right we
chose the Gaussian radial kernel with variance 0.1. We only represent the result on the training
data set, and therefore no study in generalization is provided here. The black line is an estimation
of the separation ”hyperplane”.
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Figure 2: Illustration of linear separability in the feature space for SVM.

Note that generalization of the SVM to take into account ouliers or non separable case have been
developed and should be used in place of the very elementary presentation made here.
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6 Random variables and RKHS

We have seen that the usefulness of kernel methods is to deal with linear methods in spaces where
original data are embedded in order to be more efficiently represented. What happened if the data
are modeled as random variables? In this case, the image k(., X) of a random variable is a random
function in the RKHS. Furthermore, we have seen that RKHS may be infinite dimensional, and
then, studying the transformed data requires some care, and needs to deal with random variable
taking values in Hilbert spaces.

Thus we will consider random variables taking values in some space X which is supposed to be
equipped with some σ-algebra B. Typically X will be Rn with the Borel σ-algebra. We consider
a kernel k (symmetric, positive-definite function) measurable on (X,B). We consider a random
variable X on a probability space (Ω,F , P ) that takes values in X and whose probability measure
is denoted as PX , where as usual, PX(B) = P (X−1(B)),∀B ∈ B.

The aim here is to describe the random variable when embedded in the RKHS Hx associated with
k.

Prior studying the case of the embeding in a RKHS, let us consider the case of random variables
which take values in a Hilbert space. A lemma states that a function from (Ω,F , P ) toH is a random
variable with values in H if and only if x∗(X) is a real random variable for any x∗ ∈ H∗. Since
the dual of a Hilbert space can be identified to itself, the linear form simply writes x∗(X) =

〈
x
∣∣X〉

where x ∈ H. Now, the linear form on H defined by `X(x) = E
〈
x
∣∣X〉 is bounded whenever

E‖X‖ < +∞, and thus there exist a unique element mX of H such that E
〈
x
∣∣X〉 =

〈
x
∣∣mX

〉
. mX

is the mean element and is denoted as E[X]. Now, the space L2
H(P ) of square integrable elements

of H, i.e. E‖X‖2 < +∞ equipped with
〈
X
∣∣Y 〉

L2 := E
〈
X
∣∣Y 〉H is a Hilbert space.

The covariance operator is a linear operator from H to H defined by ΣX : x 7−→ ΣX(x) :=
E
[〈
x
∣∣X −mX

〉
(X −mX)

]
. It is bounded whenever X ∈ L2

H(P ). Likewise, we can define a cross-
covariance operator between two elements X,Y of L2

H(P ) by the bounded linear operator from
H to itself defined by ΣXY (x) := E[

〈
x
∣∣X〉Y ]. The ajdoint operator defined by

〈
Σ∗XY (y)

∣∣x〉 is
then ΣY X since by definition ΣY X(y) = E[

〈
y
∣∣Y 〉X]. Note that the two operators are completely

defined by
〈
y
∣∣ΣXY (x)

〉
= E

〈
x
∣∣X〉〈y∣∣Y 〉. To conclude this rapid presentation, what happens if the

space is Rn. Then we work with usual vectors and the usual euclidean inner product to write that〈
y
∣∣ΣXY (x)

〉
= y>ΓY Xx = x>ΓXY y where Γ.. is the covariance matrix! Likewise, the mean element

is the mean vector!

We now go back to the particular problem of reproducing kernel Hilbert spaces. The mean element
mX of X in H is the function defined by mX = E[k(., X)]. To exist, the kernel should be integrable.
This requires

E[‖k(., X)‖] = E
[∣∣〈k(., X)

∣∣k(., X)
〉∣∣1/2]

= E
[
k(X,X)1/2

]
< +∞

a condition that we assume. We will in fact require for all the kernel we use that they are square
integrable, meaning that E[‖k(., X)‖2] = E[k(X,X)] < +∞. Then, note that by Jensen inequality
for concave functions E[f(X)] ≤ f(E[X]) that this implies the kernel is integrable.
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Now, let f ∈ Hx. Then the mean value of f at X

E[f(X)] = E[
〈
f
∣∣k(., X)

〉
]

=
〈
f
∣∣E[k(., X)]

〉
=

〈
f
∣∣mX

〉
We obtain thus the important result that knowing the mean element allows to evaluate the expec-
tation of any function in Hx. Furthermore, the function mX can be found explicitly as

mX(u) = E[k(u,X)]

=

∫
k(u, x)dPX(x)

Definition Characteristic kernel A kernel k is characteristic if the map Mk : P → Hk, P 7→ mP is
injective, or equivalently if

〈
f
∣∣mQ

〉
=
〈
f
∣∣mP

〉
∀f ∈ Hk =⇒ P = Q

Here, we have denoted as mP the mean element in the RKHS of a random variable distributed
under the probability P ∈ P, the set of probability measures on the underlying space. Hk stands
for the RKHS generated by k. The mean element of a characteristic kernel is thus a generalisation
of the notion of characteristic functions.

We can now turn to the covariance operator definition. Let two random variables X and Y on
measurable spaces X and Y. The pair is assumed measurable on the product space as well. We
call PXY their joint probability measure. We embed them into RKHS Hx and Hy using kernels
kx and ky. We would like to characterize the covariance between elements of the two RKHS, it is
to say studying Cov [f(X), g(Y )] where f and g are elements of Hx and Hy respectively. Since g
belongs to Hy we can write

Cov [f(X), g(Y )] = Cov
[
f(X),

〈
g
∣∣ky(., Y )

〉
Hy

]
=

〈
g
∣∣Cov [f(X), ky(., Y )]

〉
Hy

Thus we see that the covariance may be expressed as a linear functional inHy. From a generalization
to the Riesz representation theorem for operators between different spaces, there exists a unique
operator ΣY X : Hx −→ Hy defined by f 7→ ΣY Xf = Cov [f(X), ky(., Y )] and called the cross-
covariance operator. Its explicit expression is then

(ΣY Xf)(u) =

∫ (
f(x)− E[f(X)]

)(
ky(u, y)−mY (u)

)
dPXY (x, y)

Obviously, this definition includes the definition of the covariance operator as the unique operator
ΣXX : Hx −→ Hx defined by f 7→ ΣXXf = Cov [f(X), kx(., X)] and called the cross-covariance
operator. Its explicit expression is then

(ΣXXf)(u) =

∫ (
f(x)− E[f(X)]

)(
kx(u, x)−mX(u)

)
dPX(x)
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The key in defining these operators is the linear functional approach and the application of the
Riesz representation theorem. This theorem shows unicity for bounded linear operators. Linearity
is obvious when considering the covariance as a functional on Hy. Boundedness is verified by the
following set of inequalities, applying Schwartz inequality and Jensen inequality∣∣Cov [f(X), g(Y )]

∣∣ ≤ ∣∣E[〈f ∣∣kx(., X)
〉
Hx

〈
g
∣∣ky(., Y )

〉
Hy

]∣∣+
∣∣E[〈f ∣∣kx(., X)

〉
Hx

]∣∣∣∣E[〈g∣∣ky(., Y )
〉
Hy

]
≤ E[‖f‖Hx‖g‖Hykx(X,X)1/2ky(Y, Y )1/2] + E[‖f‖Hxkx(X,X)1/2]E[‖g‖Hyky(Y, Y )1/2]

=
(
E[kx(X,X)1/2ky(Y, Y )1/2] + E[kx(X,X)1/2]E[ky(Y, Y )1/2]

)
‖f‖Hx‖g‖Hy

≤
(
E[kx(X,X)]1/2E[ky(Y, Y )]1/2 + E[kx(X,X)1/2]E[ky(Y, Y )1/2]

)
‖f‖Hx‖g‖Hy

≤ 2E[kx(X,X)]1/2E[ky(Y, Y )]1/2‖f‖Hx‖g‖Hy

The Adjoint operator, defined as
〈
Σ∗Y Xg

∣∣f〉Hx =
〈
g
∣∣ΣY Xf

〉
Hy is obviously ΣXY .

Another interpretation of the covariance. As a mean element, the covariance operator can be
interpreted as the mean of a kernel in an appropriate RKHS. It suffices to consider the tensor
product of the kernels and its associated RKHS. Recall that given two Hilbert spaces H1 and H2,
their tensor product is roughly the set of linear combinations of cross-products of H1 and H2. The
formal definition is the following. There is one vector space H1 ⊗H2 and one bilinear application
π : H1×H2 −→ H1⊗H2 such for any other other vector space and bilinear form f : H1×H2 −→ F ,
f is uniquely written as ϕ ◦ π where ϕ is linear from H1 ⊗H2 to F . A natural scalar product on
H1 ⊗H2 is 〈

x1 ⊗ x2
∣∣y1 ⊗ y2〉 =

〈
x1
∣∣y1〉H1

〈
x2
∣∣y2〉H2

Then coming back to the covariance we have

Cov [f(X), g(Y )] = E[f(X)g(Y )]− E[f(x)]E[g(Y )]

= E
[〈
f ⊗ g

∣∣kx(., X)⊗ kY (., Y )
〉
Hx⊗Hy

]
−
〈
f
∣∣mX

〉
Hx

〈
g
∣∣mY

〉
Hy

=
〈
f ⊗ g

∣∣E[kx(., X)⊗ kY (., Y )
]〉
Hx⊗Hy −

〈
f ⊗ g

∣∣mX ⊗mY

〉
Hx⊗Hy

=
〈
f ⊗ g

∣∣E[(kx(., X)−mX)⊗ (kY (., Y )−mY )
]〉
Hx⊗Hy

Thus the covariance can be seen as the mean kernel in the tensorial product of the RKHS. It is
explicitly given by

mX,Y (u, v) =

∫
(kx(u, x)−mX(u))(ky(v, y)−mY (v))dPX,Y (x, y)

Using the integral expression for ΣXY we have

(ΣY Xf)(v) =

∫ (
f(x)− E[f(X)]

)(
ky(v, y)−mY (v)

)
dPXY (x, y)

=

∫ (〈
f(.)

∣∣k(., x)−mX(.)
∣∣〉
Hx

)(
ky(v, y)−mY (v)

)
dPXY (x, y)

=
〈
f(.)

∣∣mX,Y (., v)
〉
Hx

Thus, ΣXY and mXY are identified by this relation.

17



6.1 Estimation

Even if operators between infinite dimensional space, covariance operators can be consistently
estimated! Let (Xi, Yi) N identically distributed realizations of the random variables X and Y .

The mean and the covariance are then estimated using their empirical estimators, of

m̂N
X =

1

N

N∑
i=1

kx(., Xi)

m̂N
XY =

1

N

N∑
i=1

(kx(., Xi)− m̂X)⊗ (ky(., Yi)− m̂Y )

If the realization are independent or satisfy some mixing conditions, then the law of large number
may be applied to prove the almost sure convergence of these estimators. In [?], it is shown that√
N(m̂N

X/N − E[k(., X)]) converges to (weakly) to a gaussian probability on H with covariance
Cov [f(X), g(X)], f and g in H.

We can also show that the estimator converges strongly. Let us evaluate ε2N = E‖m̂N
X −mx‖2. We

have

ε2N =
1

N2
E‖
∑
i

(k(., Xi)−mX) ‖2

=
1

N2

∑
i,j

E
[
k(Xi, Xj)−mX(Xi)−mX(Xj)− ‖mX‖2

]
Note that ‖mX‖2 =

∫
k(x, y)dPX(x)dPX(y). Furthermore by definition of the mean, E[mX(Xi)] =〈

mX

∣∣mX

〉
= ‖mX‖2. We also have for i 6= j Ek(Xi, Xj) =

∫
k(x, y)dPX(x)dPX(y) = ‖mX‖2.

Therefore, the cross term cancelled, and the final result is

ε2N =
1

N

(
Ek(X,X)− ‖mX‖2

)
=

1

N
E
∥∥k(., X)−mX

∥∥2
Practically, these operators will be used by applying them to functions in the RKHS. But, when
dealing with a finite number of observations, we have seen in the previous sections that most of
optimizing function are finite combination of the kernel, if the optimizers are searched for in the
RKHS. Thus, practically, these empirical operators will be applied to functions in the form

f(.) =

N∑
i=1

αikx(., Xi)
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Let us now explicitly write the result of these applications. First, consider m =
〈
f
∣∣m̂N

X

〉
. We have

m =
〈 N∑
i=1

αikx(., Xi)
∣∣ 1

N

N∑
i=1

kx(., Xi)
〉

=
1

N

N∑
i,j=1

αi
〈
kx(., Xi)

∣∣kx(., Xj)
〉

=
1

N

N∑
i,j=1

αikx(Xi, Xj)

Consider the matrix Kx with entries Kx,ij = kx(Xi, Xj). We already have seen this matrix called
the Gram matrix. Introduce also α = (α1, . . . , αN )> and 1N = (1/N, . . . , 1/N)> to finally write

m = 1>NKxα = α>Kx1N

Note that this formula leads to
〈
k(., Xi)

∣∣m̂N
X

〉
= δ>i Kx1N where δi is a vector of zeros except a 1

at the ith position.

Note that once again, the mean can be calculating without embedding explicitely the data into the
RKHS, but just by using the kernel evaluated at the data points.

Now for the covariance, let us first evaluate

〈
f(.)

∣∣m̂N
XY (., v)

〉
Hx =

〈 N∑
i=1

αikx(., Xi)
∣∣ 1

N

N∑
i=1

(kx(., Xi)− m̂X)(ky(v, Yi)− m̂Y (v))
〉
Hx

=
1

N

N∑
i,j=1

αi
〈
kx(., Xi)

∣∣(kx(., Xj)− m̂X)
〉
Hx(ky(v, Yj)− m̂Y (v))

=
1

N

N∑
i,j=1

αi

(〈
kx(., Xi)

∣∣(kx(., Xj)
〉
−
〈
kx(., Xi)

∣∣m̂X)
〉)

(ky(v, Yj)− m̂Y (v))

=
1

N

N∑
i,j=1

αi(Kx,ij − δ>i Kx1N )(ky(v, Yj)− m̂Y (v))

=
1

N

N∑
j=1

(
(α>Kx)j −α>Kx1N

)
(ky(v, Yj)− m̂Y (v))
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We can now apply this result to a function g ∈ Hy to obtain〈
g
∣∣Σ̂Y Xf

〉
= Cov [g(Y ), f(X)]

=
1

N

N∑
j=1

(
(α>Kx)j −α>Kx1N

)〈 N∑
i=1

βiky(v, Yi)
∣∣ky(v, Yj)− m̂Y (v)

〉
=

1

N

N∑
j=1

(
(α>Kx)j −α>Kx1N

) N∑
i=1

βi
(
Ky,ij − δ>i Ky1N

)
=

1

N

N∑
j=1

(
(α>Kx)j −α>Kx1N

)(
(β>Ky)j − β>Ky1N

)
=

1

N
α>Kx(I − 1

N
11>)Kyβ

The matrix C = I − 1
N 11> is the so-called centering matrix. If the mean operators are zero, then

this matrix does not appear in these calculations. Note that C is idempotent, C2 = C.

The main conclusion of this is the fact that the empirical mean and covariance operators are simply
linked to the Gram matrices of the kernels.

7 Dependence measures

As application of the statistics in RKHS we present now recent development of their use to assess
independence.

7.1 Independence measures

Measuring or assessing correlation is a very easy task from observations: we just need to estimate
the correlation! Assessing independence is much more difficult to verify. A basic definition of
independence is the fact that probability of independent events factorizes. By extension, two
random variables are said independent if and only if Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B).
This implies factorization of joint densities if they exist, of moments of separable functions, . . . Thus,
measures of independence are quite difficult to use. Approximate measures can exist, for example
relying on cumulants of small orders. A popular way for assessing independence is to measure a
divergence between a joint measure and the product of its marginal. If the divergence is well chosen,
such as e.g. Kulback divergence, then independence is equivalent to zero divergence. However,
divergences are difficult to estimate.

Another simple result may guide us in developing the intuition of using kernel for this problem. X
and Y are independent if and only if Cov [f(X), g(Y )] = 0 for any continuous bounded function f
and g. Evaluating these covariance for all functions may be cumbersome. However it is tempting
to use this over a sufficiently rich class of function. This leads to the following measure.
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Let Hx and Hy be RKHS. Then we measure the maximum correlation between transforms of X
and Y using function from the RKHS. Let

COCO(X,Y ;Hx,Hy) := sup
f∈Hx,g∈Hy

Cov [f(X), g(Y )]

The problem of course is to ensure that the spaces are rich enough so that the result for bounded
continuous functions remains valid. Here, the concept of universal kernel enters as a fundamental
concept.

A kernel is universal if its RKHS in dense into the space of continuous bounded functions for the sup
norm. In this case, any continuous bounded functions can be approximately as closely as possible
by a function in the RKHS.

We have the following result:

Theorem 7.1 Suppose Hx,Hy are RKHS of universal kernels. Then X and Y are independent if
and only if COCO(X,Y ;Hx,Hy) = 0.

Proof If X and Y are independent, then for any f and g Cov [f(X), g(Y )] = 0. The sufficient
condition is more tedious.

Suppose COCO(X,Y ;Hx,Hy) = 0. To show independence it suffices to show that this implies
COCO(X,Y ; C(X ), C(Y)) = 0 where C(X ) is the set of continuous bounded functions defined on
X .

The inverse will be shown: if COCO(X,Y ; C(X ), C(Y)) > 0 then COCO(X,Y ;Hx,Hy) > 0.

Let f ∈ C(X ), g ∈ C(Y). For any fx and gy of respectively Hx,Hy we have∣∣Cov [fx, gy]− Cov [f, g]
∣∣ =

∣∣Cov [fx − f, gy − g] + Cov [f, gy − g] + Cov [fx − f, g]
∣∣

≤
∣∣Cov [fx − f, gy − g]

∣∣+
∣∣Cov [f, gy − g]

∣∣+
∣∣Cov [fx − f, g]

∣∣
Furthermore,∣∣Cov [fx − f, gy − g]

∣∣ ≤ ∣∣E[(fx − f)(gy − g)]
∣∣+
∣∣E[(fx − f)]E[(gy − g)]

∣∣
≤ 2‖fx − f‖∞‖gy − g‖∞∣∣Cov [f, gy − g]

∣∣ ≤ ∣∣E[f(gy − g)]
∣∣+
∣∣E[f ]E[(gy − g)]

∣∣
≤ 2‖gy − g‖∞‖f‖∞

Therefore∣∣Cov [fx, gy]− Cov [f, g]
∣∣ ≤ 2‖fx − f‖∞‖gy − g‖∞ + 2‖gy − g‖∞‖f‖∞ + 2‖fx − f‖∞‖g‖∞

and we obtain

Cov [fx, gy] ≥ Cov [f, g]− 2‖fx − f‖∞‖gy − g‖∞ − 2‖gy − g‖∞‖f‖∞ − 2‖fx − f‖∞‖g‖∞
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Now the argument goes as follows. Let B(X ) ⊂ C(X ) the subset of bounded continuous functions
with sup norm less than or equal to 1. Then,

sup
f∈B(X ),g∈B(Y)

Cov [f(X), g(Y )] ≤ sup
f∈C(X ),g∈C(Y)

Cov [f(X), g(Y )]

Thus it suffices to work on these unit ball sets. Call c = supf∈B(X ),g∈B(Y) Cov [f(X), g(Y )] and

assume it is strictly positive. Note that is necessarily lower than 2 since
∣∣Cov [f, g]

∣∣ ≤ 2‖f‖∞‖g‖∞.
Since c is a supremum, there exist f and g in B(X ) and B(Y) such that Cov [f(X), g(Y )] > c/2.
We have to show that we can find fx and gy such that their covariance will remain strictly positive.

Let εx such that cα ≥ ε > 0 for some positive α . Since Hx (resp. Hy) is dense in C(X ) (resp.
C(Y)), we can find fx ∈ Hx, (resp. gy ∈ Hy) such that ‖fx− f‖∞ ≤ ε (resp. ‖gy − g‖∞ ≤ ε). Thus
from the minorization above and the fact that f, g have norm less than 1, we obtain

Cov [fx, gy] ≥ Cov [f, g]− 2ε2 − 2ε− 2ε

≥ c/2.
(
1− 8α− 4α2c)

which is strictly positive if c < 1/(4α2)−2/α. Since c is lower than 2, choosing α = 1/10 is sufficient
to ensure that Cov [fx, gy] > 0.

Of course to be useable, the measure needs to be easily estimable. It turns out that if we restrict
the functions f and g to be of norm less than one, a beautiful estimator can be exhibited, without
loosing the previous result. Indeed the previous theorem remains true if we restrict the function
to belong to the unit ball in their respective RKHS. It suffices to renormalize the covariance at the
end of the proof by the norms of the functions, ‖f‖Hx and ‖y‖Hy .

Therefore, the measure used is

COCO(X,Y ;Hx,Hy) := sup
f∈Ux,g∈Uy

Cov [f(X), g(Y )]

where Ux = {f ∈ Hx
/
‖f‖Hx ≤ 1}. Thus, if we write this using the covariance operator we end up

with

COCO(X,Y ;Hx,Hy) = sup
f∈Ux,g∈Uy

〈
g
∣∣ΣY Xf

〉
Hy

This is precisely the norm of the operator. Indeed, the operator norm is defined as

‖A‖ = sup
f∈Ux

‖Af‖Hy

But using Cauchy-Schwartz we have |
〈
g
∣∣f〉| ≤ ‖g‖Hy‖f‖Hy so that ‖g‖Hy = supf∈Uy |

〈
g
∣∣f〉|.

If we are given N realizations Xi, Yi of the random variables, then the measure will be estimated
as

COCO(Xi, Yi;Hx,Hy) = sup
f∈Ux,g∈Uy

〈
g
∣∣Σ̂Y Xf

〉
Hy
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wich can be evaluated in close form! In fact we can apply the representer theorem to sow that a
solution of the opimization problem here can be search for as f =

∑
i αik(., Xi) and g =

∑
i αik(., Yi)

and using the empirical form of the covariance operator obtained in the preceding paragraph, and
the fact that ‖f‖2 =

∑
i,j αiαj

〈
k(., Xi)

∣∣k(., Xj)
〉

= α>Kxα, we immediately get

COCO(Xi, Yi;Hx,Hy) = sup
α>Kxα=β>Kyβ=1

1

N
α>KxCKyβ

where recall that C = I − 1
N 11>.

A first way to handle that is to et α↔K
1/2
x α and β ↔K

1/2
y β this reduces to

COCO(Xi, Yi;Hx,Hy) = sup
α>α=β>β=1

1

N
α>K1/2

x CK1/2
y β

=
1

N

∥∥∥K1/2
x CK1/2

y

∥∥∥
2

where ‖A‖2 is the usual matrix spectral norm, ‖A‖2 =
√
λm(A>A), where λm is the largest

eigenvalue.

Noting that λm(B) =
√
λm(BB) we have ‖AA>‖2 = ‖A>A‖2 = ‖A‖22. Further, if we denote

K̃x = CKxC, if we recall that CC = C, and that all the matrices are symmetric, then we have

COCO(Xi, Yi;Hx,Hy) =
1

N

√∥∥∥K1/2
x CK

1/2
y K

1/2
y CK

1/2
x

∥∥∥
2

=
1

N

√∥∥∥K1/2
x CK̃

1/2
y K̃

1/2
y CK

1/2
x

∥∥∥
2

=
1

N

√∥∥∥K̃1/2
y CK

1/2
x K

1/2
x CK̃

1/2
y

∥∥∥
2

=
1

N

√∥∥∥K̃1/2
y K̃xK̃

1/2
y

∥∥∥
2

But this requires the calculation of the square roots and of the eigenvalues which may by demanding
in terms of calculation. For a sample of size N , the matrices are N dimensional. For large data sets,
this approach may not be very practical. There is another way of using the covariance operators to
create independence measures, and uses another operator norm called the Hilbert-Schmidt norm.
This requires some insights into Hilbert-Schmidt operators.

An operator from A : Hx −→ Hy is said to be Hilbert-Schmidt if for any complete orthonormal
systems {ϕi} of Hx, the quantity

‖A‖2HS =
∑
i

∥∥Aϕi‖2Hy
is finite. This is a norm on the space of HS operator. Its independent on the choice of the basis.
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Indeed, let {ϕ′i} another ON basis of Hx. Then∑
i

∥∥Aϕi‖2Hy =
∑
i

∥∥(A>A)1/2ϕi‖2Hx

=
∑
i

∑
k

∣∣〈ϕ′k∣∣(A>A)1/2ϕi
〉
Hx

∣∣2
=

∑
k

∥∥(A>A)1/2ϕ′k‖2Hx

where the second line is nothing but Parseval equality. The norm has also an expression involving
a basis in Hy. Let {ψ′i} a ON basis of Hy. Then

‖A‖2HS = =
∑
i

〈
Aϕi

∣∣Aϕi〉Hy
=

∑
i

〈∑
k

< ψk
∣∣Aϕi >Hy ψk∣∣Aϕi〉Hy

=
∑
i,k

〈
ψk
∣∣Aϕi〉2Hy

Theorem VI-23 in Reed&Simon states that operators A defined on L2(X , dP ) are Hilbert-Schmidt
if and only if there is a kernel K ∈ L2(X × X , dP ⊗ dP ) such that

(Af)(x) =

∫
K(x, y)f(y)dP (y)

The Hilbert-Schmidt norm is then given by

‖A‖2HS =

∫ ∣∣K(x, y)
∣∣2dP (x)dP (y)

Finally it is known that ‖A‖ ≤ ‖A‖HS .

We can now come back to the covariance operator. The HS norm of its estimator will be evaluated
as follows. Pick any basis in Hx. We have

‖Σ̂Y X‖2HS =
∑
i

〈
Σ̂Y Xϕi

∣∣Σ̂Y Xϕi
〉

and recall that Σ̂Y Xϕi = N−1
∑

k k̃y(., Yk)
〈
k̃x(., Xk)

∣∣ϕi〉, where k̃x := kx − m̂X . Thus,

‖Σ̂Y X‖2HS =
1

N

∑
i,k

〈
k̃y(., Yk)

∣∣Σ̂Y Xϕi
〉〈
k̃x(., Xk)

∣∣ϕi〉
‖Σ̂Y X‖2HS =

1

N2

∑
i,k,l

〈
k̃y(., Yk)

∣∣k̃y(., Yl)〉〈k̃x(., Xl)
∣∣ϕi〉〈k̃x(., Xk)

∣∣ϕi〉
=

1

N2

∑
k,l

(K̃y)kl
〈∑

i

〈
k̃x(., Xl)

∣∣ϕi〉ϕi∣∣k̃x(., Xk)
〉

=
1

N2

∑
k,l

(K̃y)kl
〈
k̃x(., Xl)

∣∣k̃x(., Xk)
〉

=
1

N2

∑
k,l

(K̃y)kl(K̃x)kl

=
1

N2
Tr
(
K̃yK̃x

)
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In these expressions, K̃ is the Gram matrix associated with the corresponding centered kernel,
and is is easy to show that K̃ = CKC. ‖Σ̂Y X‖2HS = N−2Tr

(
KyCKxC

)
. Then Comparing this

with COCO, we see that calculating the Hilbert-Schmidt norm is much easier, since we just have
to take the trace instead of calculating singular values. Furthermore the trace norm is bigger than
the usual 2 norm. Thus if it is zero, then COCO is zero and the variables independent. Thus we
have the same theorem with the Hilbert-Schmidt norm than with the usual 2 norm.

7.2 Conditional independence measures

Some recalls

Let X,Y, Z be three random variables in Rp, and X̂(Z) and Ŷ (Z) the best linear MMSE estimates
of X and Y based on Z. It is well-known that these are given by X̂(Z) = ΣXZΣ−1ZZZ and Ŷ (Z) =

ΣY ZΣ−1ZZZ. The errors X − X̂(Z) are orthogonal to the linear subspace generated by Z, and this
can be used to show the well-known relations

ΣXX|Z := Cov
[
X − X̂(Z), X − X̂(Z)

]
= ΣXX − ΣXZΣ−1ZZΣZX

ΣXY |Z := Cov
[
X − X̂(Z), Y − Ŷ (Z)

]
= ΣXY − ΣXZΣ−1ZZΣZY

ΣXX|Z is the covariance of the error in estimating X linearly from Z. It is also called the partial
covariance and it is equal to the conditional covariance in the Gaussian case. The second term
measures the correlation remaining between X and Y once the effect of their possibly common
observed cause Z has been linearly removed from them. ΣXY |Z is called the partial cross-covariance
matrix and is equal to the conditional cross-covariance in the Gaussian case.

Therefore, in the Gaussian case, conditional independence can be assessed using linear prediction on
the partial cross-covariance matrix. This has led to extensive development in the field of graphical
modeling.

Using kernels

The approach above can be extended to assess conditional independence. It relies on the notion
of conditional cross-covariance operators, a natural extension of the covariance operators. Having
in mind that cross-covariance operators suffices to assess independence (as cross-covariance does in
the finite dimensional Gaussian case), the idea is to study

ΣXY |Z := ΣXY − ΣXZΣ−1ZZΣZY

as a potential candidate to assess conditional independence. The first remark concerns the existence
of this operator.

ΣZZ is an operator from Hz to itself. Let ker ΣZZ and Im ΣZZ be respectively its kernel and its
range. We will suppose that it is invertible on its range and we will abusively denote the inverse
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as Σ−1ZZ . The inverse exits in full generality if and only if ker ΣZZ = {0} and Im ΣZZ = Hz,
corresponding to injectivity and surjectivity. Thus in the sequel, when dealing with ensemble
operators, covariance operator will be supposed invertible.

We could work with normalized covariance operators V , defined using ΣXY = Σ
1/2
XXVXY Σ

1/2
Y Y . Thus

we could use

ΣXY |Z := ΣXY − Σ
1/2
XXVXZVZY Σ

1/2
Y Y

and the normalized version

VXY |Z := VXY − VXZVZY

Several theorems show the meaning of these operators, and how we can assess conditional inde-
pendence with them. They are all mainly due to K. Fukumizu, F. Bach and M. Jordan in their
publications.

The first result links conditional expectation to covariance and cross-covariance operators.

Theorem 7.2 For all g ∈ Hy,〈
g
∣∣ΣY Y |Xg

〉
= inf

f∈Hx
E
[(

(g(Y )− E[g(Y )])− (f(X)− E[f(X)]
)2]

If furthermore the direct sum Hx + R is dense in L2(PX), then〈
g
∣∣ΣY Y |Xg

〉
= EX

[
Var[g(Y )

∣∣X]
]

The density assumption means than any second order random variable function of X can be ap-
proximated as closely as desired by a function Hx plus a real. Note that the result of the theorem
is an extension of what we recalled above, but stated in RKHS. The operator ΣY Y |X measures the
power of the error in approximating a function of a random variable in a RKHS by a function of
another in its respective RKHS. The second result generalizes the Gaussian case since under the
assumption of density the operator evaluates a conditional variance.

Proof Bidou’s proof. Let Eg(f) = E
[(

(g(Y )−E[g(Y )])− (f(X)−E[f(X)]
)2]

. Then f0 provides

the infimum if Eg(f0 + f)− Eg(f0) ≥ 0 for all f ∈ Hx. But we have

Eg(f0 + f)− Eg(f0) =
〈
ΣXXf

∣∣f〉+ 2
〈
ΣXXf0 − ΣXY g

∣∣f〉
Obviously, ΣXXf0 − ΣXY g = 0 satisfies the condition. It is also necessary. Indeed, suppose
ΣXXf0 − ΣXY g 6= 0. ΣXX is auto-ajoint and thus only has positive or null eigen values. Thus
ΣXXf = −f has no solution and ker ΣXX + I = 0 and ΣXX + I is invertible. Therefore there is an
non zero f such that ΣXXf + f = −2(ΣXXf0 − ΣXY g), and this f satisfies Eg(f0 + f)− Eg(f0) =
−
〈
f
∣∣f〉 < 0, giving a contradiction. Thus, this gives the result. Note we use the fact that ΣXX is

invertible, at least on its range.
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Fukumizu’s proof. The proof in Fukumizu’s paper does not need to explicitely solve the problem
and then does not require invertibility of the covariance.

If we write ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX then

Eg(f) := E
[(

(g(Y )− E[g(Y )])− (f(X)− E[f(X)]
)2]

=
〈
f
∣∣ΣXXf

〉
+
〈
g
∣∣ΣY Y g

〉
− 2
〈
g
∣∣ΣY Xf

〉
=

∥∥Σ
1/2
XXf

∥∥2 − 2
〈
VXY Σ

1/2
Y Y g

∣∣Σ1/2
XXf

〉
+
∥∥Σ

1/2
Y Y g

∥∥2
Rearranging the first two terms we obtain

Eg(f) =
∥∥Σ

1/2
XXf − VXY Σ

1/2
Y Y g

∥∥2 +
〈
g
∣∣ΣY Y g

〉
−
〈
VXY Σ

1/2
Y Y g

∣∣VXY Σ
1/2
Y Y g

〉
=

∥∥Σ
1/2
XXf − VXY Σ

1/2
Y Y g

∥∥2 +
〈
g
∣∣ΣY Y g

〉
−
〈
g
∣∣Σ1/2

Y Y VY XVXY Σ
1/2
Y Y g

〉
=

∥∥Σ
1/2
XXf − VXY Σ

1/2
Y Y g

∥∥2 +
〈
g
∣∣(ΣY Y − ΣY XΣ−1XXΣXY )g

〉
=

∥∥Σ
1/2
XXf − VXY Σ

1/2
Y Y g

∥∥2 +
〈
g
∣∣ΣY Y |Xg

〉
Then clearly

〈
g
∣∣ΣY Y |Xg

〉
≤ Eg(f) for any f ∈ Hx. Furthermore, let ε > 0, since VXY Σ

1/2
Y Y and

Σ
1/2
XX have the same range, there is an f0 such that

∥∥Σ
1/2
XXf0−VXY Σ

1/2
Y Y g

∥∥2 ≤ ε2. Thus, for any ε2,
there is a number Eg(f0) ≤

〈
g
∣∣ΣY Y |Xg

〉
+ ε2 and then

〈
g
∣∣ΣY Y |Xg

〉
is the greatest lower bound of

the set of these numbers. This proves the first claim of the theorem.

For the second assertion, use the following well-known relation

Var[X] = VarY [E[X|Y ]] + EY [Var[X|Y ]]

which states that the variance is the sum of the variance of the conditional mean and the mean of
the conditional variance. Applying it to g(Y )− f(X) leads to〈

g
∣∣ΣY Y |Xg

〉
= inf

f∈Hx
E
[(

(g(Y )− E[g(Y )])− (f(X)− E[f(X)]
)2]

= inf
f∈Hx

Var
[
g(Y )− f(X)

]
= inf

f∈Hx

(
VarX

[
E[g(Y )− f(X)

∣∣X]
]

+ EX
[
Var[g(Y )− f(X)

∣∣X]
])

= inf
f∈Hx

(
VarX

[
E[g(Y )

∣∣X]− f(X)
])

+ EX
[
Var[g(Y )

∣∣X]
]

since the variance is invariant under translation.

Clearly, if E[g(.)
∣∣X] ∈ Hx, then the result holds, but, this is not guaranteed. However, if E[g(.)

∣∣X]
is Px square integrable, then from the assumption of density, the infimum in the precious equation
can be made equal to zero.

We know that Var[E[g(Y )
∣∣X]] = Var[g(Y )] − E[Var[g(Y )|X]] and therefore Var[E[g(Y )

∣∣X]] ≤
Var[g(Y )]. We have supposed that the kernels involved are such that E[k(Y, Y )] < +∞ which
imply that Hy ∈ L2(PY ). Indeed, for g ∈ Hy, E[g(Y )2] = E[< g(.)|k(., Y ) >2] ≤ ‖g‖HyE[k(Y, Y )].
Thus, Var[E[g(Y )

∣∣X]] belongs to L2(PX). SinceHx+R is dense into L2(PX), for any ε > 0 there are
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a f ∈ Hx and a c ∈ R such that E[(E[g(Y )
∣∣X]−f(X)−c)2] < ε2. But VarX

[
E[g(Y )

∣∣X]−f(X)
]

=
VarX

[
g[E[g(Y )

∣∣X]− f(X)− c
]
≤ E[(E[g(Y )

∣∣X]− f(X)− c)2] ≤ ε2. Since ε is arbitrary, we thus

have inff∈Hx

(
VarX

[
E[g(Y )

∣∣X]− f(X)
])

= 0.

We have seen in the second part of the proof that the theorem does not require E[g(.)
∣∣X] ∈ Hx.

However if we suppose so, the statement and results are more direct. In that case, we have for any
g ∈ Hy

ΣXXE[g(.)
∣∣X] = ΣXY g(.)

and this provides a means of calculating the conditional mean in a RKHS if the covariance is
invertible. We now turn to the conditional cross-covariance, assuming that the conditional mean
of function of RKHS belongs to the proper RKHS.

The we have 〈
f
∣∣ΣXY |Zg

〉
= Cov [f(X), g(Y )]−

〈
f
∣∣ΣXZΣ−1ZZΣZY g

〉
= Cov [f(X), g(Y )]−

〈
ΣZXf

∣∣Σ−1ZZΣZY g
〉

= Cov [f(X), g(Y )]−
〈
ΣZXf

∣∣E[g(.)|Z]
〉

= Cov [f(X), g(Y )]−
〈
ΣZZE[f(.)|Z]

∣∣E[g(.)|Z]
〉

= Cov [f(X), g(Y )]− Cov Z

[
E[f(.)|Z], E[g(.)|Z]

]
= E[f(X)g(Y )]− EZ

[
E[f(.)|Z]E[g(.)|Z]

]
= EZ

[
E[f(X)g(Y )|Z]− E[f(.)|Z]E[g(.)|Z]

]
= EZ

[
Cov [f(X), g(Y )|Z]

]

The question is now to know whether conditional independence can be measured using the condi-
tional covariance operator. The first result shows that a zero conditional covariance operator is not
equivalent to conditional independence, but equivalent to a weaker form. The second result shows
how to slightly modify the covariance operator to obtain the equivalence.

We suppose in the following that the all the kernels in the game are characteristics, and that the
conditional mean involved belongs to the proper RKHS.

Theorem 7.3 Let X,Y, Z be three random vectors embedded in corresponding RKHS. Then we
have

1. ΣXY |Z = 0⇐⇒ PXY = EZ [PX|Z ⊗ PY |Z ]

2. Σ(XZ)Y |Z = 0⇐⇒ X ⊥ Y |Z.

Proof First assertion. We have seen that〈
f
∣∣ΣXY |Zg

〉
= E[f(X)g(Y )]− EZ

[
E[f(.)|Z]E[g(.)|Z]

]
28



which can be written as〈
f
∣∣ΣXY |Zg

〉
=

∫
f(x)g(y)PXY (dx, dy)−

∫
PZ(dz)

∫
f(x)g(y)PX|Z(dx, z)PY |Z(dy, z)

=

∫
f(x)g(y)PXY (dx, dy)−

∫
f(x)g(y)

∫
PZ(dz)PX|Z(dx, z)PY |Z(dy, z)

Thus obviously, if for all A and B in the adequate sigma algebra

PXY (A,B) =

∫
PZ(dz)PX|Z(A, z)PY |Z(B, z)

we have
〈
f
∣∣ΣXY |Zg

〉
= 0 for all f and g leading necessarily to ΣXY |Z = 0. Now if the covariance

operator is zero then we have for all f and g EPXY [f(X)g(Y )] = EQ
[
f(X)g(Y )

]
where Q =

EZ [PX|Z ⊗ PY |Z ]. Working in the tensorial product Hx ⊗Hy where we have assumed kx ⊗ ky as a
characteristic kernel allows to conclude that Q = PXY .

Second assertion. LetA,B,C be elements of the sigma algebra related toX,Y and Z respectively.
Let 1A the characteristic function of set A. Then we have

PXZY (A,C,B)− EZ [PXZ|Z(A,C)PY |Z(B)]

= E[1A×C(X,Z)1B(Y )]− EZ
[
E[1A×C(X,Z)|Z]E[1B(Y )|Z]

]
= EZ

[
E[1A×C(X,Z)1B(Y )]

]
− EZ

[
1C(X)E[1A(X)|Z]E[1B(Y )|Z]

]
= EZ

[
1C(Z)E[1A(X)1B(Y )|Z]

]
− EZ

[
1C(X)E[1A(X)|Z]E[1B(Y )|Z]

]
= EZ

[
1C(Z)

(
E[1A(X)1B(Y )|Z]− E[1A(X)|Z]E[1B(Y )|Z]

)]
=

∫
C
PZ(dz)

(
PX,Y |Z(A,B, z)− PX|Z(A, z)PX|Z(B, z)

)
If Σ(XZ)Y |Z = 0 then the first assertion implies PXZY = EZ [PXZ|Z⊗PY |Z ] and the previous integral
is equal to zero for any C, which in turn implies that PX,Y |Z(A,B, z)−PX|Z(A, z)PX|Z(B, z) almost
everywhere (PZ) for any A,B. But this is precisely the defintion of conditional independence. The
converse is evident. �

Estimation We now develop the estimators of the conditional measures, and give their representa-
tion in terms of Gram matrices. In the following, we suppress the indication of the RKHS in which
we work and this for the sake of readability. We recall that we have for N identically distributed
observations (Xi, Yi, Zi)

Σ̂XY f =
1

N

∑
k

k̃x(., Xk)
〈
k̃y(., Yk)

∣∣f〉
where the tilde means the kernel are centered. In the sequel, we also need to know how the
inverse (assuming it exists) acts on a function. For a covariance operator this can be studied using
orthonormal bases of eigen functions. For the empirical operator, we have the following heuristic.
Since it is not of full rank, the operator cannot be inverted. However, regularizing it allows to invert
it. Regularization can be done by adding a small diagonal operator. Let Σ̂r,XX this regularized
opertor. Now we now that applying its inverse to the direct operator, we should obtain the identity,
thus

Σ̂−1r,XXΣ̂r,XXf = f
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Since we work in the subspace generated by the N kx(., Xi) we should have the two following
relations

Σ̂−1r,XXΣ̂r,XXkx(., Xn) = kx(., Xn)

Σ̂−1r,XXkx(., Xn) =
∑
k

(Hx)nkkx(., Xk)

Therefore,

k̃x(., Xn) = Σ̂−1r,XX
1

N

∑
k

k̃x(., Xk)
〈
k̃x(., Xk)

∣∣kx(., Xn)
〉

=
1

N

∑
k,l

(K̃r,x)kn(Hx)lkkx(., Xl)

This is obtain if
∑

k(K̃r,x)kn(Hx)lk = Nδnl. Therefore, Hx = NK̃
−1
r,x, and we have

Σ̂−1r,XXkx(., Xn) = N
∑
k

(K̃
−1
r,x)nkkx(., Xk)

We can now obtain the representation of the empirical measures in terms of Gram matrices.

Matrix representation. We evaluate
〈
f
∣∣ΣXY |Zg

〉
for f(.) =

∑
i αik̃(., Xi) and g(.) =

∑
i αik̃(., Yi)

when we observe N triple Xi, Yi, Zi identically distributed. We already saw that〈
f
∣∣Σ̂XY g

〉
=

1

N
β>K̃yK̃xα

Then we have〈
f
∣∣Σ̂XZΣ̂−1ZZΣ̂ZY g

〉
=

∑
i,j

αiβj
〈
k̃x(., Xi)

∣∣Σ̂XZΣ̂−1ZZΣ̂ZY k̃y(., Yj)
〉

=
1

N2

∑
i,j,k

αiβj
〈
k̃x(., Xl)

∣∣k̃x(., Xi)
〉〈
k̃z(., Zl)

∣∣Σ̂−1ZZ k̃z(., Zk)〉〈k̃y(., Yk)∣∣k̃y(., Yj)〉
=

1

N

∑
i,j,k,l,m

αiβj(K̃y)kj(K̃x)li(K̃
−1
r,z )km(K̃z)ml

=
1

N
β>K̃yK̃

−1
r,zK̃zK̃xα

Thus we get 〈
f
∣∣Σ̂XY |Zg

〉
=

1

N
β>
(
K̃yK̃x − K̃yK̃

−1
r,zK̃zK̃x

)
α

Hilbert-Schmidt norms. We have∥∥∥Σ̂XY |Z

∥∥∥2
HS

=
∑
i

〈
Σ̂XY |Zϕi

∣∣Σ̂XY |Zϕi
〉

=
∥∥∥Σ̂XY

∥∥∥2
HS

+
∥∥∥Σ̂XZΣ̂−1ZZΣ̂ZY

∥∥∥2
HS
− 2

∑
i

〈
Σ̂XY ϕi

∣∣Σ̂XZΣ̂−1ZZΣ̂ZY ϕi
〉
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We develop the calculation for the double product term we call P . We have

P :=
∑
i

〈
Σ̂XY ϕi

∣∣Σ̂XZΣ̂−1ZZΣ̂ZY ϕi
〉

=
1

N

∑
i,k

〈
k̃y(., Yk)

∣∣ϕi〉〈k̃x(., Xk)
∣∣Σ̂XZΣ̂−1ZZΣ̂ZY ϕi

〉
=

1

N2

∑
i,k,l

〈
k̃y(., Yk)

∣∣ϕi〉〈k̃y(., Yl)∣∣ϕi〉〈k̃x(., Xk)
∣∣Σ̂XZΣ̂−1ZZ z̃y(., Zl)

〉
=

1

N

∑
k,l,m

(K̃y)kl(K̃
−1
r,z )lm

〈
k̃x(., Xk)

∣∣Σ̂XZkz(., Zm)
〉

=
1

N2

∑
k,l,m,n

(K̃y)kl(K̃
−1
r,z )lm

〈
k̃x(., Xk)

∣∣k̃x(., Xn)
〉〈
k̃z(., Zn)

∣∣k̃z(., Zm)
〉

=
1

N2

∑
k,l,m,n

(K̃y)kl(K̃
−1
r,z )lm(K̃x)kn(K̃z)mn

=
1

N2

∑
k,m

(K̃yK̃
−1
r,z )km(K̃zK̃x)mk

=
1

N2
Tr
(
K̃yK̃

−1
r,zK̃zK̃x

)
Carrying the same calculation on the last term allows to obtain∥∥∥Σ̂XY |Z

∥∥∥2
HS

=
1

N2
Tr
(
K̃xK̃y − 2K̃yK̃

−1
r,zK̃zK̃x + K̃yK̃zK̃

−1
r,zK̃xK̃

−1
r,zK̃z

)

8 Embedding for inferring

Here we rederive the recent approach developed by Song, Fulumizu and Gretton of the embedding
of conditional distribution, something that allow to do bayesian inference in RKHS.

First, we have seen that the conditional expectation of g(Y ) given X satisfies

E[g(Y )|X = .] = (C−1XXCXY g)(.)

provided E[g(Y )|X = .] ∈ Hx, an assumption we adopt. Let µX and µY be the embeddings of X
and Y respectively in Hx and Hx. Then we have µY = CY XC

−1
XXµX since〈

CY XC
−1
XXµX

∣∣g〉Hy =
〈
C−1XXµX

∣∣CXY g〉Hx
=

〈
µX
∣∣C−1XXCXY g〉Hx

=
〈
µX
∣∣E[g(Y )|X]

〉
Hx

= EX [E[g(Y )|X]]

= E[g(Y )]

=
〈
µY
∣∣g〉Hy

31



In particular, if we set P (dX) = δx(dX) we end up with µY |x = E[ky(., Y )|x] = CY XC
−1
XXkx(., x).

Estimate. When confronted to data (Xi, Yi) µY |x is estimated by

µ̂Y |x = ĈY XĈ
−1
r,XXkx(., x)

where r stands for regularized. The estimators are defined on and send to the finite dimensional
spaces spanned by the kx(., Xi) and ky(., Yi).

To study Ĉ−1r,XXkx(., x), let us write it as
∑

i αikx(., Xi)+ ⊥, where ⊥ stands for a function orthog-
onal to the space spanned by the kx(., Xi). Then we have

kx(., x) = (ĈXX + λI)(
∑
i

αikx(., Xi)+ ⊥)

=
∑
ij

αiKx,ijkx(., Xj) + λ
∑
i

αikx(., Xi) + λ ⊥

Taking the scalar product with kx(., Xk) leads to

kx(Xk, x) =
∑
ij

αiKx,ijKx,kj + λ
∑
i

αiKx,ki

or

kx(x) = KxKxα+ λKxα = (Kx + λI)Kxα

Now

ĈY XĈ
−1
r,XXkx(., x) = ĈY X(

∑
i

αikx(., Xi)+ ⊥)

=
∑
ij

αiKx,ijky(., Yj)

=
∑
j

(Kxα)jky(., Yj)

=
∑
j

[(Kx + λI)−1kx(x)]jky(., Yj)

Then if we want to find an estimate conditional expectation E[g(Y )|x] for g =
∑

i γiky(., Yi) we
have

E[g(Y )|x] =
〈
g
∣∣µ̂Y |x〉

=
∑
ij

γi[(Kx + λI)−1kx(x)]jKy,ij

= γ>Ky(Kx + λI)−1kx(x)
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8.1 Bayes laws using embeddings

We saw that the embedding for the conditional mean is given by

µY |x = E[ky(., Y )|x] = CY XC
−1
XXkx(., x)

Here, the couple (X,Y ) is distributed according to the joint P (X,Y ). Therefore CY X which is the
covariance operator may interpretated as the embedding of the the joint into the tensor product
Hy ⊗Hx whereas CXX can be interpreted as the embedding of P (X,X)!! into the tensor product
Hx ⊗Hx.

In a Bayesian approach, we need the embedding of the a posterioriprobability measure, when a prior
π is chosen. Therefore we can use the previous result but when the joint is Q(X,Y ) = P (X|Y )π(Y ).
Thus we use the superscript π to mention this fact and have the embedding of the a posteriorigiven
by

µπY |x = Eπ[ky(., Y )|x] = CπY XC
π−1
XX kx(., x)

Now, it is possible to relate CπY X and Cπ−1XX to embeddings evaluated on the joint P . We have

CπXY = EQ[kx(., X)⊗ ky(., Y )]

= Eπ
[
E[kx(., X)⊗ ky(., Y )

∣∣Y ]
]

= Eπ
[
E[kx(., X)

∣∣Y ]⊗ ky(., Y )
]

= Eπ
[
µX|Y ⊗ ky(., Y )

]
= Eπ

[
CX|Y ky(., Y )⊗ ky(., Y )

]
= CX|Y C

π
Y Y

The second line can also be interpretated as the average of the embedding of P (Y,X|X) and
therefore we have an alternative expression as

CπXY = Eπ
[
E[kx(., Y )⊗ ky(., Y )

∣∣Y ]
]

= Eπ
[
µXY |Y

]
= Eπ

[
CXY |Y ky(., Y )

]
= CXY |Y µ

π
Y

Likewise we have

CπXX = E [E[kx(., X)⊗ kx(., X)]]

= EπE
[
E[kx(., X)⊗ kx(., X)

∣∣Y ]
]

= EπE
[
µXX|Y

]
= EπE

[
CXX|Y k(., Y )

]
= CXX|Y µ

π
Y

Finally we get

µY |x = CπY XC
π−1
XX kx(., x)

= (CπXY )>Cπ−1XX kx(., x)
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where

CπXY = CX|Y C
π
Y Y

= CXY C
−1
Y Y C

π
Y Y

or = CXY |Y µ
π
Y

= C(XY )Y C
−1
Y Y µ

π
Y

CπXX = CXX|Y µ
π
Y

= C(XX)Y C
−1
Y Y µ

π
Y

Interpretation The operators CπXY and CπXX have simple interpretation when considered as em-
beddings.

CπXX corresponds to the embedding of the law Q(X) =
∫
P (X|Y )π(dY ) into the tensorial product

Hx ⊗ Hx. CπXY is the embedding into Hx ⊗ Hy of Q(X,Y ) = P (X|Y )π(Y ). Thus CπXX can
be seen as the embedding of the sum rule, and is thus called kernel sum rule, whereas CπXY
is the embedding of the chain rule, and is thus called kernel chain rule. Obviously, Bayesian
manipulation are a succession of applications of these rules.

It remains now to get estimators for all these operators!

8.2 Estimators

We will use

µY |x = CπY XC
π−1
XX kx(., x)

CπXY = C(XY )Y C
−1
Y Y µ

π
Y

CπXX = C(XX)Y C
−1
Y Y µ

π
Y

The last two operators are seen as linear operator into respectively Hx ⊗Hy and Hx ⊗Hx.

Let us find an estimator for CπXY . The other will be immediate.

We suppose to have an estimator for the function µπY which is written

µπY (.) =

Nπ∑
i=1

γiky(., Y
π
i )

where the upperscript is placed to remember that those Y are distributed according to the prior.

We suppose to have a training sample {Xi, Yi}, i = 1, . . . , N distributed according to the joint P .
We denote by Kx and Ky the Gram matrices evaluated on this sample.

To evaluate an estimate of CπXY , first we find an estimate of C−1Y Y µ
π
Y . It is a function in Hy and we

look for it in the form
∑

i βiky(., Yi)+ ⊥. Further we use the regularized version of the inverse.
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Then we have

µπY (.) = (CY Y + λI)(
∑
i

βiky(., Yi)+ ⊥)

=
∑
ij

βiKy,ijky(., Yj) + λ
∑
i

βiky(., Yi) + λ ⊥

µπY (Yk) =
∑
ij

βiKy,ijKy(Yk, Yj) + λ
∑
i

βiky(Yk, Yi)

Let µπY the vector containing the µπY (Yk). We then have µπY = (Ky + λI)Kβ. Then applying
C(XY )Y to C−1Y Y µ

π
Y we have

CπXY =
∑
ij

βiKy,ijk(., Xj)⊗ k(., Yj)

=
∑
j

µjk(., Xj)⊗ k(., Yj) where

µ = (Ky + λI)−1µπY

Likewise

CπXX =
∑
j

µjk(., Xj)⊗ k(., Xj) where

µ = (Ky + λI)−1µπY

To get an estimate for µY |x note that CπY X = Cπ,>XY =
∑

j µjk(., Yj)⊗ k(., Xj).

Since CπXX is note insured to be positive definite, use the regularization (C2+εI)−1C as the inverse.
Doing as above, searching for µY |x(.) =

∑
j ζj(x)ky(., Yj), we end up we the vector

ζ(x) = Λ
(
(KxΛ)2 + εI

)−1
KxΛkX(x)

= ΛKx

(
(KxΛ)2 + εI

)−1
ΛkX(x)

where kX(x) = (kx(X1, x), . . . , kx(XN , x))> and Λ = Diag(µ).

8.3 Another stuff on estimators

More generally, the function

g(.) = CXY C
−1
Y Y f(.)

is estimated by

ĝ(.) =
∑
i

µikx(., Xi) where

µ = (Ky + λI)−1f with f = (f(Y1), . . . , f(YN ))>

or
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8.4 Application in filtering

Suppose we want to estimate an hidden state xk from past observation y1:k. Assuming the state
is Markovian and the observation conditionally white, the solution of the problem is given by the
well-known recursion

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

which is nothing but the Bayes law where the prior is p(xk|y1:k−1). Thus we can use the kernel
Bayes rules to realize this in RKHS.

Let mz,k|l be the embedding of p(zk|y1:l). Since p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1,

mx,k|k−1 can be obtained by applying the kernel sum rule to p(xk|xk−1) using the prior p(xk−1|y1:k−1)
whose embedding is mx,k−1|k−1 Thus we have

mx,k|k−1 = Cxkxk−1
C−1xk−1xk−1

mx,k−1|k−1

Then we need to apply the sum rule for p(yk|y1:k−1) =
∫
p(yk|xk)p(xk|y1:k−1)dxk and the kernel

chain rule for p(yk|xk)p(xk|y1:k−1). The application of both will result in the embedding of mx,k|k

The embedding my,k|k−1 of p(yk|y1:k−1) into H satisfies, according to the sum rule

my,k|k−1 = CykxkC
−1
xkxk

mx,k|k−1

whereas its embedding into H⊗His given by

cyy,k|k−1 = CykykxkC
−1
xkxk

mx,k|k−1

The chain rule gives

cx,k|k = CykxkC
−1
xkxk

mx,k|k−1

and we finally get

mx,k|k = cx,k|kc
−1
yy,k|k−1ky(., yk)

We need matrix representation for all these rules. To this aim, we suppose to have access to N + 1
samples of the couple (Xk, Yk). At time k− 1 we suppose that the kernel conditional mean is given
by

mx,k−1|k−1(.) =

N∑
i=1

αk−1i kx(., Xi) = kX(.)αk−1

Thus, we have

mx,k|k−1(.) = kX+(.)(Kx + λI)−1Kxα
k−1

where kX+(.) = (kx(., X2), . . . , kx(., XN+1)) and Kx is the Gram matrix built on X1, . . . , XN .
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We then have

cx,k|k = CykxkC
−1
xkxk

mx,k|k−1

= kY (.)(Kx + λI)−1
(
mx,k|k−1(X1), . . .mx,k|k−1(XN )

)>
= kY (.)(Kx + λI)−1KXX+(Kx + λI)−1Kxα

k−1

=
N∑
i=1

µki ky(., Y i) where

µk = (Kx + λI)−1KXX+(Kx + λI)−1Kxα
k−1

We also get

cyy,k|k−1 =
∑
i

µki ky(., Y i)⊗ ky(., Y i)

and therefore we finally get

αk = ΛkKy

(
(KyΛ

k)2 + εI
)−1

ΛkkY (yk)

where Λk = Diag(µk).

Let us synthesize: the kernel conditional mean is given by

mx,k|k(.) =
N∑
i=1

αki kx(., Xi) = kX(.)αk

where the vector αk satisfies the recursion

µk = (Kx + λI)−1KXX+(Kx + λI)−1Kxα
k−1

Λk = Diag(µk)

αk = ΛkKy

(
(KyΛ

k)2 + εI
)−1

ΛkkY (yk)

Note that the matrix (Kx + λI)−1KXX+(Kx + λI)−1Kx can obviously be pre-computed. To
initialize, we can use π̂(x1) = E[kx(., x1)] = CxyC

−1
yy k(., y1) and thus α1 = (Ky + λI)−1kY (y1).

The outcome of the algorithm is an estimation of the embedding of the a posteriorimeasure. If we
want an estimate of E[f(xk)|y1, . . . , yk] where f ∈ Hx we simply use the definition E[f(xk)|y1, . . . , yk] =〈
f
∣∣x,mk|k

〉
. However, if f does not belong to the RKHS we are in trouble. Another possibility is

to find the pre-image xk whose image k(., xk) is the closest to the embedding of the posterior. For
radial kernel k(., x) = f(‖. − x‖2) this can be solved efficiently if closeness is measured using the
RKHS norm. Indeed, searching for minx ‖kx(., x)−

∑
i kx(., Xi)α

t
i lead to the fixed point condition

x =
∑

iXif
′(‖x−Xi‖2)αti/

∑
i f
′(‖x−Xi‖2)αti. A solution can be obtained sequentially as

xtn =

∑
iXif

′(‖xtn−1 −Xi‖2)αti∑
i f
′(‖xtn−1 −Xi‖2)αti

9 The Bayesian point of view
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