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Abstract

The property of discrete scale invariance, proposed in a recent past as relevant for some deter-
ministic signals issued from physical systems, is considered here in a stochastic context. By means
of the Lamperti transformation we connect this property, based on dilations, to the property of cy-
clostationarity, based on shifts in time. Most of the present article is devoted to one aspect of the
study of processes with DSI, namely the problem of synthesis. Some efficient approaches for syn-
thesis of discrete-time random sequences are described and illustrated: methods based on stationary
increments built as generalizations of the Weierstrass function; models on difference equations built,
on the one hand, on the exact discretization of continuous-time models (the so-called Euler-Cauchy
systems), on the other hand by means of fractional differencing. The last method detailed is a revis-
iting of tree-based techniques: it is in particular shown how random Iterated Function Systems give
rise to DSI.

1 Beyond Scale Invariance

A particular symmetry breaking of the scale invariance was put forward by Sornette and co-authors
([1] and references therein): the property of Discrete Scale Invariance (DSI). This weakened version of
self-similarity seems to occur spontaneously in many physical systems (geophysics, DLA growth, critical
phenomena, maybe turbulence) and is of special interest when one wants to seek behaviours of a physical
system beyond simple scale invariance [2].

A deterministic signal or figure is said to have discrete scale invariance if it is invariant only by dilations
of a certain preferred scale factor. The simplest example to understand this is the Cantor middle-third
set. This set is fractal but in fact stays the same only if dilated by 3", where n € Z. A dilation by a
different factor gives a figure which can not be superposed to the original Cantor set.

An inner signature of DSI is the existence of power-laws with a complex exponent, whereas proper scale
invariance gives rise to real exponents. They are at the origin of the log-periodic oscillations (periodicity
for the variable logt) observed in some systems, for example in the estimation of the fractal dimension of
the Cantor set. Classical tools were adapted by Sornette and co-authors to describe, study and estimate
the log-periodic corrections due to DSI, explicitly in a deterministic framework (e.g., [3], [4]).

Another possibility to study DSI is to build a properly stochastic theory for DSI [5]. A new formalism,
different from that of [1], has to be proposed. In order to settle the basis of DSI for random processes,
three domains have to be explored. First are the definitions, the description and the properties of
random processes with DSI, which can be properly settled with the aid of the Lamperti transformation
as advocated in [6]. Section 2 will summarize this theoretical description. The second question is the
analysis of DSI in a stochastic context for experimental signals and the all-important estimation of the
preferred scale factor (or factors). This question, by far the most subtle, is left for the future. Some
results were proposed in [7, 8] along with a first method of analysis. However, the necessity to re-address



this issue, in particular to compare the quality of the synthesis we will propose in the following, has not
to be forgotten.

The third problem, which is the major scope of this article, is to find the many ways to generate random
processes with DSI. This question is a question on its own, because the general theory characterizing
stochastic DSI is established for continuous-time processes whereas one generates or studies in experiments
discrete-time sequences. As the properties based on dilations are not easily imported when a discrete
sampling in time is supposed, the synthesis of DSI processes is more complicated that the continuous-time
theory might suggest. We will argue in the following that several efficient ways exist to obtain random
sequences in discrete-time that have DSI.

As announced, we will first recall in section 2 the theory based on the Lamperti transformation for
DSI processes. Section 3 will be devoted to how one can reinject some kind of stationarity in DSI to use
spectral methods of synthesis; this approach is based on stationary increments. Section 4 goes a different
way: it proposes to build models for DSI on fractional differences, as discrete-time equivalent to ARMA
(or for DSI : Euler-Cauchy) modelling. Section 5 will finally comment on tree-based synthesis methods
which give DSI.

2 Stochastic Discrete Scale Invariance

2.1 Random processes with DSI

We first recall the following formalism for stochastic processes [9]. First, we define self-similar processes,
then processes with DSL. Let (Dy xX) (t)=k~H X (kt) be the dilation operator of factor k with rescaling.

Definition 1 A random process {X (t),t > 0} is said to be self-similar of index H (or scale invariant,
noted “H-ss”) if for any k > 0,

(D X) (t) £

X(t), t > 0. (1)
£ is the notation for the probabilistic equality, that is equality of all finite-dimensional distributions.
This equation, similar to a renormalization group one, has simple solutions in a deterministic context:
those are the power-laws X (t) oc ¥, ubiquitous when one seeks exact scale invariance.

As we will consider here mainly zero-mean Gaussian processes, we focus on second-order statistics
and introduce the covariance function Rx (¢,s). A random process {X(t),t > 0} is wide-sense H-ss if its

covariance function, Rx (t, s)ﬁE{X ()X (3)} , verifies for any k > 0:

Rx (kt,ks) = k*2Rx (t, s). 2)

Definition 2 A random process {X(t),t > 0} has discrete scale invariance of index H and of scaling
factor A (noted “(H, X)-DSI”) if

(PuAX) (1) £ X(8), t > 0. (3)

The invariance of the process is only required for dilation by A, and consequently for any A", n €
Z. The group of symmetry is thus an infinite but countable group {Dg,\»,n € Z}, isomorphic to
a multiplicative subgroup of Rt. Second-order definition of DSI is immediate. It requires that the
covariance verifies (2) for k£ = A, the preferred scale factor.

The deterministic DSI property introduced by Sornette et al. has the solutions t7 for (3), with
X" = M. Looking for a general solution for v € C, one finds that v = H + i27n/log A with n € Z.
Those functions t” have the log-periodic oscillations mentioned as a signature of DSI. Furthermore, the
functions t7+#277/18 X constitute the basis of the Mellin functions [10] and they are also central to the
study of stochastic DSI.

2.2 A main theoretical tool: the Lamperti transformation

A general way of thinking for self-similar processes was introduced by Lamperti in 1962 [11]. The
idea of this approach is to relate stationary processes with self-similar processes by means of a proper
transformation. Some results have been established for self-similar processes with this transformation
in the past but its scope can be enlarged to study problems with incomplete or broken scale invariance.
This result has then recently received more attention [6]. Let us first recall the theorem.



Theorem 1 ([11]) If {X(¢),t > 0} is H-ss, then
(La™'X) (t) e HiX (), t € R, 4)
is stationary. Conversely, if {Y(t), t € R} is stationary, then
(LgY) (t) = tTY (logt), t>0 (5)
1s H-ss.

Equation (5) defines the direct Lamperti transformation which is invertible; its inverse is given by (4).
One can extend the result to variations around stationarity and self-similarity. The correspondence is in
fact between dilation operators Dy, » and shift operators, defined as (S;Y) ()=Y (¢t + 7).

Proposition 1 ([5]) The Lamperti transform guarantees, for any A > 0, the equivalence
La™ ' Duy L = Sioga- (6)

A first class of consequences of this connection allows to reformulate properties of a self-similar process
with the corresponding stationary process. We refer to [6] for many restatements and new results of this
kind. The following one will be useful.

Proposition 2 Given {X(t),t > 0} some process and {Y (t) = (Ly~ ' X)(t),t € R} its inverse Lamperti
transform, we have

Rx(t,s) = (st)? Ry (logt,logs), t > 0, s > 0. (7)

The second kind of applications is to connect properties which are not strict scale invariance with
properties which are not strict stationarity. See [5] and [6] for some insights in this way. The point here
is that the periodicity in scale of the statistics in which DSI is rooted, is transformed in a periodicity in
time of statistics of the inverse Lamperti process: this is known as cyclostationarity.

2.3 DSI and cyclostationarity

Definition 3 A process {Y (t),t € R} is said to be periodically correlated [12, 13] or cyclostationary [14]
of period T (“T-cyclostationary”) if

{(Y(t+T),t€R} £ {Y(t),t € R} (8)

The invariance is required for discrete shifts only, the group {S,r,n € Z}. The corresponding second-
order property for zero-mean processes is: Ry (t +T,s + T) = Ry (t, s). It follows that Ry (¢,t + 7) is a
periodic function of ¢t and can be written as a Fourier series:

—+oo
Ry(t,t+7) = Y Cp(r)e™/T, 9)

n=—oo

Theorem 2 ([5]) If {X(t),t > 0} has (H,\)-DSI, then {(Lx *X)(t),t € R} is cyclostationary of period
log \. Conversely, if {Y (t),t € R} is T-cyclostationary, {(LuY)(t),t > 0} has (H,eT)-DSL.

The proof is straightforward given the definitions and Proposition 1. This theorem is a characterization
of DST processes and Proposition 2 combined with (9) allows to write the general form of the covariance
of processes with DSI:

Proposition 3 Let {X(¢t),t > 0} be a (H, X\)-DSI process. Its covariance reads

+oo
Rx(t,kt) = "7 Y~ C(log k)t?™/ 182, (10)

n=—oo

Once again we encounter Mellin functions which are central to the study of DSI. The mathematical
formalism is natural on the Mellin basis because each function has deterministic DSI. It is analog to the
property that the Fourier basis is adapted to stationary processes. Mellin functions appear for processes
whose properties are constructed on dilations. The reason is shown in [5] and [6] along with the spectral
analysis on Mellin functions: the Mellin basis is the image by Lg of the Fourier basis.



2.4 DSI as an image of cyclostationarity: the sampling problem

The proposed theory is for continuous-time processes and gives a direct way to generate random sequences
with DSI. One can simulate a cyclostationary process, then takes its Lamperti transform. A suitable
discretization scheme has to be used to obtain a discrete-time signal. There are two possibilities.

The first way is to adopt a regular sampling for the cyclostationary sequence. The DSI sequence
obtained by Ly has a geometrical sampling of the form ¢™. This geometrical sampling is natural to deal
with DSI properties and Mellin representation in discrete time [10]. It was also proved to be well-suited
for the analysis of self-similar processes [15].

But to confront synthetic sequences with DSI to experimental data, the other choice is to work with
the usual regular sampling n € N for the DSI sequences. This requires a sampling in logn (where n € N)
of the discrete-time cyclostationary processes - an unusual sampling. Then from a cyclostationary Yieg n,
we obtain with Ly a sequence X,, with DSI. In the following, we propose alternative ways to obtain DSI
sequences directly expressed with regular sampling in discrete-time, where the problem of discretization
is coped with in different manners.

3 Spectral synthesis / Correlation synthesis

3.1 DSI and stationary increments

A known direct way to synthesize a random sequence with a required covariance matrix (e.g., (10) to
guarantee a process with DSI) is to use a Choleski decomposition of this covariance matrix. As a DSI
process is not stationary, Rx has not a Toeplitz structure and the decomposition is a costly algorithm
in O(N3) to generate N points. As no proper spectrum exists, spectral methods based on FFT seem
also pointless. The problem is the same as for self-similar processes which can not be stationary (when
H >0).

A classical assumption for re-injecting some kind of stationarity in self-similar signals, in order to
use spectral methods and bypass the complexity of H-ss processes, is to suppose that their increments
are stationary. For instance, fractional Brownian motion (fBm) is known to be the only Gaussian, H-
ss process with stationary increments (s.i.). Its covariance and the covariance of its increment process
G, (t) = Bu(t +7) — Bu(t) (fractional Gaussian noise) are:

M

Rp,(ts) = (P + s = s =1, (1)
2
oy, (tt+K) = S(k+7P" + k= —20k"). (12)

The general approach [16] is to find the second order structure function E| X (¢) — X (s)|? (sufficient to
write the covariance of a real-valued s.i. process). The assumption putting back some stationarity may
also be generalized to any nth-order increments, following [17]. The explicit construction of {Bm with
nth-order stationary increments was applied in [18].

Following step by step the usual derivation, one can establish the general form of the covariance of a
(H, M)-DSI process with stationary increments of order 1. We are complied to specify a fixed value for
X (0) =m (we will then assume m = 0 with no loss of generality) to account for the specific property of
the origin with respect to dilations. The covariances of a s.i. process with DSI, X (t), and of its increments
Z:(t) = X(t+ 1) — X(t) read

RX(t, S) — Z C?"(lt|2H+in27r/log/\ + |S|2H+in27r/log/\ _ |8 _ t|2H+in27r/ log )\), (13)
nez
Ry (t t+ k) — Z c_n(lk + 7_|2H—',—z'n27r/ logA | |k _ 7_|2H—',—z'n27r/ log A _ 2|k|2H+z’n27r/log /\)‘ (14)
\b 2
nezZ

The difficulty here is to find useful conditions on the ¢, to ensure that (13) and (14) are true correlation
functions, i.e., non-negative definite. For example, the simplified model which keeps only ¢y and ¢4 is
found generally insufficient and gives a function which is not a correlation function of any existing process.
We propose to study a more specific model which is then easier to deal with.



3.2 The Weierstrass-Mandelbrot function as a model for DSI

The Weierstrass function, known as a fractal function [19] [20], will serve us as a guide for a slightly
modified model with s.i. and DSI. We will use its Weierstrass-Mandelbrot version which turns out to be
exactly (H,A)-DSI in the sense of definition 3. A detailed analysis of this function is given in [21]. It
reads

+oo
Waa(t) = Z AT (1 — et ein, (15)

n=—0oo

The Weierstrass-Mandelbrot function is a superposition of the same pattern at different scales, cen-
tered in the Fourier domain at frequencies A" /27w, n € Z. The phases ¢,, might be deterministic (¢, = un
for example) but stochastic versions of this function are obtained if they are random, i.i.d. and uniformly
distributed in [0 ; 27[. Then Wg,»(¢) has (H, A)-DSI in a stochastic way and its covariance is

Rw(t,s) — Z)\—ZnH(l + ei)\" (t—s) _ eiA"t _ e—i)\"s)‘ (16)

This function is a first example of a s.i. process with DSI: its increments Vg x - (t) = Wga(t +7) —
W, (t) are stationary with respect to ¢. This follows from [21]

Ry, (t,s) =2) X2 (1 — cos Amr)e" (72 (17)

Wa,A(t) admits a generalization with another pattern than e!*+®) Tt has the form: Wy (t) =
>, AT (9,,(0;w) — gn(A™t;w)) where gn(-;w) is a random function. If we impose that the increments of
W, are stationary, we obtain a functional equation on g that is not easily solved. We prefer to suppose

directly that there exists a function G such that ]E{ In(t; W) gm (s; w)} = G(t — 5)0p,m- The knowledge of

G is sufficient to synthetize X.

We thus propose the following construction for model of DSI with s.i.: let {X (¢),t > 0} be a wanted
DSI process and {Z,(t) = X(t+ 7) — X(t),t > 0} its increments. We suppose that X(0) = m (to
particularize the origin) and that the increments have the stationary covariance

Rz (tt+k) =D AP LG\ (k+ 7)) + GA\"(k — 7)) — 2G(\"k)} . (18)

Z, is generated by a correlation synthesis method from (18) then X (t) is calculated at times t = n7,n € N,
from the origin by summation of Z,. An example of this model is shown on figure 1, along with the
original deterministic Weierstrass function.

As Z, is stationary, the construction imposes that X has s.i.; we show then that it has DSI by
studying the function k& — Y, A~2"HG(A"k). This function has obviously (2H, \)-DSI and its exact
decomposition on the Mellin basis of (log A)-log periodic functions is obtained by means of the Poisson
formula, to transform the sum over n:

oo . om
ZA72HHG(Ank) — Z (/ A2HZG()\Z)€i27TmZdZ) k2H+me. (19)

nez meZ -

Consequently (18) admits a form as (14) with ¢, /2 equals the integral in (19), and the constructed
process X has proper (H, A)-DSI.

3.3 Algorithmic issues

We do not want to survey all possible algorithms that, given a stationary covariance as (18), allow for
a synthesis of the process. A bibliographical study for the synthesis of H-ss with s.i. can be found for
example in [22], appendix A.

Methods using the Toeplitz structure of (R),; = Rz, (n—1) of stationary process Z, (e.g, the Levinson
algorithm), have a complexity reduced compared to that of the Choleski factorization. We give some
details about a recent method, which is really fast, following from the works of Wood and Chan [23]
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Figure 1: Upper part: the Weierstrass function on the left and its log-scale diagram beside, used for the
estimation of H. See the oscillations caused by the DSI on this diagram. Lower part : s.i DSI process
defined with (18). On the right, the estimated DSP makes patent the DSI (here we chose a simple model
where G has a band-limited spectrum, thus peaks in the DSP are visible, spaced in A™).

and refined by Dietrich and Newsam [24]. More details can be found in [25] and [22]. In a nutshell, to
generate N points of the process, the matrix R is embedded into a circulant matrix C' of size M > 2N
with Cp, = R(m) if m < N, and Cp, = R(N —m) if M — N < m < M. The remaining coefficients C,,
for N < m < M — N are chosen at will such that C remains non-negative definite. In general M = 2N is
adopted. As C is a circulant matrix, it can be factorized easily as C = QAQ?, with A a diagonal matrix
with real positive eigenvalues and Q a unitary matrix. It follows that Qv/AU, where U is a Gaussian
random sequence, admits R for covariance matrix of the first N points of the sequence. The algorithmic
complexity of the method, implemented by means of FFT, is O(N log N).

A practical advantage of the method is that, from a numerical point of view, the correlation function
defined with (18) is not always exactly non-negative definite because of finite numerical precision. The
Choleski and Levinson methods are sensitive to this numerical approximation (the Choleski algorithm
simply does not work) and a proper projection of R to the space of non-negative definite matrices is
difficult. The circulant matrix method may have some negative eigenvalues for A, but very small, as a
signature of the numerical precision. It is then easy to set those values to zero; the process generated is
then really close to what we look at.

4 Methods from difference equations

4.1 A general view

The continuous-time theory for parametric models with DSI is straightforward. The first step is to find
the equivalent of ARMA models, which are the basis to stationary systems, after a “lampertization”.
The transformation Lp ensures that : (dX/dt)(t) = t¥~1(HY (logt) + (dY/dt)(logt)). If one employs
properly this property to calculate the derivative of X of any order, one will found the following result
[6], used in [26] as a model for H-ss processes:

Proposition 4 The stationary ARMA process

S a0 = 3 W 1), (20)
n=0 m=0



where W (t) is white noise, has an H-ss Lamperti counterpart, referred to as an Euler-Cauchy (EC)
process, which is solution of an equation of the form

p q
D aptn XMty =Y gtrw (), (21)
n=0

m=0

with W (t) = t7+1/2W (t), and t > 0. Note that E{W(t)W(s)} = g2t2H+15(¢ — ).

Nonstationary ARMA systems are a convenient framework for modelling cyclostationary systems.
The precise form is the one given in [27] and studied in detail in [28]. The coefficients in the equation
(20) should have a period T, so that: a,(t +7T) = a,(t) and B,(t + T) = B,(t). This system is then
T-cyclostationary.

The Lamperti transform of cyclostationary ARMA gives a general expression for a parametric,
continuous-time model of DSI processes. It has the expected form of the Euler-Cauchy model (21),
driven by the multiplicative (nonstationary) white-noise W (t), with time-varying coefficients o/, and By
which must be log-periodic of period log A.

Lu
ARMA > EC = exact EC [29]
an(t), bn(t) an(t), by, ()
periodic log-periodic
ARMA . EC
cyclostat. r " with DSI — [exact EC-DSI, 4.2
H

fractional
differencing fract. DSI, 4.3

Figure 2: Guideline of the construction of models from difference equations. Discrete-time models are in
the frameboxes; continuous-time systems are not.

A general scheme of what we must do to find a discrete-time counterpart of this model is given in
figure 2. There are two natural ways to obtain effective discrete-time DSI models. First is to adopt an
exact discretization scheme of the differential equation as proposed in [29] for EC systems. The drawback
is that the nonstationary model obtained rapidly looses its specific self-similar evolution in time. The
second way is to find another argument to construct pseudo H-ss systems by means of a representation
with fractional integration. Those representations have a discrete-time corresponding model based on
fractional differencing (the so-called FARIMA for instance) and we add log-periodicity to the coefficients
to obtain DSI.

4.2 An exact discretization of the Euler-Cauchy system

The scheme is adapted from [29]. Tt consists in two steps; the first one is to find the solution X (¢) in
term of X (t_1) at a previous instant. A propagator G(t,u) of the equation, which obeys

i a'n(t)t"%(i’u) =6(t —u), (22)

n=0
with initial condition G(u,u) =1, allows to express the solution in a general form as
128

X(tk) = G(tk,tk_l)X(tk_l) + G(tk,u) (i ﬂ;(u)qu(m) (u)) du. (23)
m=0

th—1
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Figure 3: Left: a snapshot of a realization of 4.2; a visual guide. displaying the synchronization of the
log-periodic oscillations is pictured. Right: the estimated variance of the process (on 1024 realizations);
the DSI appears clearly as log-periodic oscillations, superimposed on the overall growing in t?# (dashed
curve) of this nonstationary model.

We can restrict the discussion to first-order systems. Indeed, a filter of order p as in (22) is equivalent
to p filters of order 1 in parallel [30], even if it is nonstationary. We will then focus on the order 1 to
derive the discrete-time model (X}, is for X (tx))

Xk =arXk—1 + ek (24)

The continuous-time model is written with coefficients a(t) and o(t) (variance of the input noise)
which are periodic functions in log ¢, of period log A.

dXx a(t) oW ()
——

B+ =Xt = (25)

The propagator G of the system is then

Gltu) = exp (— /ut @du) - (%) - % (26)
Flu) = nl;[gexp (%u’?”"/ 10%*) , (27)

where co and F derive from the expansion of @ on a Mellin basis: a(t)/t = Y, .5 cpt L1727/ 1082,

Comparing to strict EC systems solved by Noret [30], a log-periodic function F is added to the propagator,
which accounts for the DSI.

Identifying (24) with (23) for order 1, with a discretization t;, = t;_1+7, the parameter in the discrete-
time model is ay = G(t, tx—1) and e, is white noise given as: e, = ftt:_lG(tk, w)o (u)W (u)uf —1/2du, whose
nonstationary variance comes from (23), r.h.s.

tr
E{eren} = |G (tr, w)[*|o (u) e~ du. (28)

th—1

The exact model which follows from this procedure has a time-varying coefficient a. When the
sampling is regular, an approximation of ay, for the long times k, namely a; ~ (1 —co/k)Fy/Fy—1, proves
that the variation of aj with time disappears in 1/k except for the DSI part (F). The H-ss and long-
range dependance properties are in fact found mainly in the input noise eg. Its variance is, for large k,
E{erer} ~ tx?#~17|0%|2(1 + 7F}/2t;). The H-ss behaviour (responsible, e.g., for a variance of X, in
k*H) is then mainly imposed by this input. Inversely, the DSI is present only as a pertubation in the
variance of ey, but dominates the time variation of the coefficient ay.

To prove the DSI of the model, we have to calculate the covariance of X;. The correlation function
is given as

min(¢,s) —Co
Rx(t,s) = /t (Z—j) |a(u)|2%u%’_1du + G(min(t, s), to)E{ X (t0)?} . (29)



Assuming that the system is stable (G(¢,t9) — 0 when (t — t5) — +00), the initial condition will
be forgotten and the correlation function of the process will satisfy (2) for & = X if (t,5) — o0. An
alternative assumption might be that X (¢¢) has the convenient distribution (zero-mean and a specific
variance) for ¢y to disappear in the expression of the covariance [30]. In both cases, as o, a and F' are
log-periodic functions, we have Rx (At,As) = A2 Rx(t, s) and the model has (H, \)-DSI.

A representation is then valid for the discrete-time DSI system: it combines a discretized EC model
with the parameters of [29] in cascade with an AR system with log-periodic coefficients to represent the
DSI in the coeflicients of the model. A snapshot is given in figure 3.

An intricate property of these models is that they have no kind of stationarity. Because of the
input noise growing in k¥1'/2, no increment of any order is stationary (a remark made for order 1 in
[30]). Furthermore, the wavelet methods, known to usually transform a H-sssi signal in a representation
stationary at each scale, does not work this way for the discretized EC model. The wavelet coefficients
at one scale are nonstationary and grow in time as k2. The method of estimation of H by wavelets
fails then and a constant H = 1/2 is found if this kind of estimation is tried. The model, both for H-ss
and DSI, is then at the opposite of what we constructed in section 3. From the Weierstrass function we
studied a model with some hidden stationarity. Here, the model has no disclosed stationarity.

4.3 Models from fractional differencing

Continuous-time models. A different model for H-ss signals is constructed from the theory of linear
modelling. This is the Barnes-Allan model for a H-ss system

Xpa(t) = / t It — u[H1/2W (u) du. (30)
0

It has the same variance as the fBm [31] and the same power spectrum too [6], and it is H-ss. The
model (30) is in fact a part of the moving average representation of the fBm which gives a special role
to the origin, imposing that Xp4(0) = 0. In fact it is a good approximation of a fBm and relates to the
first-order EC models, see [31]. It is convenient to interpret this form as the expression of a fractional
integral, in the sense of the Riemann-Liouville or the Griinwald calculus [32]. Then an equation on a
fractional derivative of X g4 makes sense

dH+1/2XBA(t)

i = W), (31)

The fractional integral part in (30) is responsible for the H-ss behaviour. For a DSI process, we can
introduce the DSI part by changing the input noise in h(t) which has DSI for H = 1/2 and the preferred
scale ratio A. The model is

Xpa(t) = /Ot It — w712 (u) du,
E{h(,\t)m} =21 E{h(t)%} .

A possible h is a white noise with log-periodic variance. Its expression on a Mellin basis might be:
h(t) = W(t) 3 ez cnt?™/ 198N From the fractional derivative of this continuous-time representation of
a DSI process, it comes

(32)

dH+1/2XBA(t)

s =) =W() D enti2mn/los), (33)

nezZ

Discrete-time fractional differencing. This introduction validates the possibility to propose discrete-
time models by discretizing the operator in (33), whereas in the previous section the solution was dis-
cretized. The basic scheme of the new model is then to have a fractional differencing filter applied in
cascade with a log-periodic ARMA filter driven by ordinary white-noise, figure 4. The log-periodic ARMA
model allows to have a stochastic equivalent of the r.h.s. of (33). The fractional difference is the filter
which introduces a self-similarity in the system. This compares to the EC model up to the following: the
representation of the fractional difference used is a stationary filter and the self-similar behaviour of the
system will only be approximate because of this stationarity (incompatible with a strict self-similarity).



h(t) | fractional difference as AR
(order: d = —H —1/2)

Wy ARMA log-periodi X

Figure 4: General block-diagram for models based on fractional differencing.
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Figure 5: Left: a snapshot of model from 4.3; a visual guide displaying the synchronization of the log-
periodic oscillations is pictured. Right: log-scale diagram estimated from wavelet methods, which shows
oscillations of the DSI and a correct estimation of H = 0.209 + 0.019 for H = 0.2.

Rao approach to discrete-time modelling. Some freedom exists to find a discrete-time equivalent
to the operator qi+1/2 /dtH‘H/ 2, Two approaches are suggested here. The first dates back to the first
FARIMA models [33] [34]. The idea is that the usual derivative admits a trivial discrete-time represen-
tation as 1 — B where B is the backward operator for sequences (BXy = Xi—1). A fractional difference
is then (1 — B)¢ with d any real number and a binomial expansion of this power gives a computable (but
with an infinite memory) representation of the operator (T' is the gamma function)

(1-B)¢ = 1+;%Bk. (34)

Another possibility is to adopt a more subtle discretization scheme [35]. The idea is to use a transfor-
mation which connects discrete-time processes and continuous-time processes in an invertible way. The
purpose is to have a transformation best adapted to the dilation operator. This operator is expressed
as simply in the continuous-time domain as in the frequency domain. Graduate level courses teach that
transforms between discrete- and continuous-time processes exist: they are based on a warping transform
Q = f(w), bijective, continuous and anti-symmetric function from discrete-time frequencies w € [—m, 7]
to continuous-time frequencies 2 € R. Consequently, the representation of the dilation operator is [36]:

X (w) X(Q) K H X (kQ)

X;— DTFT

DH,k_1

f! IDTFT|— Dy -1 X

Figure 6: Dilation operator from bilinear transformation applied to a sequence. This general scheme to
find the discrete-time equivalent of an operator is enlarged to the difference operator, and can be applied
to any operator expressed as a combination of time- and/or frequency-operator.

In [36], a good choice is proposed, the bilinear transformation which reads
Q= f(w)=2tan(w/2). (35)

The useful property of the bilinear transform is that it links the Laplace operator p in continuous-time
and the z operator in discrete-time. The equality is, for a sampling interval At,

2 1-271 1 1—pAt/2

SA1F 0 T ixpae (36)

p



A different representation of the fractional differencing is obtained as the equivalent, for the previous
equality, of the operator p?, because p acts on the Laplace transform as a derivative in time. The impulse

d
response of this representation as a filter is given after a binomial expansion of (T) . If we note
z

oo
this filter Z l1[n]z~™, the filter is [36]
n=0

> ’“Fd+k) (—d+n—k)
T k +1)I'(n — k+ DI (—d)"

(37)

According to our general block diagram 4, this discrete-time derivative is put in cascade with a log-
periodic ARMA and gives a model of sequence with DSI. The particularity is that those sequences have
some kind of stationarity if examined through a wavelet lens. If the DSI does not disturb too much
a wavelet method of estimation of H (because of the oscillations it induces in a scale diagram), those
methods are efficient. The representation in scale by the wavelet transform has then the usual property
of stationarizing the coefficients. Comparing to the model in 4.2, this model has DSI mainly driven by
the input wheras the self-similar part results from fractional differencing (for H # 1/2).

A sample path is shown in figure 5. On the right, the log-scale diagram estimated by discrete wavelet
transfrom shows two things: the oscillations due to the DSI; the mean slope which estimates H correctly
as 0.209 £ 0.019.

5 Some remarks concerning tree-based synthesis techniques

The methods described so far fit well in the theoretical framework of DSI we have proposed. In particular,
methods based on generalized difference equations are ad-hoc models that generate DSI signals.

However, there is another general class of synthesis methods which leads to DSI : the class of tree-
based constructions. A famous example of this type of construction is the Cantor set. Many known
synthesis techniques are tree-based : stochastic process on the dyadic tree of wavelets, constructions of
Benassi et. al. ... ; in these techniques, the generated signals inherit the DSI property from the tree
structure. This property is called “semi-selfsimilarity” by Benassi and his co-workers [37].

For deterministic fractals, a popular method is the so-called Iterated Function System (IFS) approach,
a method which is fundamentally tree-based (see [38, 39] and references therein). In the sequel, the IFS
we consider act in function spaces. They have been examined by many authors and share as many names
as IFSM (with Maps, or Place Dependent IFSM in full generality) [40], Read-Bajraktarevi¢ operator [39],
self-similar functions in [41] are fixed points of these IFS (see also [42]) ...

Let X be a compact subset of R, say X = [0,1], and consider the space of function L,(X) with the
usual distance d,(f,g) = ([ |f(t) — g(t)|Pdt)'/P. Define N contractive functions w; : X — X such that
Uiw;(X) =X, and w; (X ) Nw;(X) = (ZJ 1f i # j. Then, an operator is defined as

THz) = LE(Tif) (@)
(THE) = @i (fwi(@),w; (@) L) (@)

where 17(z) = 1 if € I and 0 if not. The functions ¢;(z,y) are supposed to be Lipschitz in variable z,
for some choice of the norm d,? (maybe p = 00). Then it can be shown that T is contractive, and by the
fixed point theorem in Banach spaces, the series T fo admits a unique limit f, whose graph is usually a
fractal set. The system (X, Y, {w;}, {p:}) defines a so-called IFS systems.
The generalization of IFS to the random case has been done by Falconer, Graf, Mauldin & Williams,
. in the mid-eighties, especially for the case of random sets and random measures [43, 44, 45]. More
recently, Hutchinson & Ruschendorf proved several convergence results in the case of random IFS for
functions ([46] and ref. therein), defined as above except for the single valued ¢;(z,y) = @;(z). The
generalization of deterministic IFS to random IFS relies on the tree underlying the IFS. Indeed, a
fractal function is defined as the limit of T"(fy); but of course recursivity is present since (T"fy) =
T(T™*(fy)). Since T = Y, T; the N-ary tree structure of the IFS construction is clear if we write

(T"fo) = EN (Ti(T™'fy)). For the random contruction, each T; at iteration n is a random Lipschitz

=1
function of the form (38) (the w;s are however deterministic) independently drawn at each iteration.

(38)



Precisely, at the first iteration T fo = > i, Tiy fo where the T; s are drawn from the random operators
Ti—1..n. At iteration 2, T?fy = Zil,iz T;, o TZ; fo where the Ti’; (1,2 = 1...N) are drawn from the
random operators T;—1 .. n, independently of the T;,, and the T;'2 and TiJ2 are also independent if ¢ # j.
At the nth iteration we write T"fo = >3, , Ty o T o...o T,V "~ fo where the T} "~
are drawn from the random operators T;—i..n, independently of the previous iterations. Furthermore,
T; " "' and T“’”’ “"=1 are independent if i # j. To illustrate this, we depict in figure 7 the

construction for a b1nary tree and three iterations.

i ={1,2}
Tl TZ

ilzl;i2:{1,2} i1:2;i2:{1,2}
T} T} T2 T2

Lilyis ={1,2} L2d3={1,2} 2L;i3={1,2} 22i3={1,2}
o/ \r e/ \1e N\ 12/ \1

fo fo fo fo fo fo fo fo

Figure 7: Construction tree of a random IFS. Illustration for a binary tree and three iteration of the
construction process.

The main result of Hutchinson & Ruschendorf, proved for single valued ¢;s ( pi(x,y) = ¢i(z)) is
summed up in

Theorem 3 ([46]) Let {(vi(x)}iz1,...,n} be N random Lipschitz functions, with Lipschitz (random)
constants r;; let N contractive functions w; that provide a partition of X = [0,1], with contractivity
factor p;; suppose that Ay, = E{>",pir?} < 1 and E{}_ pi|pi(0)|P} < oo for some 1 < p < oo. Then,
Vo € Ly(X)

n/p
ELT o LN < 22 B0, TN —0 (39)
- Ap

when n — oo. Furthermore, in the distribution sense f, is a fixed point of T'.

To prove that result, Hutchinson & Ruschendorf use the fact that the space
Ly = { S0 e 2 /E| [ w0 at] < oo} (40)
X

with the distance {E[d, (f,9)?]}*/? is a complete metric space, and that the random operator T as defined
above is contractive in that space with this distance.

A very simple example of such a construction occurs for operators of the form p;(x,y) = sz + ;i (y)
where |s| < 1 and where e = +1 with some discrete probability law. Note that only one ¢ is chosen for
alli=1,...,N. Then it can be shown that the fixed point f, of T' reads

Zsy et 1)‘qu(wq (z)) (41)

where wg = wy o ... w,, (x), where the g, are related to the coefficients of 2 in its N-ary representation,
precisely

Nz

QV_]-
Tz = Z NV , where g, € {1,... ,N} (42)

v=1
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Figure 8: Illustration of DSI in random function which are fixed point of IFS

Note that in (41) we have explicitly indexed ¢ as ej, , , to reflect the tree-based construction as
explained above. Indeed, to respect the construction process, the sequence ey, | is an i.i.d. sequence.
For one point statistics, this notation is heavy, but it is needed when one evaluate multipoint statistics.

Then it easy to show for example that the nth-order cumulant of f is, up to a multiplicative constant,

the fixed point of a deterministic IFS. Indeed, we have the result

+oo
Cum,[fi(z)] = Cumn[s]Zs”(”_l))\g‘y(wtjl(m)) (43)

v=1

Therefore, the statistics of fy(z) are selfsimilar functions in the sense of being the fixed point of an
IFS. This is illustrated in figure 8. For this figure we have chosen w;'(z) = 2z, wy, '(z) = 2z — 1,
A(z) =2/2, 2(x) = (1 —2)/2, s =3/4 and € = (—1, +1) with probability (0.75,0.25). We have plotted
one snapshot of the random fixed point f,(z) (top left panel); the theoretical mean (top right panel);
the variance of the fixed point, the variance being estimated by averaging on 1000 snapshots (bottom
left panel). Furthermore, we plot in this last panel the difference between the theoretical and estimated
cumulant. Finally, the bottom right panel depicts a zooming of the theoretical mean: the DSI property
can be seen in the mean where log-periodic patterns clearly appear.

The IFS approach provides an alternative definition of DSI. The main difference between this approach
and the general framework proposed in the paper is the restriction of IFS based random functions to
compact sets of the line. Therefore, the DSI property cannot be defined classically for IFS fixed points and
is indeed replaced by the fixed point condition f, = T fx in a distribution sense. Finally, let us mention
that if the DSI property comes from the tree structure, the value of the log-period is not restricted to the
degree of the tree. In fact, the log-period is also related to the parameters of the contractions w;s. For
a binary tree, one can choose the contractions so that the lengths of w;(X) and of w(X) are different,
leading to a log-period different of 2.



6 Conclusion

We have detailed here some efficient methods to generate random sequences with the property of Discrete
Scale Invariance. More could be said on this. We have only described one possibility to generate DSI with
tree-based synthesis. Considering a tree is indeed a good means to put a stochastic behaviour on a system
with a preferred scale factor — the geometric interpretation shows clearly the DSI. When one wanted H-ss
processes, this property was hidden as much as possible, but the property is here put forward when one
studies DSI. Wavelet-based synthesis, models of cascades with DSI might be envisaged — the majority
of the work is already done elsewhere, see for example [47] — laying the emphasis on the preferred scale
factor induced by the tree structure.

The Weierstrass model, formulated above from an original point of view, was also seen as a way to
generate approximate H-ss signals [20] (or as ARMA systems with frequencies distributed in A" [48])
which are in fact true DSI processes. The purpose here was to propose and illustrate different ways to
generate DSI in random processes and describe their theoretical rootings.

One application of the proposed framework for stochastic DSI, and consequently of the proposed
methods of synthesis, is to refine the ways of analysis of DSI and estimation of H and A. The approaches
described elsewhere [7] are not sufficient even if they work in simple situations. Comparing to the works
of Sornette and co-authors, the proposed framework to seek DSI does not apply to the same kind of
situations. They considered first pure deterministic DSI and ways to analyze it, then used adapted
processing to transform time signals in integrated quantities (such as distribution functions or moments)
which are supposed to show DSI in a deterministic manner and display a few oscillations only. A refined
example of such a method is exposed in [4]. The point of view coming from the Lamperti transformation
is, on the contrary, that the signal with time is directly used to find some scale periodicity. We hope
then that the number of log-periods in the signal will be higher than on integrated quantities, as is the
case in the synthetic sequences shown here. Efficient tools might be envisaged with the extension of the
Lamperti transformation directly on discrete-time processes; or with the combination of Mellin analysis
with suitable averaging methods not entirely based on stationarity.
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