Self-adaptive PLL for general QAM
constellations.
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ABSTRACT

This paper deals with the QAM phase esti-
mation problem. After reviewing some clas-
sical solutions (Fourth power estimator and
Costas loop), we propose several original im-
provements: self-adaptive first and second order
loops. Furthermore, the performance are com-
pared to the performance of the optimal loops.

1 Introduction

The output y; of an ideal Additive White Gaus-
sian Noise (AWGN) channel is given by y, =
Hay + ny, where the transmitted signal ay is
complex-valued, ny is a zero mean, complex and
circular Gaussian noise with variance F |n;|* =
0% and H is a complex number, typically the
value of the complex gain of a non selective
channel. a; is assumed to be independent of ny.
For the sake of clarity, we assume that H = 1
and Flai| = 1. In order to ease the imple-
mentation, the real and imaginary component
of aj usually take discrete values (quantization)
so that every transmitted symbol is represented
by a point drawn from of a finite “constellation”
of points. In the sequel, a; are i.i.d. random
variables drawn from a QAM constellation
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This ideal AWGN model does not take into ac-
count demodulation errors due to a phase mis-
match between the transmitter and the receiver.
In this case, the receiver has to proceed a signal
such as y; = aze’®* +n;, and the aim of this pa-
per is to provide an efficient adaptive algorithm
to estimate the phase &.

2 Fourth power estimator and Costas
loop.

2.1 Fourth power estimator.

Let us assume that the phase error is a con-
stant & = & over the observation duration.
Among various available phase estimators, the
so-called fourth power estimator [8] appears to
offer a good trade-off between performance and
complexity. It is based on the equality & =
rarg[E (a;') E (y3)]. For QAM constellations,
F (a}") is a negative number and the previous
equality reduces to £ = arg (E(y;)) + 5. Not-
ing ©I'F the fourth power estimation of & based
on n observed samples {yo, -+ ,Yn 1}, the sam-
pled version of the fourth power estimator is
given by:

1
oF = Jarg
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This estimator is well suited to the estimation
of a constant phase error on a finite length ob-
servation window and its performance is close
to the Cramér-Rao lower bound [9].



2.2 Costas loop.
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where ¥(z) and R(z) stand respectively for the
real and imaginary parts of a complex number
Z.

In other words, ¢, is the fourth power estimator
up to a 7/4 phase shift: o7 —% = ¢, mod Z.
If the phase becomes time varying, this esti-
mator can be implemented adaptively using a
stochastic gradient scheme to minimize the ob-
jective function J (¢) = Elyte™™ —1°. Not-
ing s, = ype 491 and 2 = S (3¢,) its imagi-
nary part, the resulting algorithm is:

Ok = Pr_1 + VG (1)

This is the so-called Costas loop, a synchroniza-
tion scheme which was originally devised for 4-
PSK synchronization. Actually, it is also able
to synchronize general QAM signals. Note that
the stepsize choice 7, = 1/k insures that the
Costas loop converges to the fourth power so-
lution (with a /4 shift ambiguity) when esti-
mating a constant phase.

For a time varying phase, one must choose 7 to
realize a trade-off between precision and speed.
The optimum value depends on the evolution
of the true parameter &. To avoid the need
of a strong a priori knowledge on phase vari-
ations and the associated unknown parameter
estimation problem, we now present an algo-
rithm that jointly estimates the phase and the
optimum stepsize.

3 Self-adaptive loop for QAM constella-
tions.

3.1 First order loop.

The steady-state Mean Square Error (MSE) de-
pends on 7y in the following way:

Jos (7) = lim B |yfe™o= — 1] (2)

where Jg (7) is evaluated on the algorithm tra-
jectory {pr}. The aim is to minimize (2) under
the constraint (1). The stochastic scheme for
the minimization of -y is:

Ve = V-1t OéGk—I%]?

where « is a small parameter to be chosen and
Gy = 0pr/0v can be updated using:

G = (1= 4yese)) Goor + 35

This equation is obtained from (1) by derivation
with respect to . The self-optimized algorithm
for QAM synchronization thus becomes:

Ve = [’Yk 1+ aGy 1%16]%nax

Ymin .
Gr = (1 —4y2ef) Gey + 250 (3)
Ok = Qr—1 + kG,

where

“Ymax if v > Ymax
x if HARS [’7min7 /Ymax]
“Vmin if T < Ymin

[a;, Ymax —

Ymin

and constraining v to the interval [Ymin, Ymax)
prevents the estimation procedure to diverge [6].
For the evolution model:

& = &1 + Wi,

where wy, is a zero-mean Gaussian, i.i.d. noise
with variance o2 , the theoretical optimum
value of v for algorithm (3) can be calculated
using the tools of [3], and writes:

Y
" B — B

in the limit of small noises.
In the sequel, our simulations will be performed
using normalized 16-QAM. In this case, the op-
timum stepsize is given by:

Ve = 1.470y,

Figure (1) shows a simulation of the behavior of
algorithm (3) and a comparison with the theo-
retical optimum stepsize. The top panel shows
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Figure 1: First order loop (3), 16-QAM, o =
0.01, 5y = 0.001, & = 10°°

the phase and its estimate, whereas the phase
error appears in the bottom panel. The sec-
ond panel depicts the evolution of the estimated
stepsize and the optimal value 7,. After conver-
gence, the estimated stepsize fluctuates around
the optimal value.

The main advantage of this kind of algorithm
lies in its robustness versus a: a wide range of
« yields to almost the same asymptotic MSE
[2]. This robustness is illustrated in figure (2)
where the estimated ~ stepsize is plotted for
three values of a. The effect of o on the es-
timated 7 is the classical speed/precision trade-
off of any adaptive algorithm. The self-adaptive
algorithm is able to reach the performance of
the best first order Costas loop. However, if
some additional information about the phase
variation is available, this should be introduced
in the algorithm in order to improve the per-
formance. As an example, we now consider the
second order loop.

3.2 Second order loop.

Let us consider the realistic example of a phase
evolution given by a random walk with a non
zero drift € : & = &,_1 + ¢ + wg. This models a
small frequency offset between the transmitter
and the receiver or a small Doppler shift. This
a priori information can be taken into account
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Figure 2: First order loop (3), 16-QAM, o =
0.01, o, = 0.001, for o = 107%,10°,1076.

using a second order loop [5]:

(2)
1 i 3
Pk = Pr-1 T (’y,(c ) 4 1- .1 _kz1> »,

This is a symbolic notation corresponding to:
1 o3
Yk = Pk-1+Sk-1+ ’Yl(g )%E
2 [
ko= skt
where s, is an estimation of the drift €. In

. : @, 2?2
this algorithm, the filter |7, + %=

is a di-
rect representation of the state model of the
unknown phase. A generalization of the auto-
matic stepsize tuning algorithm (3) to this sec-
ond order loop was presented in [5] for BPSK
signals; the application to QAM synchonization
is straightforward.

However, in some cases, it may be awkward to
optimize both stepsizes. As an example, for a
Brownian phase evolution with constant drift,
it can be shown that the asymptotic optimum
value 7<) is zero [1]: the smaller (), the better
the asymptotic MSE. Thus, a quasi-optimum
use of this algorithm can be achieved setting
7? to a small constant value' and using the

'Tf the phase slope were exactly a constant, it would

be possible to use a decreasing sequence for 7,(62). A
constant (2 allows small slope variations.



previous procedure for an on-line optimization
of fy,(cl). Noting Dy = 0si /07, the self-adaptive
algorithm writes:

o~ “Ymax
o = it + 0]
Ymin ~
Gk = (1 — 4’)/].3%]?) Gk_1 + Dk_1 + %Ij (4)
Dy, = Dy_y — YO Gj_154)

(2) <
Y = k-1 + (’Y;(cl) + 11271) ;!

This algorithm is illustrated in figure (3) where
we see the phase error (top), the estimated drift
of the Brownian motion (middle) and the esti-
mated stepsize v'. This figure shows the good
behavior of the self-adaptive second order loop.
However, the theoretical performance remains
to be studied.
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Figure 3: Second order loop (4), 16-QAM, o =
0.01, 0, = 0.001, ¢ = 0.01 for & = 104,7? =
10~

4 Conclusion

The Costas loop, originally designed for PSK
modulated signals, can also be used to synchro-
nize general QAM constellations. But, in that
case, the fluctuation of the algorithm are essen-
tially due to a self-noise arising from an imper-
fect suppression of the modulation. However,
we have shown that a self-adaptation of the loop
allows to achieve good performance.
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