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Introduction

Modeling

General concepts, a 2× 2 example

Historical survey, Origins
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Observation model

x = H s + v (1)

x: observed, dim K

P: source vector, dim P

H: K × P mixing matrix

v: additive noise
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Taxonomy (1)

Static/Dynamic and Noisy/Noiseless:

x[n] = H ? s[n] + v[n] (2)

Over/Under-Determined:

Number of sources : P ≶Underdet K : Number of sensors
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Taxonomy (2)

Transmit/Receive diversity:

Sources Sensors
1 K > 1

1 SISO SIMO
P > 1 MISO MIMO
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Taxonomy (3)

One additional assumption required on sources:

mutually independent sources

discrete sources

colored sources

nonstationary sources
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Principal Component Analysis (PCA)

Goal
Given a K -dimensional r.v., x, find U and z such that

Observation
x = U z

z has uncorrelated components zi

NB: Because of lack of uniqueness, U is often assumed to be
unitary.
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Independent Component Analysis (ICA)

Goal
Given a K -dimensional r.v., x, find H and s such that

Observation
x = H s (3)

s has mutually statistically independent components si

ý “Blind” Source Separation: only outputs xi are observed.
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Uniqueness

Inherent indeterminations
if s has independent components si , so has ΛP s
where Λ is invertible diagonal and P permutation

Solutions
If (A, s) solution, then (AΛP, PTΛ−1s) also is.

“Essential uniqueness”: unique up to a trivial filter, i.e. a
scale-permutation (cf. slide 67)

Whole equivalence class of solutions ⇒ Look for one
representative.
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Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed sources
Consider the mixture of two independent sources(

x1

x2

)
=

(
1 1
1 −1

)
·
(

s1

s2

)
where E{s2

i } = 1 and E{si} = 0. Then xi are uncorrelated:

E{x1 x2} = E{s2
1} − E{s2

2} = 0

But xi are not independent since, for instance:

E{x2
1 x2

2} − E{x2
1}E{x2

2} = E{s4
1}+ E{s4

2} − 6 6= 0
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PCA vs ICA

Example 2: 2 sources and 2 sensors
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Historical survey: Static MIMO

The ancestors: Dugué’51, Darmois’53, Feller’66,
Friedman’74, Donoho’80

The first shy steps in ICA: Bar-Ness’82, Jutten’83, Fety’88

The first steps in Multi-Way: Carroll-Chang’70,
Harshman’70, Kruskal’77

First closed-form solutions: Comon’89, Cardoso’92

First IT frameworks: Comon’91, Cardoso’93, Comon’94,
Bell’95, Delfosse-Loubaton’95

Specific applications: Hyvarinen’97, Pajunen’97, Amari’98,
Grellier’98, Parra’2000

Discrete/CM: Talwar’96, VanderVeen’97Grellier’00
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Historical survey: Static MIMO (cont’d)

Other: Cao-Liu’96, VanDerVeen-Paulraj’96,
Moreau-Pesquet’97, Taleb-Jutten’97, Comon’96,
Ferreol-Chevalier’98, Belouchrani’98, Lee-Lewicki’99,
deLathauwer’00, Pham-Cardoso’2000, Yeredor’2000,
Sidiropoulos-Bro’00, Albera’04, Comon-Rajih’05,
deLathauwer’05...
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Historical survey: Convolutive SISO

Identification
Kurtosis Benveniste-Ruget’80, Tugnait’89
Non circularity/Alphabet: Yellin-Porat’93,
Grellier-Comon’99, Ciblat-Loubaton’02,
Lebrun-Comon’03

Equalization
CMA: Sato’75, Godard’80, Treichler’85
Kurtosis: Benveniste-Goursat’84, Donoho’81,
Shalvi-Weinstein’90
Bispectrum: Marron’90, Matsuoka’84, LeRoux’93

NB: Earlier equalization algorithms, e.g. Decision-Directed, need
the eye to be open.

Pierre Comon Blind Techniques I.Principle & Tools 16



Introduction Tools Criteria Model General History Biblio

Historical survey: Convolutive SIMO

Subspace: Slock’94, Xu-Tong’95, Moulines-Duhamel’95,
Xu-Liu-Tong’95, Gurelli-Nikias’95, Gesbert-Duhamel’97

Linear Prediction: AbedMeraim-Moulines-Loubaton’97,
Gesbert-Duhamel’00
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Historical survey: Convolutive MIMO

Subspace: Gorokhov-Loubaton’97, Chevreuil-Loubaton’97,
Loubaton-Moulines’01

Linear Prediction: Comon’90, Ding’96,
AbedMeraim-Loubaton’97, Gorokhov-Loubaton’99

Kurtosis: Comon’96, Tugnait’97, Simon-Loubaton’98,
Touzni’98

Discrete/CM: Touzni-Fijalkow’98, VanDerVeen-Talwar’95,
Ayadi-Slock’98
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Origins of “Blind” Techniques

Pulse Amplitude Modulation (PAM) in baseband:

x(t) = a
∑
k

h(t − k T ) uk
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PAM4: symbols uk ∈ {−3, −1, 1, 3}
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General bibliography

Books on HOS, ICA, or Multi-Way:
Lacoume-Amblard-Comon’97 [LAC97] (freely downloadable,
but in French)
Hyvarinen-Karhunen-Oja’01 (but dedicated only to FastICA)
Smilde-Bro-Geladi’04 [SBG04] (but dedicated only to Factor
Analysis)
Cichocki-Amari’02 [CA02] (but Neural Networks oriented)
Comon-Jutten’06 [CJ07] [JC07] (but in French)
Comon-Jutten’08 (will cover more topics, but you have to
wait!)

Other related books:
Kagan-Linnik-Rao’73 [KLR73]
McCullagh’87 [McC87]
Nikias-Petropulu’93 [NP93]
Haykin’2000 [HAY00a] [HAY00b]
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Algebraic tools

Singular Value decomposition (SVD)

Spatial whitening (Standardization)

PCA by pair sweeping

Filter decomposition

Time Whitening

Space-time Whitening

Matched filter
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Singular Value Decomposition (SVD)

Every matrix M may be decomposed into:

M = U Σ VH

where

U and V are unitary

Σ is positive real diagonal

ui and vi of U and V are the left and right singular vectors:

M vi = ui σi MHui = vi σi

ui are eigenvectors of MMH, and vi those of MHM,
associated with σ2

i .
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Spatial whitening (1)

Standardization via Cholesky or QR Let x be a zero-mean r.v.
with covariance matrix:

Γx
def
= E{x xH}

Then Cholesky yields:

∃L / L LH = Γx

Consequence: L−1x has a unit variance.

Variable x̃
def
= L−1x is a standardized random variable.

QR factorization of data matrix as X = L X̃ yields same L as
Cholesky factorization of sample covariance, but more
accurate.

Limitation: L may not be invertible if the covariance Γx is not
full rank.
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Spatial whitening (2)

Standardization via PCA
Definition
PCA is based on second order statistics

Observed random variable x of dimension K . Then ∃(U, z):

x = Uz, U unitary

where Principal Components zi are uncorrelated
ith column ui of U is called i th PC Loading vector

Two possible calculations:

EVD of Covariance Rx : Rx = UΣ2UH

Sample estimate by SVD: X = UΣVH
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Spatial whitening (3)

Summary

Find a linear transform L such that vector x̃
def
= Lx has unit

covariance. Many possibilities, including:

PCA yields x̃ = Σ−1 UH x

Cholesky Rx = L LH yields x̃ = L−1 x

Remarks

Infinitely many possibilities: L is as good as L Q, for any
unitary Q.

If Rx not invertible, then L not invertible (ill-posed). One may
use pseudo-inverse of Σ in PCA to compute L, or regularize
Rx .
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Plane rotations

Application of a Givens rotation on both sides of a matrix allows to
set a pair of zeros in a symmetric matrix:

c . s .
. 1 . .
−s . c .
. . . 1

 A


c . −s .
. 1 . .
s . c .
. . . 1

 =


∗ x 0 x
x . x .
0 x ∗ x
x . x .



Same result obtained:

either by setting 0

or by maximizing *’s
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Jacobi sweeping for PCA

Cyclic by rows/columns algorithm for a 4× 4 real symmetric matrix
. . . .
. . . .
. . . .
. . . .

→

∗ 0 x x
0 ∗ x x
x x . .
x x . .

→

∗ x 0 x
x . x .
0 x ∗ x
x . x .

→

∗ x x 0
x . . x
x . . x
0 x x ∗

→


. x x 0
x ∗ 0 x
x 0 ∗ x
0 x x .

→


. x . x
x ∗ x 0
. x . x
x 0 x ∗

→


. . x x

. . x x
x x ∗ 0
x x 0 ∗


∗: maximized, x : minimized, 0: canceled, . : unchanged

Pierre Comon Blind Techniques I.Principle & Tools 27



Introduction Tools Criteria Algebraic Tools pair sweep Statistical Tools Cum MI

Scalar Filter Decomposition

Any rational scalar filter g [z ] can be decomposed into:

γ[z ] = u[z ] `[z ], u[1/z∗] u[z ] = 1, ∀z (4)

`[z ] is minimum phase: all its roots inside the unit circle

u[z ] is all-pass, and hence lossless: flat frequency response
(only phase varies).
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Multivariate Filter Decomposition

Any rational filter with Impulse Response matrix F[k] and
complex gain F̌[z ], can be decomposed into:

F̌[z ] = Ǔ[z ] Ľ[z ], Ǔ[1/z∗]HǓ[z ] = I, ∀z (5)

L[k] is triangular minimum phase filter: roots of det(Ľ[z ])
inside unit circle

U[k] para-unitary filter

In static MIMO case, one gets QR:

F = U L, UHU = I (6)

where L is triangular and U unitary.

Decomposition not unique.
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Time Whitening

Let x [k] be a scalar second order stationary process, x̌ [z ] its z−
transform, and its power spectrum given by:

γx [z ]
def
= E{x̌ [z ] x̌ [1/z∗]∗}

From (4), the power spectrum can be decomposed as:

∃`[z ] / `[z ] `[1/z∗]∗ = γx [z ]

where filter `[z ] is not unique, and defined up to an all-pass filter.
1/`[z ] is a whitening filter, if it exists.
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Space-time Whitening

Let x [k] be a multivariate second order stationary random
process, x [z ] its z− transform, and power spectral matrix:

Γx [z ]
def
= E{x[z ] x[1/z∗]H}

Then, from (5)

∃Ľ[z ] / Ľ[z ] Ľ[1/z∗]H = Γx [z ]

If Ľ[z ] admits an inverse, then we may take Ǧ[z ] = Ľ[z ]−1 as
whitening filter, i.e. x̃[k] = G[k] ? x[k].
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Spatial Matched Filter

If x = H s + v, where H is known, one can estimate s by spatial
filtering as

ŝ = W x

Spatial Matched Filter: W = HHR−1
x

Least Squares: W = (HHH)−1HH

Weighted Least Squares: W = (HHB−1H)−1HHB−1

where B is the noise spatial coherence.

Pierre Comon Blind Techniques I.Principle & Tools 32



Introduction Tools Criteria Algebraic Tools pair sweep Statistical Tools Cum MI

Statistical Tools

Statistical Independence

Mutual vs Pairwise Independence

Cumulants of a scalar r.v.

Multivariate Cumulants

Complex variables, circularity

Central limit, Edgeworth expansion

Mutual Information, approximation
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Statistical Independence

Definition
Components sk of a K -dimensional r.v. s are mutually independent

m

The joint pdf equals the product of marginal pdf’s:

ps(u) =
∏
k

psk (uk) (7)

Definition
Components sk of s are pairwise independent ⇔ Any pair of
components (sk , s`) are mutually independent.
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Mutual vs Pairwise independence (1)

Example 3: Pairwise but not Mutual independence

Bag containing 4 Bowls denoted {RB, YB, GB, RYB}:
1 Red, 1 Yellow, 1 Green, 1 with the 3 colors.

Equal drawing probabilities:
P(RB) = P(YB) = P(GB) = P(RYG ) = 1/4

Event “R”
def
= draw a bowl containing Red ⇒

P(R) = P(RB) + P(RYG ) = 1/2

Then P(R ∩ Y ) = P(RYG ) = 1/4
equal to P(R) ∗ P(Y ) ⇒ Pairwise independent Events

But P(R ∩ Y ∩ G ) = P(RYG ) = 1/4
not equal to P(R) ∗ P(Y ) ∗ P(G ) = 1/8 ⇒
Events are not Mutually independent
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Mutual vs Pairwise independence (2)

Example 4: Pairwise but not Mutual independence

3 mutually independent BPSK sources, xi ∈ {−1, 1},
1 ≤ i ≤ 3

Define x4 = x1x2x3. Then x4 is also BPSK, dependent on xi

xk are pairwise independent:
p(x1 = a, x4 = b) = p(x4 = b | x1 = a).p(x1 = a) =
p(x2 x3 = b/a).p(x1 = a)
But x1 and x2 x3 are BPSK ⇒
p(x2 x3 = b/a).p(x1 = a) = 1

2 ·
1
2

But xk obviously not mutually independent, 1 ≤ k ≤ 4
In particular, Cum{x1, x2, x3, x4} = 1 6= 0
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Mutual vs Pairwise independence (3)

Darmois’s Theorem (1953)
Let two random variables be defined as linear combinations of
independent random variables xi :

X1 =
N∑

i=1

ai xi , X2 =
N∑

i=1

bi xi

Then, if X1 and X2 are independent, those xj for which ajbj 6= 0
are Gaussian.
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Mutual vs Pairwise independence (4)

Corollary
If z = C s, where si are independent r.v., with at most one of them
being Gaussian, then the following properties are equivalent:

1 Components zi are pairwise independent

2 Components zi are mutually independent

3 C = Λ P, with Λ diagonal and P permutation
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Characteristic functions

First c.f.

Real Scalar: Φx(t)
def
= E{e tx} =

∫
u e tu dFx(u)

Real Multivariate: Φx(t)
def
= E{e tTx} =

∫
u e tTx dFx(u)

Second c.f.

Ψ(t)
def
= log Φ(t)

Properties:

Always exists in the neighborhood of 0
Uniquely defined as long as Φ(t) 6= 0
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Definition of Cumulants

Moments:

µ′r
def
= E{x r} = (−)r ∂r Φ(t)

∂tr

∣∣∣∣
t=0

(8)

Cumulants:

C
x (r)

def
= Cum{x , . . . , x︸ ︷︷ ︸

r times

} = (−)r ∂r Ψ(t)

∂tr

∣∣∣∣
t=0

(9)

Needs the existence of the expansion. Counter example:
Cauchy

px(u) =
1

π (1 + u2)

Relationship between Moments and Cumulants obtained by
expanding both sides in Taylor series:

Log Φx(t) = Ψx(t)
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First Cumulants

C(2) is the variance:

For zero-mean r.v.: C(3) = µ(3), and C(4) = µ(4) − 3µ2
(2)

Warning: it is not true that C(r) is the moment of a variable
x − xg , xg Gaussian

Standardized cumulants:

K(r) = Cum(r)

{
x − µ′(1)√

µ(2)

}

e.g. Skewness K3, and Kurtosis K4.
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Examples of cumulants (1)

Example 5: Zero-mean Gaussian

Moments

µ(2r) = µr
(2)

(2r)!

r ! 2r

In particular:

µ(4) = 3µ2
(2), µ(6) = 15µ3

(2)

C(4) = 0, K(4) = 0.

All Cumulants of order r > 2 are null
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Examples of Cumulants (2)

Example 6: Uniform

uniformly distributed in [−a,+a] with probability 1
2a

Moments: µ(2k) = a2k

2k+1

4th order Cumulant: C(4) = a4

5 − 3 a4

9 = −2 a4

15

Kurtosis: K(4) = −6
5 .

a
-

1/2a

−a

6

Proof...
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Examples of Cumulants (3)

Example 7: Zero-mean standardized binary

x takes two values x1 = −a and x2 = 1/a with probabilities

P1 = 1
1+a2 , P2 = a2

1+a2

Skewness is K(3) =
1

a
− a

Kurtosis is K(4) =
1

a2
+ a2 − 4

Extreme values

Minimum Kurtosis
for a = 1 (symmetric):
K(4) = −2
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Sub- and Super-Gaussian r.v.

Warning:
The concept of Sub/Super Gaussian is not uniquely defined in the
literature. For instance, definitions below are not equivalent:

Monotonicity of [BGR80]: f (u) = − 1
u

d log px (u)
du .

Tails of the standardized pdf are below/above those of
Gaussian [ZIV95]

Bsed on kurtosis [KS77]:

Leptokurtic: positive kurtosis
mesokurtic: zero kurtosis
platykurtic: negative kurtosis
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Definition of Multivariate cumulants

Notation: Cij ..`
def
= Cum{Xi , Xj , ...X`}

First cumulants:

µ′i = Ci
µ′ij = Cij + CiCj
µ′ijk = Cijk + [3] CiCjk + CiCjCk

with [n]: Mccullagh’s bracket notation.

Next, for zero-mean variables:

µijk` = Cijk` + [3] CijCk`
µijk`m = Cijk`m + [10] CijCk`m

General formula of Leonov Shiryayev obtained by Taylor
expansion of both sides of Ψ(t) = log Φ(t)...
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Arrays and Tensors

Definitions Table T = {Tij ..k}

Order of T
def
= # of its ways = # of its indices

Dimension K`
def
= range of the `th index

T is Cubic when all dimensions K` = K are equal

T is Symmetric when it is square and when its entries do not
change by any permutation of indices

NB: cf. course III for definitions and properties
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Definition of Complex Cumulants

Definition
Let z = x +  y. Then pdf pz = joint pdf px,y

Notation

Characteristic function:

Φz(w) = E{exp[(xTu + yTv)]} = E{exp[<(zHw)]}

where w
def
= u + v.

Generates Moments & Cumulants, e.g.:

Variance: Var{z}ij = C
z

j

i

Higher orders: Cum{zi , . . . , zj , z
∗
k , . . . , z

∗
` } = C

z

k`

ij

where conjugated r.v. are labeled in superscript.
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Circularity (1)

z is circular in the strict sense if its distribution does not
depend on the phase of z . For a multivariate complex random
variable z, it means that:

z and z eθ, ∀θ ∈ R

have the same joint distribution.

Example 8: scalar circular complex Gaussian r.v.

pz(w) =
1

π σ2
exp−|w |

2

σ2

defines a circular r.v.: only modulus appears.
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Circularity (2)

There exist up to 2r distinct definitions of complex
multivariate cumulants.

At even order 2r , cumulants having exacting r complex
conjugations are termed circular cumulants.

For instance, the cumulant below is circular

C
z

k`

ij
= Cum{zi , zj , z∗k , z∗` }

whereas these ones are non circular

C
z

`

ijl
= Cum{zi , zj , zk , z∗` }

C
z ijk`

= Cum{zi , zj , zk , z`}

z is said to be circular at order r if its non circular cumulants
of order r are all null:

p 6= r − p ⇒ Cum{z1, .., zp, z
∗
p+1, .., z

∗
r } = 0 (10)
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Example of complex r.v.

Example 9: PSK random variables For a PSK−4 random
variable, ZZ ∗ = 1 and consequently:

C(2) = E{Z 2} = 0, C(2)
(2) = −1, µ

(0)
(4) = 1, C(0)

(4) = 1

It is thus circular up to order 3, but non circular at order 4.
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Properties of Cumulants

Multi-linearity (also enjoyed by moments):

Cum{αX , Y , ..,Z} = α Cum{X , Y , ..,Z} (11)

Cum{X1 + X2, Y , ..,Z} = Cum{X1, Y , ..,Z}+ Cum{X2, Y , ..,Z}

Cancellation: If {Xi} can be partitioned into 2 groups of
independent r.v., then

Cum{X1, X2, ..,Xr} = 0 (12)

Additivity: If X and Y are independent, then

Cum{X1 + Y1, X2 + Y2, ..,Xr + Yr} = Cum{X1, X2, ..,Xr}
+ Cum{Y1, Y2, ..,Yr}

Inequalities, e.g.:
K2

(3) ≤ K(4) + 2

Proof...
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Central Limit Theorem

Let N independent scalar r.v., x(n), 1 ≤ n ≤ N each with finite r th
order Cumulant, κ(r)(n).
Define:

κ̄(r) =
1

N

N∑
n=1

κ(r)(n) and y =
1√
N

N∑
n=1

(x(n)− κ̄(1)).

As N →∞, the pdf fy tends to a Gaussian.

Proof.

Thanks to multi-linearity and additivity, C
y (r)

=
κ̄(r)

Nr/2−1 , ∀r ≥ 2,

tends to zero.
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Edgeworth expansion of a pdf (1)

The pdf px(u) of a r.v. x can be expanded about the Gaussian
density gx(u) of same mean and variance, in terms of a
combination of Hermite polynomials, ordered by decreasing
significance in the sense of the Central Limit Theorem (CLT).

Order

m−1/2 κ3

m−1 κ4 κ2
3

m−3/2 κ5 κ3κ4 κ3
3

m−2 κ6 κ3κ5 κ2
3κ4 κ2

4 κ4
3

m−5/2 κ7 κ3κ6 κ2
3κ5 κ2

4κ3 κ5
3 κ4κ5 κ3

3κ4

From slide 53, r th order Cumulants ∼ O(m1−r/2).
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Edgeworth expansion of a pdf (2)

Francis Edgeworth (1845-1926).

px(u)

gx(u)
= 1 +

1

3!
κ3 h3(v) +

1

4!
κ4 h4(v) +

10

6!
κ2

3 h6(v)

+
1

5!
κ5 h5(v) +

35

7!
κ3κ4 h7(v) +

280

9!
κ3

3 h9(v) + . . .
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Mutual Information: definition

According to the definition of page 34, one should measure a
divergence:

δ

(
px,

N∏
i=1

pxi

)
If the Kullback divergence is used:

K(px, py)
def
=

∫
px(u) log

px(u)

py(u)
du,

then we get the Mutual Information as an independence
measure:

I (px) =

∫
px(u) log

px(u)∏N
i=1 pxi (ui )

du. (13)
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Mutual Information: properties

MI always positive

Cancels if r.v. are mutually independent

MI is invariant by scale change

Proof...

Example 10: Gaussian case

I (gx) =
1

2
log

∏
Vii

det V
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Mutual Information: decomposition

Define the Negentropy as the divergence:

J(px) = K(px, gx) =

∫
px(u) log

px(u)

gx(u)
du. (14)

Negentropy is invariant by invertible transforms

Then MI can be decomposed into:

I (px) = I (gx) + J(px)−
∑

i

J(pxi ). (15)

J(p)

∑
i J(pi)

I (g)

I (p)

PPPPPPPPPPq
@
@
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Sample Measures of Statistical Independence

Independence at order r

Definition:
Components xj of x are independent at order r if all cross
cumulants of order r are null

In other words: the Cumulant tensor Cij ..` is diagonal.

Example 11: Uncorrelated but not independent
s non Gaussian, si independent, then x = Q s has uncorrelated
components at order 2 if Q unitary → cf. example slide 12.
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Edgeworth expansion of the MI

This yields for standardized random variables x, after lengthy
calculations:

I (px) = J(px)− 1

48

∑
i

4 C
iii

2
+ C

iiii

2
+ 7 C

iii

4 − 6 C
iii

2 C
iiii

+o(m−2).

(16)

If 3rd order 6= 0, then I (px) ≈ J(px)− 1
12

∑
i C iii

2

If 3rd order ≈ 0, then I (px) ≈ J(px)− 1
48

∑
i C iiii

2
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Optimization Criteria

Cumulant matching

Contrast criteria

Mutual Information

Maximum Likelihood vs MI

CoM family

Other criteria
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Identification by Cumulant matching

Principle

Estimate the mixture by solving the I/O Multi-linear equations

Apply a separating filter based on the latter estimate

H- -
s x
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Noiseless mixture of 2 sources

Example 12: 2× 2 by Cumulant matching (cf. demo p.13)

After standardization, the mixture takes the form

x =

(
cosα − sinα eϕ

sinα e−ϕ cosα

)
s (17)

Denote γk`
ij = Cum{xi , xj , x

∗
k , x
∗
` } and

κi = Cum{si , si , s
∗
i , s
∗
i }.

Then by Multi-linearity:

γ12
12 = cos2 α sin2 α (κ1 + κ2)

γ12
11 = cos3 α sinα eϕ κ1 − cosα sin3 α eϕ κ2

γ22
12 = cosα sin3 α eϕ κ1 − cos3 α sinα eϕ κ2

Compact solution:
γ22

12−γ12
11

γ12
12

= −2 cot 2α eϕ
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Now the inverse approach

Cumulant matching (direct approach: identification)

Contrast Criteria (inverse approach: equalization):

x
H

s
- -

z
F

x
- -
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Noisy Mixtures of 2 sources

Example 13: Separation of 2 non Gaussian sources by
contrast maximization
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Source additional hypotheses

H1. Each sources sj [k] is an i.i.d. sequence, for any fixed j

H2. Sources sj are mutually statistically independent

H3. At most one source is Gaussian

H4. At most one source has a null marginal cumulant

H5. Sources are Discrete, and belong to some known
alphabet (but may be stat. dependent)

H6. Sources sj [k] are sufficiently exciting

H7. Sources are colored, and the set of source spectra forms
a family of linearly independent functions

H8. Sources are non stationary, and have different time
profiles
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Trivial Filters

They account for Inherent indeterminacies, remaining after
assuming Source additional hypotheses
For instance:

For dynamic (convolutive) mixtures, under H1, H2, H3,
Ť[z ] = P Ď[z ], where P is a permutation, and Ď[z ] a diagonal
filter, with entries of the form Ďpp[z ] = λp zδp , where δp is an
integer.
For static mixtures, under H2, H3, T = PD, where P
permutation and D diagonal invertible.

In other words, if s satisfies Hi, then so does Ts
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Contrast criteria: definition

Axiomatic definition
A Contrast optimization criterion Υ should enjoy 3 properties:

Invariance: Υ should not change under the action of trivial
filters (as defined in slide 67)

Domination: If sources are already separated, any filter should
decrease (or leave unchanged) Υ

Discrimination: The maximum achievable value should be
reached only when sources are separated (i.e. all absolute
maxima are related to each other by trivial filters)
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Mutual Information

Υ
def
= −I (pz) is a contrast

Invariant by scale change and permutation

Always negative

Null if and only if components are independent

Proof... cf slide 57
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Likelihood

Given the source pdf’s: ps(u) =
∏

i psi (ui ), and a sample xt , the
ML approach consists of maximizing one of the criteria below
w.r.t. H:

Noiseless case

px|H(xT |H) =
1

| det H|
ps(H−1x)

Noisy case

px,s|H(xT , s|H) = g(xT −H s) ps(s)

And the Joint MAP-ML criterion for a joint estimation of
sources:

(s
MAP

,H
MV

) = Arg Max
s,H

px,s|H(xT , s|H)

= Arg Max
s,H

p(xT |s,H) ps(s)
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Noiseless Maximum Likelihood (1)

For an increasing number of independent observations, the
average log-likelihood converges to

LT
def
=

1

T
log p(x1 . . . xT |H) −→ L∞ =

∫
px(u) log px|H(u) du

which can be seen to be, by making the change v = H−1u,
and up to a constant:

ΥML
def
= L∞ − S(px) = −K (pz, ps) (18)

Proof...
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Noiseless maximum Likelihood (2)

Yet, since si are independent, it can be shown that

K (pz, ps) = K (pz,
∏
i

pzi )︸ ︷︷ ︸
MI

+
∑

i

K (pzi , psi )︸ ︷︷ ︸
pdfdeviation

This allows to take into account the source pdf’s, if they are
known

J(p)

∑
i J(pi)

I (g)

I (p)

−ΥML

∑
i Ki

PPPPPPPPPPq
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But ML is not adequate if source pdf’s are unknown
⇒ just use MI
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CoM Family of contrast functionss

When observations are standardized, and when only unitary
transforms are considered, then the following are contrasts:

If at most 1 source has a null skewness [COM94b]:

Υ2,3 =
P∑

i=1

(κiii )
2, κiii

def
= C

z iii

If at most 1 source has a null kurtosis [COM94a]:

Υ2,4 =
P∑

i=1

(κii
ii )

2, κii
ii

def
= C

z

ii

ii

If at most 1 source has a null standardized Cumulant of order
r

def
= p + q > 2, and for any α ≥ 1:

Υα,r =
P∑

i=1

|κ(q)
i (p)|

α, κ
(q)
i (p)

def
= Cum{zi , . . . , zi︸ ︷︷ ︸

p times

, z∗i , . . . , z
∗
i︸ ︷︷ ︸

q times

}
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General Family of contrasts

Theorem All CoM contrasts belong to the larger family :

Υg (z) =
∑

i

g(|κ(q)
i (p)|) (19)

where g(·) is convex strictly increasing, and p + q > 2.

Proof...
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Contrast CoM(1, 4)

Example 14: Kurtosis-based contrast without squaring

In particular, if all source kurtosis have the same sign, ε, one
can avoid the absolute value:

Υ1,4 = ε

P∑
p=1

κii
ii

Proof...
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Other criteria

Contrasts based on Matrix slices of Cumulant tensor

Contrasts dedicated to Discrete source alphabets

Contrasts for convolutive mixtures - basically the same!
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Applications
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Applications

Sensor Array Processing

Telecommunications

Speech

Biomedical

Machine Learning

Exploratory Analysis...
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Application Areas (1)

Sensor Array Processing

Speech
Localization with ill calibrated antennas
Detection and/or extraction with unknown antennas
(eg. sonar buoys, biomedical, audio, nuclear plants...)
Blind extraction (eg. ComInt: interception, surveillance)
Localization with reduced diversity (eg. Air traffic control)
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Telecommunications: SISO equalization

Pierre Comon Blind Techniques II.Applications 80



Applications Medical Other

Telecommunications: MISO equalization
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Telecommunications: MIMO equalization
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ComInt: MIMO equalization
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Speech

The Coktail Party problem
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Deconvolution

Ill focussing is a 2-D convolution: mixture with neighboring pixels.
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Electrocardiography (1)

Anatomy
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Electrocardiography (2)

Atrial fibrillation [RCS+04]
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0
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−0.2

−0.1

0
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0.2
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−1

−0.5

0

0.5

time (s)

V1

Extracted
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Electrocardiography (3)

Mother-Phoetus separation [dLdMV00a]

Data

Separation
by ICA
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Application Areas (2)

Factor Analysis

Chemometrics
Econometrics
Psychology

Compression

Arithmetic Complexity

Machine Learning

Exploratory Analysis
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Machine Learning

Curse of dimensionality

Number of samples required to
reach a given relative error in
pd.f. estimate, O(ε), is of
order O(ε−1−d/4) [SIL86] ⇒
exponential in d

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Dimension d
S

am
pl

e 
si

ze

-- Epanechnikov, -. Silvermann, - exponential regression

Split of space into two lower dimensional subspaces allows the
approximation of the p.d.f. [COM95]:
px(u) ≈ px1(u1) · px2(u2)
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Factor Analysis

Food Sciences:
one of the numerous application areas

judges × products × sensory properties
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Contents

• Introduction

• Canonical Decomposition (CanD), Tensor rank

• Symmetric tensors, Quantics, Topology

• Other tensors

• Tucker3, HOSVD

• Other decompositions

References
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Introduction

Striking facts

Order, dimensions, outer & inner products

Contraction

Multi-linearity property

Unfoldings & storage

Symmetry
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Striking facts

1. The rank of a matrix cannot be larger than its dimensions →
possible for a tensor

2. Matrices with entries drawn randomly have maximal rank →
not true for a tensor

3. The set of matrices of rank at most r is closed, ∀r , → not
true for a tensor. Hence the approximation problem is
generally ill-posed.

4. Worse: the maximal achievable rank of a tensor is generally
still unknown.

5. There are several ways to extend the SVD to tensors
6. The computation of the rank of a given tensor still raises

unsolved difficulties.
7. Rank and symmetric rank have not yet been proved to be the

same
8. Subtraction of best rank-1 approximate does not necessarily

decrease the rank
9. ...Pierre Comon Blind Techniques III.Tensors 95
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Tensor product

Let V` be vector spaces of dimension K` on a field K, and let
v` ∈ V` be K`-dimensional vectors.

A tensor T is an element of a tensor product
V1

⊗V2
⊗ . . . ⊗VP . For instance

v1
⊗ v2

⊗ . . . ⊗ vP

is a tensor of dimensions K1 × K2 × · · · × KP .
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Arrays

If coordinates of u ∈ U , v ∈ V and w ∈ W are ui , vj , and wk

in canonical bases of U , V and W respectively, then
coordinates of tensor T = u ⊗ v ⊗w are given by the array

Tijk = ui vj wk

Given canonical bases, one often assimilates a tensor and its
associated array of coordinates.
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Order & Dimensions

Definitions Let the array T = {Tij ..k}

Order of T
def
= # of its ways = # of its indices

Dimension K`
def
= range of the `th index

T is Cubic when all dimensions K` = K are equal

T is Symmetric when it is cubic and when its entries do not
change by any permutation of indices
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Notation

Let A and B be matrices of dimensions mA × nA and
mB × nB , respectively

Notation A ◦B will be preferred to A ⊗B, to avoid possible
confusion with the Kronecker product A⊗ B between
matrices. In fact:
+ A⊗ B is a matrix of size mA mB × nA nB

+ A ⊗B is a tensor of size mA × nA ×mB × nB
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Matrix products

Again let A and B be matrices of dimensions mA × nA and
mB × nB , with entries {aij} and {bij}, respectively

Kronecker product: A⊗ B is mA mB × nA nB

A⊗ B
def
=

 a11B a12B · · ·
a21B a22B · · ·

...
...


Khatri-Rao product of matrices with same number of
columns, n:

A� B
def
=
(

a1 ⊗ b1 a2 ⊗ b2 · · ·
)

This is a column-wise Kronecker product. A� B is
mA mB × n.
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Outer product

Outer or “tensor” product between two arrays, C = A ◦B:

Cij ..` ab..d = Aij ..` Bab..d

The orders add up

Example 15: Outer product between 2 vectors The tensor

u ◦ v = u vT

has coordinates ui vj and is of order 2, and is hence a matrix.
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Arrays (cont’d)

Example 16: Take

v =

(
1
−1

)
Then

v◦ 3 def
= v ◦ v ◦ v =

(
1 −1 −1 1
−1 1 1 −1

)

This is a “rank-1” symmetric tensor

..........................

..........................

..........................

..........................

w
ww
w
w
ww w

blue bullets = 1, red bullets = −1.
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Inner Product (1)

Mode-1 inner product: A •1 B:

{A •
1

B}i2 ..iM ,j2 ..jK =
∑
k

Aki2 ..iM
Bkj2 ..jK

This is a contraction on the 1st index

Mode−p inner product: similarly A •p B is obtained by
summing up (i.e. contracting) on the pth index

Example 17: Matrix-vector product A u = AT •1 u

NB:
there exists a (less convenient & less used) other notation:
A×p B
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Inner Product (2)

Example 18: Matrix products are contractions

A · B = A •
2

BT = AT •
1

B

Example 19: Frobenius norm of a Pth order tensor in C:

||T||2 =
∑

i1 i2...iP

|Ti1 i2...iP |
2 = T •

1
•
2
. . . •

P
T∗

One contracts on all indices
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Inner Product (3)

The Contraction is not associative

A •
1
(B •

1
C) 6= (A •

1
B) •

1
C

even for 2nd order tensors (matrices): ATBTC 6= BTA C

A convention exists when a single tensor is contracted on
several matrices, to avoid parentheses: the summation is
always performed on the second matrix index.
Example 20: If A, B, C are matrices, and T a 3rd order
tensor,

T′ = T •
1

A •
2

B •
3

C⇒ T ′pqr =
∑
ijk

Api Bqj Crk Tijk (20)
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Change of basis

Assume a change of basis is performed in every linear space V`,
e.g. defined by matrix A in V1, B in V2, ... and C in VP .

Multilinearity. An order-P tensor T is transformed by the
multi-linear map {A,B, ..C} into a tensor T′:

T ′ij ..k =
∑
ab..c

AiaBjb ..CkcTab..c

Compact writing (with convention of slide 105):

T′ = T •
1

A •
2

B . . . •
P

C
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Unfoldings (1)

Storage of a matrix in a vector Let A be a p × q matrix,
with columns A:j . Then:

vec{A} def
=


A:1

A:2
...

A:q

 (21)

Conversely, A = Unvecq (vec{A}), if q denotes the # of
colums

Storage of a tensor in a vector
Similarly, the linear operator vec{·} maps a α× β × · · · × γ
tensor onto a vector (αβ . . . γ × 1 array)
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Unfoldings (2)

Storage of a tensor in a matrix
For a 3rd order tensor T, one defines 3 unfolding matrices:

TKI×J =


T::1

...
T::k

...
T::K

 , TIJ×K =


T1::

...
Ti ::

...
TI ::

 , TJK×I =


TT

:1:
...

TT
:j :
...

TT
:J:

 ,

Conversely,
ReshapeI ,K ,J (TKI×J), ReshapeJ,I ,K (TIJ×K ) or
ReshapeK ,J,I (TJK×I )
yield back T up to a permutation of the modes.

Similar tools for higher orders...
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`-mode rank

Example 21: 2× 2× 2. Let T = v
..........................

..........................

..........................

..........................

v
v

where bullets indicate nonzero entries, equal to 1 (see also
slide 117). Then matrix unfoldings are

TI×JK =

(
1 0 1 0
1 0 0 0

)
TJ×KI =

(
1 0 1 0
1 0 0 0

)
TK×IJ =

(
1 1 1 0
0 0 0 0

)
Note that ` mode ranks can be different:
rank1 = rank2 = 2 6= rank3 = 1
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Canonical Decomposition

Tensor rank

Properties of the CanD

Normalized CanD

Matrix writings of the CanD

Rank can exceed dimensions

Field can change rank
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Tensor rank

Any tensor or array T, of dimensions I × J × · · · × K can
always be decomposed as

T =
∑
q

u(q) ◦ v(q) ◦ . . . ◦w(q)

The tensor rank of T is the minimal value of P such that
equality holds
This yields the Canonical Decomposition (CanD), sometimes
referred to as Parafac decomposition:

T =

rank{T}∑
q=1

u(q) ◦ v(q) ◦ . . . ◦w(q) (22)

Tensor rank is always larger than or equal to all `-mode ranks:

rank`{T} ≤ rank{T}, ∀`
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Other writings (1)

Vectors can be normalized to unit norm, yielding a normalized
version:

T =

rank{T}∑
q=1

λq u(q) ◦ v(q) ◦ . . . ◦w(q) (23)

+ Will be useful for symmetric tensors in the real field
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Other writings (2)

Let T be a 3rd order tensor, and denote U, V, W the matrices
containing u(p), v(p), w(p) as columns.

Assuming Λ is a diagonal tensor of same order P as T, with
entries λq, the normalized CanD (23) admits a writing by
contractions, with convention (20) of slide 105:

T = Λ •
1

U •
2

V . . . •
P

W

In other words, the CanD is a means to model a tensor as a
transformation from a diagonal one.

+ Warning: matrices U, V,... W may not be invertible nor even
square!
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Other writings (3)

The CanD (22) can be written in matrix form:

TI×JK = U (W � V)T (24)

Alternatively, each matrix slice of T can be written as

T::k = U Diag{W(k, :)} VT (25)

NB: This extends to any order. In particular at order 4, with
appropriate notations:

T::k` = A Diag{C(k , :)} Diag{D(`, :)} BT
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Properties

The CanD of a multilinear transform is the transformed CanD:
If T

def
= Λ •1 U •2 V •3 W is transformed into

T′ = T •1 A •2 B •3 C,
then T′ admits the CanD:

T′ = Λ •
1
(A U) •

2
(B V) •

3
(C W)

The CanD is valid in a ring (only multiplies)
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Examples (1)

Example 22: 2× 2× 2 tensor of rank 2

T =

(
1 2 2 4
3 4 6 8

)
=

(
1
1

)
◦
(

1
2

)
◦
(

1
2

)
+

(
0
2

)
◦
(

1
1

)
◦
(

1
2

)
here matrix slices are proportional

Example 23: 2× 2× 2 of rank 2

T =

(
1 2 2 4
3 4 4 6

)
=

(
1
1

)
◦
(

1
2

)
◦
(

1
2

)
+

(
0
2

)
◦
(

1
1

)
◦
(

1
1

)
even if matrix slices are not proportional
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Examples (2)

Example 24: 2× 2× 2 tensor of rank 3 [COM02b]

T =

(
0 1 1 0
1 0 0 0

)
and

2 T =

(
1
1

)◦ 3

+

(
−1
1

)◦ 3

+ 2

(
0
−1

)◦ 3

+ This is the maximal rank in dimension 2× 2× 2
+ Here we have rank3 = 1 < rank1 = rank2 = 2 < rank{T} (cf.
slide 109).

NB: Other writing: 6x2y = (x + y)3 + (−x + y)3 − 2y 3
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Field can change rank

We have for any real tensor T

rank{T}C ≤ rank{T}R

Example 25: A 2× 2× 2 tensor of rank 3 in R, but 2 in
C [CMLG06]

T =

(
−1 0 0 1

0 1 1 0

)
In fact

T =
1

2

(
1
1

)◦ 3

+
1

2

(
1
−1

)◦ 3

+2

(
−1
0

)◦ 3

=


2

(
−
1

)◦ 3

− 
2

(

1

)◦ 3
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Symmetric tensors

Usefulness

Symmetric rank

Link with quantics

Why rank can exceed dimension

Generic & typical ranks

Clebsh’s statement

Topology

Hirschowitz theorem
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Usefulness of symmetric tensors

They occur as derivatives of a multivariate function

Moments
Cumulants
Hessian
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Space of symmetric tensors

SK : symmetric tensors of dimensions K and order d
+ space of dimension D

S
(K , d) = (K+d−1

d )

quadric cubic quartic quintic sextic
K\d 2 3 4 5 6

2 3 4 5 6 7

3 6 10 15 21 28

4 10 20 35 56 84

5 15 35 70 126 210

6 21 56 126 252 462

Number of free parameters in a symmetric tensor of order
d and dimension K

AK : general tensors of dimensions K` = K , 1 ≤ ` ≤ d
+ space of dimension D

A
(K , d) = Kd
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Symmetric rank

Definition For decomposing a symmetric tensor, one can
impose symmetry of each rank-1 term. Hence the symmetric
rank:

T =

ranks(T)∑
q=1

[u(q)]◦P

Property We have that

rank{T} ≤ ranksT, ∀T symmetric

It is not yet proved that both coincide for all values of order
and dimensions:
this is a conjecture [CGLM08].
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Link with quantics (1)

A quantic is a homogeneous polynomial in several variables.
For instance: quadric, cubic, quartic...

Example 26: Binary cubic (d ,K ) = (3, 2)
Take again example in slide 117:

p(x1, x2) =
∑2

i ,j ,k=1 Tijk xi xj xk

T =

(
0 1 1 0
1 0 0 0

)
= v

..........................

..........................

..........................

..........................

v
v

⇒ p(x) = 3 x2
1 x2 = 3 x[2,1]
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Link with quantics (2)

Bijection: Symmetric tensor of order d and dimension K ↔
quantic of degree d in K variables:

p(x) =
∑

j

Tj xf(j) (26)

integer vector j of dimension d ↔ integer vector f(j) of
dimension K
entry fk of f(j) being

def
= #of times index k appears in j

We have in particular |f(j))| = d .

Standard conventions: xj def
=
∏K

k=1 x jk
k and |f| def

=
∑K

k=1 fk ,
where j and f are integer vectors.
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Literature

Gauss’1825
Sylvester’1851

Cayley’1854
Clebsch’1861
Salmon’1874
Poincaré’1890
Hilbert’1900

Wakeford’1918
Grothendieck’1966

Dieudonné’1970
Shafarevich’1975

Ehrenborg, Kogan...
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Why rank can exceed dimension

Theorem Let v(1), v(2), ... v(r), be r pairwise linearly independent
vectors, then for all k ≥ r − 1, the rank-1 symmetric tensors are
linearly independent:

v◦ k
(1) , v◦ k

(2) , . . . v
◦ k
(r)

Example 27: 3 vectors in dimension 2

v(1) =

(
1
0

)
, v(2) =

(
0
1

)
, v(3) =

(
1
1

)
are pairwise linearly independent, but matrix of {v◦ 2

(q)} is full rank:
1 0 1
0 0 1
0 0 1
0 1 1


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Orbits (1)

General Linear group GL: group of invertible matrices

Orbit of a polynomial p: all polynomials q that can be
transformed into p by A ∈ GL: q(x) = p(Ax).

Allows to classify polynomials

Pierre Comon Blind Techniques III.Tensors 127



Intro CanD Symmetric Gene Tucker3 Other Appendix Quantics Closeness

Orbits (2)

Example 28: Quadrics

Binary quadrics are associated with 2× 2 symmetric matrices
(tensors of order 2)

Orbits in R: {0, x2, x2 + y 2, x2 − y 2}
+ 2xy ∈ O(x2 − y 2) in R[x , y ]

Orbits in C: {0, x2, x2 + y 2}
+ 2xy ∈ O(x2 + y 2) in C[x , y ]

Set of singular matrices is closed

Set Yr of matrices of at most rank r is closed
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3× 3

Classification of ternary quadrics
Orbits in C:

GI−orbit ω(p)

0 0
x2 1
x2 + y 2 2
x2 + y 2 + z2 3 (generic)

Question: what is the answer in R?
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CanD of polynomials

By using bijection (26), decomposing a dth order symmetric tensor
into a sum of rank-1 tensors means

p(x) =

r(p)∑
q=1

(vT
(q)x)d (27)

This is a sum of powers of linear forms.

r(p) coincides with the rank of associated tensor

r(p) is sometimes called the width of p [REZ92].
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Generic & Typical Ranks

Informal definition A property is typical if it holds true on a
non-zero-volume set

Informal definition A property is generic if is true almost
everywhere.

There can be several typical ranks, but only a single generic
rank.
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Bounds on generic rank (1)

For quantics of degree d in K variables

Lower bound ⌈
(K+d−1

d )

K

⌉
≤ R

Upper bound [Reznick’92]

R ≤ (K+d−2
d−1 )
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Bounds on generic rank (2)

Tensors of order d and dimensions (K1, ..Kd) without
symmetry:

Upper bound ⌈ ∏d
i=1 Ki

1 +
∑d

i=1(Ki − 1)

⌉
≤ R

Square case Ki = K :

K d/(dK − d + 1) ≤ R

Lower bound (Square case):

Kd/(d K − d + 1) ≤ R
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Topology of quantics

Every elementary closed set
def
= varieties, defined by p(x) = 0

Closed sets = finite union of varieties

Closure of a set E : smallest closed set E containing E

ý is called the Zariski topology in C [CLO92]
ý this is not Euclidian topology, but results still apply [CGLM08]:
Tensors with entries randomly drawn according to a continuous pdf
are generic
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Clebsch’s statement

Alfred Clebsch (1833-1872)

The generic ternary quartic cannot be written as the sum of 5
fourth powers

D(3, 4) = 15
3 r free parameters in the CAND
But r = 5 is not enough → r = 6 is generic !
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Tensor subsets

Set of tensors of rank at most r with values in C:

Yr = {T ∈ T : r(T) ≤ r}

Set of tensors of rank exactly r : Zr = {T ∈ T : r(T) = r}

Z = Yr − Yr−1, r > 1

Zariski closures: Y r , Zr ?
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Lack of closeness of Zr

Proposition
Z1 is closed, but not Zr for any r > 1

[Burgisser’97] [Strassen’83]

Proof
If rank{T} > 1, there exist T0 ∈ Zr−1 and y 6= 0 such that

T = T0 + y◦ d

Then define Tε = T0 + ε y◦ d . This series converges to
T0 /∈ Zr as ε→ 0
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Lack of closeness of Yr (1)

Proposition
If d > 2, Yr is not closed for 1 < r < R.

Example 29: Sequence of rank-2 tensors converging
towards a rank-4:

Tε =
1

ε

[
(u + ε v)◦ 4 − u◦ 4

]
In fact, as ε→ 0, it tends to:

T0 = u ◦u ◦u ◦ v + u ◦u ◦ v ◦u + u ◦ v ◦u ◦u + v ◦u ◦u ◦u

which can be shown to be proportional to the rank-4 tensor:

3T0 = 8 (u+v)◦ 4− 8(u−v)◦ 4−(u+2v)◦ 4+(u−2v)◦ 4 (28)

where u and v are not collinear.
+ This is the maximal rank of 4th order tensors of dimension
2.
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Lack of closeness of Yr (2)

Successive sets Yr = {T : rank(T) ≤ r}

ý A tensor sequence in Yr can converge to a limit in Yr+h
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Lack of closeness of Yr (2)

Successive sets Yr = {T : rank(T) ≤ r}

ý A tensor sequence in Yr can converge to a limit in Yr+h
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Lack of closeness of Yr (2)

Successive sets Yr = {T : rank(T) ≤ r}

ý A tensor sequence in Yr can converge to a limit in Yr+h
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Lack of closeness of Yr (2)

Successive sets Yr = {T : rank(T) ≤ r}

ý A tensor sequence in Yr can converge to a limit in Yr+h
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Lack of closeness of Yr (2)

Successive sets Yr = {T : rank(T) ≤ r}

ý A tensor sequence in Yr can converge to a limit in Yr+h
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Lack of closeness of Yr (2)

Successive sets Yr = {T : rank(T) ≤ r}

ý A tensor sequence in Yr can converge to a limit in Yr+h
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Genericity

Formal definition r is a typical rank if (density argument
with Zariski):

Zr is the whole space

Formal definition Generic rank is the typical rank when
unique

In C a typical rank is unique, and hence generic

For given values of order d and dimension K , the smallest
typical rank in R coincides with the generic rank in C
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Existence of the generic rank in C

Lemma The series of Yk is strictly increasing for k ≤ R
and then constant:

Y1⊂6=Y2⊂6= . . .⊂6=YR = YR+1 = . . . T

which guarantees the existence of a unique R

Proposition For tensors in C
If r1 < r2 < R < r3 ≤ R, then

Zr1 ⊂ Zr2 ⊂ ZR ⊃ Zr3 ⊇ ZR (29)

ý Proves that R is the generic rank in C
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Generic rank in C

Z1 Z2 = Y2 −Z1

Z3 = Y3−Z1 −Z2

= T −Z1 −Z2 −Z4

Z4 = Y4 − Y3
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Numerical computation of the Generic Rank (1)

Mapping

{u(`), 1 ≤ ` ≤ r} ϕ−→
r∑
`=1

u(`)◦ d

{CK}r ϕ−→ S

Rank
The rank of the Jacobian of ϕ equals dim(Z̄r ), and hence D for
large enough r .
ý The smallest r for wich rank(Jacobian(ϕ)) = D is R̄.
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Numerical computation of the Generic Rank (2)

Example 30: 3rd order symmetric tensors

{u(`), 1 ≤ ` ≤ r} ϕ−→ T =
r∑
`=1

u(`)◦ 3

T has coordinate vector:
∑r

`=1 u(`)⊗ u(`)⊗ u(`). Hence the
Jacobian of ϕ is the r n × n3 matrix:

J=


In ⊗ uT(1)⊗ uT(1) + u(1)T ⊗ In ⊗ uT(1) + u(1)T ⊗ u(1)T ⊗ In
In ⊗ uT(2)⊗ uT(2) + u(2)T ⊗ In ⊗ uT(2) + u(2)T ⊗ u(2)T ⊗ In

. . . + . . . + . . .
In ⊗ uT(r)⊗ uT(r) + u(r)T ⊗ In ⊗ uT(r) + u(r)T ⊗ u(r)T ⊗ In


and {

rank{J} = dim(Im(ϕ))
R̄ = Min{r : Im{ϕ} = S}
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Numerical computation of the Generic Rank (3)

The symmetric rank is generically:

d
K 2 3 4 5 6 7 8

3 2 4 5 8 10 12 15
4 3 6 10 15 21 30 42

R̄s ≥
1

K

(
K + d − 1

d

)

Bold: exceptions to the ceil rule: R̄s ≥ d 1
K

(K+d−1
d

)
e

[CM96]
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Uniqueness of CanD

Number of solutions

The fiber of solutions has dimension

F (n) = K R̄ −
(

K + d − 1

d

)
d

K 2 3 4 5 6 7 8

3 0 2 0 5 4 0 0
4 1 3 5 5 0 0 6

ý 0 means a finite number of solutions
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Hirschowitz theorem

From Alexander-Hirschowitz theorem (cf. appendix), one can
deduce [CGLM08]:
Theorem For d > 2, the generic rank of a dth order symmetric
tensor of dimension K is always equal to the lower bound

R̄s =

⌈(K+d−1
d

)
K

⌉
(30)

except for the following cases:
(d ,K ) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)}, for which it should be
increased by 1.

ý Only a finite number of exceptions !
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Classification of ternary cubics

GI−orbit ω(p)

x3 1
x3 + y 3 2
x2y 3
x3 + 3 y 2z 4
x3 + y 3 + 6 xyz 4
x3 + 6 xyz 4
a (x3 + y 3 + z3) + 6b xyz 4 (generic)
xz2 + y 2z 5

313

133

331

223

322
232

i

j

k

George Salmon (1819-1904)
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Other tensors

Numerical computation of the Generic Rank

Uniqueness of the CanD

Tensors with particular symmetries

Link with polynomials
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Numerical computation of the Generic Rank (1)

Mapping

{u(`), v(`), . . . ,w(`), 1 ≤ ` ≤ r} ϕ−→
r∑
`=1

u(`) ◦ v(`) ◦ . . . ◦w(`)

{Cn1 ◦ . . . ◦Cnd}r ϕ−→ A

ý The smallest r for wich rank(Jacobian(ϕ)) = D is the generic
rank, R̄.
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Numerical computation of the Generic Rank (2)

Example 31: 3rd order non symmetric tensors

{a(`),b(`), c(`)} ϕ−→ T =
r∑
`=1

a(`) ◦b(`) ◦ c(`)

T has coordinate vector:
∑r

`=1 a(`)⊗ b(`)⊗ c(`). Hence the
Jacobian of ϕ is the r(n1 + n2 + n3)× n1n2n3 matrix:

J =



In1 ⊗ bT(1) ⊗ cT(1)
In1 ⊗ . . . ⊗ . . .

In1 ⊗ bT(r) ⊗ cT(r)
a(1)T ⊗ In2 ⊗ cT(1)
. . . ⊗ In2 ⊗ . . .

a(r)T ⊗ In2 ⊗ cT(r)
a(1)T ⊗ b(1)T ⊗ In3

. . . ⊗ . . . ⊗ In3

a(r)T ⊗ b(r)T ⊗ In3


and

{
rank{J} = dim(Im(ϕ))
R̄ = Min{r : Im{ϕ} = A}
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Numerical computation of the Generic Rank (3)

Example 32: Tensors of order d with dimensions all equal to
K

d
K 2 3 4 5 6 7

3 2 5 7 10 14 19
4 4 9 20 37 62 97

R̄ ≥ Kd

Kd − d + 1

Bold: exceptions to the ceil rule R̄ = d Kd

Kd−d+1e
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Uniqueness of CanD

Number of solutions

Example 33: 3rd order with dimensions n`
F (n1, n2, n3) = (n1 + n2 + n3 − 2) R̄ − n1 n2 n3

Example 34: dth order with equal dimensions, K
F (n) = (Kd − d + 1)R̄ − Kd

d
K 2 3 4 5 6 7

3 0 8 6 5 8 18
4 4 0 4 4 6 24

ý For generic/typical values, almost always infinitely many
CanD’s
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Numerical computation of the Generic Rank (4)

Example 35: 3rd order tensors with unequal dim. N` [CtB08]
[CtB06]

N3 2 3 4
N2 2 3 4 5 3 4 5 4 5

N1 2 2,3 3 4 4 3,4 4 5 4,5 5
3 3 3,4 4 5 5 5 5,6 6 6
4 4 4 4,5 5 5 6 6 7 8
5 4 5 5 5,6 5,6 6 8 8 9
6 4 6 6 6 6 7 8 8 10
7 4 6 7 7 7 7 9 9 10
8 4 6 8 8 8 8,9 9 10 11
9 4 6 8 9 9 9 9 10 12

There are exceptions to the ceil rule R̄ = d
Q

` N`P
`(N`−1) +1e

Bold: values that have not yet been proved theoretically
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Third order tensors with symmetric slices

Example 36: Typical ranks for N1 × N2 × N2 arrays, with
N2 × N2 symmetric slices.

N1 N2 2 3 4 5

2 2,3 3,4 4,5 5,6
3 3 4 6 7
4 3 4,5 6 8
5 3 5,6 7 9
6 3 6 7 9
7 3 6 7 10
8 3 6 8 10
9 3 6 9,10 11

10 3 6 10 11
Bold: smallest typical ranks computed numerically.

Plain: known typical ranks; in C, the smallest value is generic.
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Tucker 3

Definitions

Properties

Usefulness
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Definition (1)

According to Ledyard R. Tucker (1910-2004), any dth order
I1 × I2 × · · · × Id tensor T can be decomposed as [TUC66]:

T = S •
1

U(1) •
1

U(2) . . . •
1

U(d)

where S has smaller dimensions than T (or equal to), and U(`) are
semi-unitary, i.e. U(`)TU(`) = In`

, n` ≤ I`.
ý S is called the core tensor.
ý This decomposition is referred to as Tucker3 or as HOSVD
[dLdMV00b] [SBG04].
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Two equivalent optimization problems

Max
U(1),U(2)...U(d)

||T •
1

U(1)T •
1

U(2)T . . . •
1

U(d)T||2

Min
U(1),U(2)...U(d)

||T− S •
1

U(1) •
1

U(2) . . . •
1

U(d)||2
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Definition (2)

Other writing with unitary matrices U(`). In that case, the core
tensor S has same dimensions as T but is padded with zeros
[dLdMV00b]:

Pierre Comon Blind Techniques III.Tensors 164



Intro CanD Symmetric Gene Tucker3 Other Appendix HOSVD

Properties (1)

The dth order core tensor can be imposed to be quite particular

All its d − 1st order subtensors obtained by fixing one index
are all orthogonal (w.r.t. scalar product induced by Frobenius
norm); there are d of them.

Entries of the core tensor can be sorted in such a way that for
every mode `:

||Si`=1|| ≥ ||Si`=2|| ≥ . . . ||Si`=I` ||

These norms may be viewed as `-mode singular values.

When T is a matrix, so is S, and all-orthogonality can be
satisfied only when S is diagonal. The sequence of norms
σi = ||S:i || = ||Si :|| are then the singular values.
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Properties (2)

`-mode singular vectors can be computed as singular vectors
of the `-mode unfolding matrix; hence an easy computation

The `-mode singular values are uniquely defined

When `-mode singular values are different, corresponding
`-mode singular vectors are unique up to a unit-modulus scale
factor

For any fixed mode `, the sum of all mode-` squared singular
values yields ||T||2
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Usefulness

The nesting of `-mode singular values & vectors allows to
easily find the best approximate of a tensor of lower `-mode
rank by truncation of the HOSVD [dLdMV00c].

May be applied to noise reduction

May reduce subsequent computational complexity (dimension
reduction)

May be used as a pre-processing before the CanD calculation
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Other decompositions

Exact decompositions (if not truncated):

CanD
Tucker3 – HOSVD

Approximate decompositions:

Diagonalization by orthogonal transform
Diagonalization by invertible transform
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Conclusions on Tensors

Still open problems

Efficient numerical algorithms lacking

Several ways of extending SVD to tensors

Very powerful, and numerous application areas
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Polynomial interpolation

Alexander-Hirschowitz Theorem [AH92] [AH95] Let L(d ,m)
be the space of hypersurfaces of degree at most d in m variables.

This space is of dimension D(m, d)
def
=
(m+d

d

)
− 1.

Theorem Denote {pi} K given distinct points in the complex
projective space Pm. The dimension of the linear subspace of
hypersurfaces of L(d ,m) having multiplicity at least 2 at every
point pi is:

D(m, d)− K (m + 1)

except for the following cases:
• d = 2 and 2 ≤ K ≤ m
• d ≥ 3 and (m, d ,K ) ∈ {(2, 4, 5), (3, 4, 9), (4, 1, 14), (4, 3, 7)}

In other words, there are a finite number of exceptions.
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Part IV

Algorithms for static mixtures
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Contents of part IV

Overview

• Introduction

• Algorithms based on pair sweeping (CoM1, CoM2)
Link with tensor diagonalization

• Algorithms based on matrix slices (JADE, STOTD)

• Algorithms based on Deflation (FastICA, RobustICA, SAUD)

• Finite alphabet inputs (APF, MAP, ILSP...)

References
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What we have seen so far

Cumulants can measure independence at a given order

Cumulants form a (symmetric) tensor object

Tensors may have a rank larger than dimensions, even
generically

We have well-founded optimization criteria. Some of them
amount to approximately diagonalizing a tensor.
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Hypotheses

Mixture is over-determined

The rank of the signal cumulant tensor is equal (at most) to
its dimension

The mixture may be given by the CanD of the signal
cumulant tensor

Noise & measurement errors yield a measured cumulant
tensor that has generic rank
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Performance measure

How to test performances of algorithms in computer simulations?

Difficulty because of the Λ P indeterminacy

Identification: Gap between F H and matrix of the form Λ P

Source extraction: SINR (Signal to Interference plus
Noise): needs exhaustive search for best Λ P
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Example of Gap

This gap does not need a combinatorial search, because it is
Λ P-invariant [COM94a]:

ε(A, Â ) =
∑

i

|
∑

j

|Dij | − 1 |2 + |
∑

j

|Dij |2 − 1 |

+
∑

j

|
∑

i

|Dij | − 1 |2 + |
∑

i

|Dij |2 − 1 |

where D = A−1Â
Properties

ε{AΛP, Â } = ε{A, Â } = ε{A, Â Λ−1P}
ε{A, Â } = 0⇔ Â = AΛP
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Algorithms based on pair sweeping

Block vs Adaptive

Closed-form solutions in dimension 2, for various contrasts

Sweeping of all pairs

Complexity and convergence
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Numerical Algorithms

What problem are they supposed to solve?

Are we given a single block of data?

Are we observing a sequence of blocks, or a series of samples?

Must we update the solution at every block, or at every
sample?

What kind of algorithms?

Gradient ascent: the simplest

Gradient-based ascents (Newton, quasi-Newton, conjugate
gradient..)

Quasi-algebraic algorithms: try to avoid local maxima

Algebraic algorithms: find all absolute maxima in closed-form
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Block vs Adaptive

Increase power of DSP

Limitations of time-recursive Adaptive Algorithms

Convergence time of optimization algorithm
Convergence time of moment estimators
Local extrema harder to handle

Coherence time sometimes limited
(e.g. GSM: 900MHz, 190km/h, Tc ≈ 2ms ≈ 300 symbols)

Well matched to block transmission (TDMA)

Better exploitation of data
(uniform weight, resistance to loss in synchro, time reversal)
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Solution of the 2-dimensional problem

Assume data x have been standardized into x̃.

Then one looks for an estimate z of the source vector s as:

z = Q x̃

where Q is unitary, and may be assumed of the form:

Q =

(
cosβ sinβ eϕ

− sinβ e−ϕ cosβ

)
=

1√
1 + θθ∗

(
1 θ
−θ∗ 1

)
(31)

where θ
def
= tanβ eϕ denotes the complex tangent, and

β ∈]− π/2, π/2].
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Invariance & Indeterminacy (1)

There is a whole class of equivalent absolute maxima, which
can be deduced from each other by trivial filtering

In the 2× 2 real case, there are 8 equivalent absolute maxima,
generated by two P Λ transformations:(

0 1
1 0

)
and

(
1 0
0 −1

)
In the complex case, there are infinitely many, when ϕ ∈ R.

Expression (31) fixes this indeterminacy, so that only 2
solutions remain

Pierre Comon Blind Techniques IV.Algorithms for static mixtures 181



Introduction Pair sweep Slices Deflation Alphabet Algebraic Quasi-algebraic

What is the problem in dimension 2 ?

Υα,r is a homogeneous trigonometric polynomial in
(cosβ, sinβ) of degree α r .

And we want a closed-form (algebraic) solution

But only polynomials of a single variable of degree at most 4
can generally be rooted algebraically

Our problem: check out whether Υα,r could be transformed
into a particular function that can be algebraically maximized
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Invariance & Indeterminacy (2)

Remark that Q[θ] and Q[−1/θ∗] are PΛ-related:

Q[− 1

θ∗
] = Q[θ]

(
0 −e ϕ

e− ϕ 0

)
Thus, rational function Υ satisfies Υ[− 1

θ∗
] = Υ[θ].

Consequently if θo is stationary point of Υ, so is −1/θ∗o ⇒
Stationary points are roots of a polynomial ω(ξ) in

ξ
def
= θ − 1/θ∗

Idea of algorithm:

Compute coefficients of ω from cumulants of x̃
Compute roots ξo of ω
Root θ2 − ξo θ − 1 in order to get (θo ,−1/θ∗o).
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Solution for contrast Υ2,3 in R (1)

Contrast Υ2,3 is defined as:

Υ2,3 = Cum{z1, z1, z1}2+Cum{z2, z2, z2}2 def
= (κ111)2+(κ222)2

Yet, by multilinearity of cumulants:

κiii =
∑
jk`

Qi j Qik Qi` γjk`, γjk`
def
= Cum{x̃j , x̃k , x̃`}

Then Υ2,3 is a degree-6 polynomial in (cosβ, sinβ), or a
rational function in the tangent θ:

ψ3(θ) = (θ +
1

θ
)−3

3∑
i=1

ai

(
θi − (−θ)−i

)
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Solution for contrast Υ2,3 in R (2)

Denote ξ = θ − 1/θ.
Because of the invariance under transformation θ → −1/θ,
stationary points are roots of a very simple polynomial:

ω3(ξ) = d2 ξ
2 + d1 ξ − 4 d2

where d1 = a1/3− a3, and d2 = a2/6
and:

a3 = γ2
111 + γ2

222,

a2 = 6 (γ122 γ222 − γ111 γ112),

a1 = 9 (γ2
122 + γ2

112) + 6 (γ112 γ222 + γ111 γ122)

Conclusion: solution obtainable algebraically from estimates

of cumulants γjk`
def
= Cum{x̃j , x̃k , x̃`} [COM94b].
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Another solution for contrast Υ2,3 in R (2)

Υ2,3 = κ2
111 + κ2

222 can be proved to be a quadratic form uTB u
where

u
def
= [cos 2β, sin 2β]T (32)

and

B
def
=

(
a1 3 a4/2

3 a4/2 9 a2/4 + 3 a3/2 + a1/4

)
with [dLdMV01]:

a1 = γ2
111 + γ2

222

a2 = γ2
112 + γ2

122

a3 = γ111 γ122 + γ112 γ222

a4 = γ122 γ222 − γ111 γ112
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Solution for contrast Υ2,4 in R

Now take Υ2,4
def
= (κ1111)2 + (κ2222)2

This contrast is a degree-8 polynomial (cosβ, sinβ).
Denote again ξ = θ − 1/θ. Then it is a rational function in ξ:

ψ4(ξ) = (ξ2 + 4)−2
4∑

i=0

bi ξ
i

Then its stationary points are roots of a polynomial of degree
4:

ω4(ξ) =
4∑

i=0

ci ξ
i

whose roots are thus obtainable algebraically
(e.g. via Ferrari’s technique).

Coefficients bi and ci are given in [COM94b] as functions of
γijk`
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Solution for contrast Υ1,4 in R
Same approach feasible, but easier because absence of squares
⇒ Here another easier-accessible approach

Input-Output relations

κ1 = γ1 cos4 β + 4γ1112 cos3 β sinβ + 6γ1122 cos2 β sin2 β

+ 4γ1222 cosβ sin3 β + γ2 sin4 β

κ2 = γ1 sin4 β − 4γ1112 cosβ sin3 β + 6γ1122 cos2 β sin2 β

− 4γ1222 cos3 β sinβ + γ2 cos4 β

Then εΥ1,4 = κ1 + κ2 =

[cos 2β sin 2β]

(
γ1 + γ2 γ1112 − γ1222

γ1112 − γ1222
γ1+γ2

2 + 3γ1122

) [
cos 2β
sin 2β

]
Conclusion: again entirely algebraic since dominant
eigenvector of a matrix of size < 4.
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Solution for contrast Υ1,4 in C

Define κi = Cum{zi , zi , z
∗
i , z
∗
i }, γk`

ij = Cum{x̃i , x̃j , x̃
∗
k , x̃
∗
` }

Then... again a quadratic form

εΥ1,4 = κ1 + κ2 = uT B u

with
uT = [cos 2β sin 2β cosϕ sin 2β sinϕ]

and

B =

 γ1111 + γ2222 <{δ} −={δ}
<{δ} 2γ12

12 + <{γ11
22} ={γ11

22}
−={δ} ={γ11

22} 2γ12
12 −<{γ11

22}

 ;

δ = γ11
12 − γ12

22

Conclusion: unexpectedly entirely algebraic! [COM01]
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Jacobi Sweeping

Cyclic sweeping with fixed ordering: Example in dimension P = 3

x x̃ z
L

Carl Jacobi, 1804-1851
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Jacobi Sweeping for tensors

Question: Why not select another ordering, e.g. process pairs
having cross cumulants of largest magnitude?

Response: the computational complexity would be dominated by
the computation of the tensor entries themselves!

How do we compute tensor entries then?
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Jacobi Sweeping for tensors

Sweeping a 3× 3× 3 tensor [COM89] X x x
x x x
x x .


 x x x

x X x
x x .

→ x x x
x x x
x x .



 X x x
x . x
x x x


 x x x

x . x
x x x

→ x x x
x . x
x x X



 . x x
x x x
x x x


 . x x

x X x
x x x


 . x x

x x x
x x X


X : maximized
x : minimized
. : unchanged

by last Givens rotation
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Two possible updates of T

After processing every pair, one can:

Update based on multilinearity:

Tij ..k ←−
∑
pq..r

Qip Qjq ..Qkr Tpq..r

requires an initial computation of T

Update of observations themselves

X←− Q X

and then
Tij ..k = Cum{xi , xj , ..xk}

The best choice (i.e. least costly) depends on data length and
dimensions.
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Influence of ordering

With update based on multilinearity.
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Complexity
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Interpretation in terms of pairwise independence

Pairs are processed in turns, so as to make outputs as
independent as possible

Ultimately: a set of pairwise independent outputs

Legitimate because of corollary of Darmois’s theorem (cf.,
slide 38)
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Interpretation in terms of tensor diagonalization

Explanation for order 3 tensors

Given a tensor gijk , find a matrix Q transforming g into
Gpqr =

∑
ijk QpiQqjQrk gijk such as to maximize:

Ψ3(Q)
def
=
∑

i

|Giii |2

Theorem: if Q is unitary, then Ω
def
=
∑

ijk |Gijk |2 is constant
independent of Q
Proof: uses

∑
p QipQjp = δij

Corollary: Maximize Υ3,2 ⇔ minimize all non diagonal entries

Hence: “Tensor Diagonalization”
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Tensor diagonalization

Warning: Tensors cannot in general be diagonalized by congruent
transforms, even non unitary!

Why?
...
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Stationary points

Example of diagonalization of real symmetric matrices

Given a matrix g with components gij , it is sought for an
orthogonal matrix Q such that ψ2 is maximized:

ψ2(G ) =
∑

i

G 2
ii ; Gij =

∑
p,q

QipQjq gpq.

Stationary points of ψ2 satisfy for any pair of indices
(q, r), q 6= r :

GqqGqr = Grr Gqr

Next, d2ψ2 < 0⇔ G 2
qr < (Gqq − Grr )2, which proves that

Gqr = 0, ∀q 6= r yields a maximum
Gqq = Grr , ∀q, r yields a minimum
Other stationary points are saddle points
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Stationary points

Procedure applied to real 3rd or 4th order tensors

Similarly, one can look at relations characterizing local
maxima of criteria Ψ3 and Ψ4 [COM94b]:

GqqqGqqr − Grrr Gqrr = 0,

4G 2
qqr + 4G 2

qrr − (Gqqq − Gqrr )2 − (Grrr − Gqqr )2 < 0;

GqqqqGqqqr − Grrrr Gqrrr = 0,

4G 2
qqqr + 4G 2

qrrr − (Gqqqq −
3

2
Gqqrr )2

−(Grrrr −
3

2
Gqqrr )2 < 0.

for any pair of indices (p, q), p 6= q. As a conclusion, contrary
to Ψ2 in the matrix case, Ψr might have theoretically spurious
local maxima in the tensor case, r > 2
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Algorithms based on matrix slices

JADE contrast

JADE algorithm

STOTD recursion on the order

Other
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Tensors as Linear Operators

Overview

Linear Operator Ω acting on square matrices:

M −→ Ω(M)ij =
∑
k`

Cj`
ik Mk`

admits eigen-matrices N(p), 1 ≤ p ≤ P2.

In the absence of noise, P nonzero eigenvalues

In practice, retain P dominant eigen-matrices ⇒ (i) reduced
complexity P2, and (ii) noise reduction
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Joint Approximate Diagonalization (JAD)

Back to tensor diagonalization
Example of 4× 4× 4 tensors

Matrix slices diagonalization 6= Tensor diagonalization
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Real symmetric tensors

Definition (reminder)
G is real symmetric iff:

Gij ..k = Gσ(ij ..k)

for all permutation σ
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Two equivalent writings (order 3)

Lemma 1 Let U be an orthogonal real matrix, relating two 3rd
order real symmetric tensors G and g, then∑

ik

G 2
iik =

∑
r

||Diag(UTM(r) U)||2

where M(r) are symmetric matrix slices of g: Mpq(r)
def
= gpqr

Proof...

Theorem One can prove that J def
=
∑

ik |Giik |2 is a contrast. (at
least 2 indices are equal)
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Hermitian tensors

Definition
G is complex hermitian iff it is of even order, and enjoys the
symmetries:

Gpq..r
ij ..k = Gpq..r

σ(ij ..k)

Gpq..r
ij ..k = G

σ(pq..r)
ij ..k

Gpq..r
ij ..k =

(
G ij ..k

pq..r

)∗
for any permutation σ.

Pierre Comon Blind Techniques IV.Algorithms for static mixtures 206



Introduction Pair sweep Slices Deflation Alphabet

Two equivalent writings (order 4)

Lemma 2 Let U be a unitary matrix relating two complex
hermitian tensors of even order 4, G and g, then∑

ik`

|G ik
i` |2 =

∑
rs

||Diag(UHM(r , s) U)||2

where M(r , s) are hermitian matrix slices of g: Mpq(r , s)
def
= gqr

ps

Proof...

Theorem One can prove that J def
=
∑

ik`..mn |G ik..m
i`..n |2 is a

contrast. (only 2 indices are equal)
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JADE as an approximation of Υα,4

Lemma 3 denote the EVD g =
∑

p λpN(p)N(p)H, i.e.
gjkrs =

∑
p λpNjk(p) Nrs(p), then 3rd writing:

J2,4 =
P2∑

p=1

λ2
p ||diag(UH N(p) U)||2

Second approximation: Keep only the most significant
eigen-matrices, p ≤ P, which amounts to maximizing:

J E
α,4

def
=

P∑
p=1

λαp ||diag(UH N(p) U)||2

Hence the name of Joint Approximate Diagonalization of
Eigenmatrices (JADE).

Jα,4 can be seen as an approximation of Υα,4.
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Implementation of JADE with pair sweeping

Algebraic solution in dim 2

Goal is to maximize the diagonal terms of QHN(r) Q

Denote N(r) =

(
ar br

ct dr

)
and

Q =

(
cos θ sin θ eϕ

− sin θ e−ϕ cos θ

)
Then this amounts to maximizing w.r.t. (θ, ϕ): vT<(GHG)v
where

GHG =
∑

r

 ar − dr

br + cr

(cr − br )

∗ [ar − dr , br + cr , (cr − br )]

and v = [cos 2θ, sin 2θ cosϕ, sin 2θ sinϕ]T

Thus, solution is the dominant eigenvector of a (real)
symmetric matrix
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Lower order simultaneous diagonalization (1)

Extend the idea: Slicing decreases the order

Similarly, one can try to diagonalize a 4th order tensor
T = [γijk`] by jointly diagonalizing 3rd order slices T(`)
(STOTD) [dLdMV01]

Algorithm: Each Givens rotation is obtained again by
maximizing a quadratic form uTB u

Noise reduction possibility: replace slices by a family of 3rd
order tensors forming a basis of the map CK → CK×K×K

(consider the 4th order tensor as a linear map; basis obtained
by SVD)
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Lower order simultaneous diagonalization (2)

In the real case, B is given as in slide 186 by:

B =

(
a1 3 a4/2

3 a4/2 9 a2/4 + 3 a3/2 + a1/4

)
with [dLdMV01]:

a1 =
∑
`

γ2
111` + γ2

222`

a2 =
∑
`

γ2
112` + γ2

122`

a3 =
∑
`

γ111` γ122` + γ112` γ222`

a4 =
∑
`

γ122` γ222` − γ111` γ112`
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Diagonalization algorithms

Obtain a diagonal tensor or diagonal slices:

by orthogonal transforms [dL78] [CS93] [Com92]

by invertible transforms [AFS07] [YER02] [?] [PHA01]
[LAT06]

by rectangular transforms [PAA99] [VO06] [COM04a] [NL06]
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Algorithms based on Deflation

Principle: Joint extraction vs Deflation

Unitary adaptive deflation

A so-called fixed point: FastICA

RobustICA

Deflation without spatial prewhitening, algebraic deflation

Discussion on MISO criteria
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Joint extraction vs Deflation

fH

-
-
-
-
-

-

�

�

�

�?
-
-
-
-

x

z

-
-
-
-
-

Deflation:

Advantage: (a) reduced complexity at each stage, (b) simpler
to understand

Drawbacks: (i) accumulation of regression errors, limitation of
number of extracted sources, (ii) possibly larger final
complexity
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Adaptive algorithms

Deflation by Kurtosis Gradient Ascent
Again same idea
After standardization, it is equivalent to maximize 4th order
moment criterion, Mz (4) = E{|z |4}, whose gradient is:

∇M = 4 E{x (fHx)(xHf)2}

Overview

Fixed step gradient on anglular parameters: [DL95]

Locally optimal step gradient on filter taps: FastICA [HYV97]

Globally optimal step gradient on filter taps: RobustICA
[COM02a]

Semi-Algebraic Unitary Deflation (SAUD) [COM05]
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Adaptive algorithms

Adaptive implementation

Fully adaptive solutions (update at every sample arrival)
nowadays little useful

Always easy to devise fully adaptive, or block-adaptive
solutions form from block semi-algebraic algorithms (but
reverse is not true!)
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Unitary adaptive deflation (1)

Extraction
To extract the first source, find a unitary matrix U so as to
maximize the kurtosis of the first output
Matrix U can be iteratively determined by a sequence of
Givens rotations
At each step, determine the best angle of the Givens rotation,
e.g. by a gradient ascent [DL95]

NB: only P − 1 Givens rotations are involved

Deflation
After convergence, the first output is extracted, and the P − 1
remaining outputs of U can be processed in the same way
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Unitary adaptive deflation (2)

At stage k , Q =

(
qH

k

QH
k

)
is unitary of size P − k + 1, and only its

first row is used to extract source k , 1 ≤ k ≤ P − 1

(
qH

1

QH
1

) (
qH

2

QH
2

) (
qH

3

QH
3

)
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A so-called fixed point: FastICA (1)

Any gradient ascent of a function Mρ = E{ρ(fHx)} under
unit-norm constraint ||f||2 = 1 admits the Lagrangian
formulation:

E{xρ̇(fHx)} = λ f

Convergence: when ∇C and f collinear (and not when
gradient is null, because of constraint ||f|| = 1).

Remark: It is not a fixed point algorithm, contrary to what
had been claimed in [HYV97], because λ is not known!

One can take ρ(z) = |z |4

Pierre Comon Blind Techniques IV.Algorithms for static mixtures 219



Introduction Pair sweep Slices Deflation Alphabet Criteria

A so-called fixed point: FastICA (2)

Details of the algorithm proposed in [HYV99] in the real field; only
difference compared to [TUG97] is fixed step size.

Gradient: ∇M = 4 E{x (fTx)3}
Hessian: 12 E{xxT (fTx)2}
Heavy approximation of Hyvarinen [HYV99]:

E{xxT (fTx)2} ≈ E{xxT}E{(fTx)2}

If x standardized and f unit norm, then Hessian equals Identity.
This yields an approximate Newton iteration: a mere fixed step
gradient!
f ← f − 1

3 E{x (fTx)3} or f ← E{x (fTx)3} − 3 f
f ← f/||f||
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FastICA: weaknesses

This is a mere fixed step-size projected gradient algorithm,
inheriting problems such as:

Saddle points (slow/ill convergence)

Flat areas (slow convergence)

Local maxima (ill convergence)

NB: slow convergence may mean high complexity to reach the
solution, or stopping iterations before reaching convergence
(depends on stopping criterion).
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Polynomial rooting

Theorem (1830). A polynomial of degree higher than 4 cannot in
general be rooted algebraically in terms of a finite number of
additions, subtractions, multiplications, divisions, and radicals
(root extractions).

Niels Abel, 1802-1829 Evariste Galois 1811-1832
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How to fix most drawbacks: RobustICA

Principle: Cheap exhaustive Line Search of a criterion J
Look for absolute maximum in the gradient direction (1-dim
search)

Not costly when criteria are polynomials or rational functions
of low degree (same as AMiSRoF: polynomial to root, but
here at most of degree 4)

Applies to Kurtosis Maximization (KMA), Constant-Modulus
(CMA), Constant-Power (CPA) Algorithms...

This yields corresponding Optimal-Step (OS) algorithms:
OS-KMA, OS-CMA, OS-CPA... [ZC08] [ZC05]
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RobustICA

Algorithm

compute coefficients of polynomial ∂
∂µ J (f + µ∇) for fixed f

and ∇
compute all its roots {µi}
select µopt among those roots, which yields the absolute
maximum

set f ← f + µopt∇

[ZC07]
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RobustICA vs FastICA
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Semi-Algebraic Unitary Deflation

CoM1 [COM01]

for j = i to P

Loop on sweeps
for i = 1 to P − 1

Algebraic 2× 2 separ.
end

end
end
Extraction

SAUD [ACX07]

for j = i to P
Algebraic 2× 2 separ.
end

end

for i = 1 to P − 1
Loop on sweeps

end
Extraction
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Equivalence between KMA and CMA

Recall the 2 criteria:

ΥKMA =
Cum{z , z , z∗, z∗}

[E{ |z |2}]2
, JCMA = E{[ |z |2 − R ]2}

Assume 2nd Order circular sources: E{s2} = 0

Then KMA and CMA are equivalent
Proof.
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Discussion on Deflation (MISO) criteria

Let z
def
= fHx. Criteria below stationary iff differentials ṗ and q̇ are

collinear:

Ratio: Max
f

p(f)

q(f)
Example: Kurtosis, with p = E{|z |4} − 2E{|z |2}2 − |E{z2}|2
and q = E{|z |2}2

Difference: Min
f

p(f)− α q(f)

Example: Constant Modulus, with p = E{|z |4} and
q = 2 a E{|z |2} − a2 or Constant Power, with
q = 2 a<(E{z2})− a2

Constrained: Max
q(f)=1

p(f)

Example: Cumulant, with
p = E{|z |4} − 2E{|z |2}2 − |E{z2}|2
Example: Moment, with p = E{|z |4}, if standardized and
with either q = ||f||2 or q = E{|z |2}2
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Finite alphabets

Back to contrast criteria: APF

Approximation of the MAP estimate

Semi-Algebraic Blind Extraction algorithm: AMiSRoF

Blind Extraction by ILSP

Convolutive model

Presence of Carrier Offset (in Digital Communications)
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Contrast for discrete inputs (1)

Hypothesis H5 The sources take their value in a finite
aphabet A defined by the roots in C of some polynomial
q(z) = 0

Theorem [COM04b]
Under H5, the following is a contrast over the set H of
invertible P × P FIR filters.

Υ(G; z)
def
= −

∑
n

∑
i

|q(zi [n])|2 (33)

APF: Algebraic Polynomial Fitting

Pierre Comon Blind Techniques IV.Algorithms for static mixtures 230



Introduction Pair sweep Slices Deflation Alphabet Criterion Algorithm

Contrast for discrete inputs (2)

For given alphabet A, denote G the set of numbers c such
that c A ⊆ A.

Lemma 1 Trivial filters satisfying H5 are of the form:

P D[z ]

with D[z ] diagonal and Dpp[z ] = cp zn, for some n ∈ Z and
some cp ∈ G.

Because A is finite, any c ∈ G must be of unit modulus, and
we must have c A = A, ∀c ∈ G.
Also any c ∈ G has an inverse c−1 in G.
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Contrast for discrete inputs (3)

Sketch of proof of the theorem. We prove the 3 properties of slide
68:

∀T ∈ T , Υ(T; x) = Υ(I; x)

∀G ∈ H, ∀s ∈ S, set of independent sources in A,
Υ(G; s) ≤ Υ(I; s)

∀G ∈ H, ∀s ∈ S, equality Υ(G; s) = Υ(I; s) ⇒ G trivial.
The proof needs the lemma

Lemma 2 Let A be {ak , 1 ≤ k ≤ d} 6= {0}. If∑L
i=1 ci aσ(i) ∈ A for all mappings σ from {1, . . . , L} to

{1, . . . , d}, then only one ci 6= 0.
The proof of this lemma needs sources to be sufficiently
exciting, e.g. that all binary states are present.
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Contrast for discrete inputs (4)

Idea of the proof of Lemma 2

Assume that for some c ∈ CL, we have xTc ∈ A for all
x ∈ AL.

Then c must be trivial:
Non trivial vectors c may generate symbols that lie outside
the convex
hull of A, or between the two closest symbols.
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Contrast for discrete inputs (4)

Advantages

The previous contrast allows to separate correlated sources

But it needs all sources to have the same (known) alphabet

If sources have different alphabets, one can extract sources in
parallel with different criteria: Parallel Extraction [RZC05]

By deflation with different criteria, one can extract more
sources than sensors: Parallel Deflation [RZC05]
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Parallel Deflation
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Parallel Extraction
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Parallel extraction

Parallel extraction of 3 sources (QPSK, QAM16, PSK6), from a
3-sensor length-3 random Gaussian channel [RZC05]
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APF extraction

Parallel Deflation from a mixture of 4 sources (2 QPAK and 2
QAM16) received on 3 sensors. Extraction of a QPSK source in
figure, compared to MMSE [RZC05]
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MAP estimate

Optimal solution

(Ĥ, ŝ)MAP = Arg Max
H s

ps|x ,H(x, s,H)

If sp ∈ A, and if noise is Gaussian, then

(Ĥ, ŝ)MAP = Arg Min
H, s∈AP

||x−H s||2

Less costly to search (inverse filter when it exists)

(F̂, ŝ)MAP = Arg Min
F, s∈AP

||Fx− s||2

or by deflation:

(f̂, ŝ)MAP = Arg Min
f, s∈AP

||fHx− s||2 (34)
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Approximation of the MAP estimate

For alphabet of constant modulus, MAP criterion (34) is
asymptotically equivalent (for large samples of size T ) to [GC98]:

ΥT (f) =
1

T

T∑
t=1

cardA∏
j=1

|fHx[t]− aj [t]|2

where aj [t] ∈ A
We have transformed an exhaustive serach into a polynomial
alphabet fit
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Algorithm AMiSRoF

Absolute Minimimum Search by Root Finding [GC98]

Initialize f = fo

For k = 1 to kmax, and while |µk | >threshold, do

Compute gradient gk and Hessian Hk at fk−1

Compute a search direction vk , e.g. vk = Hk
−1gk

Normalize vk to ||vk || = 1
Compute the absolute minumum µk of the rational function in
µ:

Φ(µ)
def
= ΥT (fk−1 + µ vk)

Set fk = fk−1 + µk vk
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Algorithm ILSP

Iterative Least-Squares with Projection [TVP96]

Assumes that components si [n] ∈ A, known alphabet

Assumes columns of H belong to a known array manifold

Initialize H, and start the loop

Compute LS estimate of matrix S in equation X = H S
Project S onto A
Compute LS estimate of H in equation X = H S
Project H onto the array manifold
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Equalization Identification

Part V

Algorithms for convolutive mixtures
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Equalization Identification

Contents

Here limited to over-determined mixtures

• Blind equalization,

Modeling, Carrier offset
Contrast criteria
Algorithms (Pajod, subspace, linear prediction...)

• Blind identification

Cumulant matching
Algebraic approaches
Subspace techniques
ARMA mixtures

References
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Blind Equalization

Modeling of Dynamic Mixtures

Contrast-based

MISO Deflation
Para-unitary

SIMO channel

subspace
mutually referenced
Linear prediction

MIMO

Matched Filter after Blind Identification
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SISO Modeling

Sequence of symbols s[k] at a rate 1/Ts

Overall channel h(t), containing transmit&receive filters and
propagation

received process x(t) =
∑

k∈Z h(t − k Ts) s[k]

If sampled at a rate 1/T :

x [n] =
∑
k∈Z

h(n T − k Ts) s[k]

If sampled exactly at symbol rate, we get a discrete
convolution:

x [n] =
∑
k∈Z

h[n − k] s[k]

with h[m]
def
= h(m T )
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MIMO Modeling

In practice, one often assumes the approximation of discrete
convolutive FIR:

x[n] =
L∑

k=0

H[k] s[n − k] + v[k] (35)

Either:

Blind Identification
Estimate the finite matrix sequence H[k], or

Blind Equalization
Estimate a FIR filter F[`], 0 ≤ ` ≤ L′
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Carrier offset (1)

In practical contexts of Blind Techniques, carrier frequency might
be unacurately estimated

In the SISO case, this yields

x [n] =
∑
k

h[n − k] s[k] e k δ

An equivalent writing is

x [n] = e n δ
∑
k

h′[n − k] s[k]

where h′[m]
def
= h[m] em δ.

alphabet fitting at the output may be limited by the presence
of this Carrier residual. But Blind Equalization is still feasible.
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Carrier offset (2)

In the MIMO case, the carrier offset cannot be pulled into the
channel anymore, unless all sources have the same carrier
offset

In fact on sensor k:

xk [n] =
∑
`

∑
p

Hkp[n − `] sp[`] e ` δp

or
xk [n] =

∑
`

∑
p

e n δp H ′kp[n − `] sp[`]

with H ′kp[m]
def
= Hkp[m] em δp

Thus blind equalization is not possible anymore before carrier
residual mitigation
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Carrier offset (3)

Summary

SISO case: BE and CO can be permuted

MIMO case: BE and CO cannot generally be permuted
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Carrier offset (3)
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Carrier offset (4)
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SIMO mixture with diversity K = 2 (1)

x

x
s

h

h

1 1

2
2

Disparity condition:

h1[z ] ∧ h2[z ] = 1⇒ x1[z ] ∧ x2[z ] = s[z ]

Bézout:

∃v1[z ], v2[z ] / v1[z ] h1[z ] + v2[z ] h2[z ] = 1

⇒ v1[z ] x1[z ] + v2[z ] x2[z ] = s[z ]

Thus

FIR filter h =

(
h1

h2

)
admits the FIR inverse v =

(
v1, v2

)
.
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SIMO mixture with diversity K = 2 (2)

Theorem
If two polynomials p(z) =

∑m
i=0 aiz

i and q(z) =
∑n

i=0 biz
i are

prime, then the resultant below is non zero:

R(p, q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 . . . am 0 . . .

0
. . .

. . . 0
0 0 a0 . . . am

b0 . . . bn 0 . . .

0
. . .

. . . 0
0 0 b0 . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
def
= det

(
A
B

)
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Use of time diversity

Time diversity
If channel bandwidth exceeds symbol rate 1

Ts
(excess bandwidth),

then a sampling faster than 1
Ts

brings extra information on
channel. [?] [?]

How to build a SIMO channel from a SISO?

sample twice faster: x [k] = x(k Ts/2)

denote odd samples x1[k] = x [2k + 1], and even samples
x2[k] = x [2k]

then (
x1[k]
x2[k]

)
=

(
H1

H2

)
s[k]

def
= H s[k]

Matrix H is full rank (well conditioned) if sufficient excess
bandwidth
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Mutually Referenced Equalizers (1)

Recall the compact modeling of equation (42) slide 279:

X(n) = HT S(n)

Then observe that if HT is column shaped and full rank (here
T + L + 1):

∃V : VHHT = I

Each row of VH defines an equalizer vH
i , deduced from each

other by a delay [?]:

vH
j X(n − i) = vH

i X(n − j) = s(n − i − j)
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Mutually Referenced Equalizers (2)

The equations E{|vH
kX(n)− vH

k+1X(n + 1)|2} = 0 for
0 ≤ k ≤ T + L yield:

VHRV = 0 with

V def
=


v0

v1
...

vT+L

 , and R def
=



R(0) −R(1)H 0 . . . 0

−R(1) 2 R(0)
. . . 0

...

0
. . .

. . .
. . . 0

0 . . . 0 2 R(0) −R(1)H

... 0
. . . −R(1) R(0)


and R(k)

def
= E{X(n + k) X(n)H}.

Thus, take V as being the dominated eigenvector, and extract
vk from it

In practice, necessary to add a constraint to avoid
vk ∈ null(HH)

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures 257



Equalization Identification SISO SIMO Contrasts Deflation Paraunitary Other

Contrast criteria (1)

Proofs derived in the static case hold true in the convolutive case,
e.g. family of contrasts of slides 73-74
Proofs...
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Contrast criteria (2)

But also possible to devise new families of contrasts for
para-unitary equalizers after prewhitening [?] [?]. For instance:

Υ(y) =
∑

i

∑
j p

∑
k q

|Cum{yi [n], yi [n], yj [n − p], yk [n − q]}|2

(36)

In the above, one can conjugate any of the variables y`’s

Holds true for almost any cumulants of order ≥ 3

Only two indices need to be identical with same delay

Proof Based on the property that, for para-unitary filters G:

y[n]
def
=
∑

t

G[n − t] s[t] ⇒ Υ(y) =
∑

i

∑
` t

|Gi`[t]|4 |κ`|2
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MISO Dynamic Extractor: Deflation

Fixed step gradient Deflation [TUG97]

Optimal Line search along a descent direction, OS-KMA [?]
[ZC05]
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PAJOD (1)

Technique applied after space-time prewhitening

Then one looks for a para-unitary equalizer, by maximizing
the contrast

J2,r (y) =
∑

b

∑
β

||Diag{HH M(b,β)H}||2

Matrix H is now defined differently, and is semi-unitary.
Matrices M(·) contain cumulants of whitened observations

Contrast (36) is maximized again by a sweeping technique
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PAJOD (2)

PAJOD: Partial Approximate Joint Diagonalization of matrix slices

One actually attempts to diagonalize only a portion of the tensor

N  L
q q

.
.
.

1
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MIMO Blind Equalization

linear prediction after BI [?]

linear prediction [?] [?] [?]

subspace [?] [?] [?] [?] [?]

identifiability issues by subspace techniques [?] [?]
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Equalization after prior Blind Identification

Assume channel H[z ] has been identified, with:
x[n] = H[z ] ? s[z ] + v[z ]
An estimate of s[z ] is obtained with F[z ] ? x[z ].
Possible equalizers F[z ]:

Zero-Forcing: F[z ] = H[z ]−1

Matched Filter: F[z ] = H[1/z∗]H

(used in MLSE; optimal if channel AWGN; maximizes output
SNR)

Minimum Mean Square Error (MSE):
F[z ] = (H[z ]H[1/z∗]H + Rv [z ])−1H[1/z∗]H

ý One can insert soft or hard decision to stabilize the inverse, or
to reduce noise, e.g. decision Feedback Equalizers (DFE).
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Overview

Interest

MA identifiability (second order vs hOS)

SISO: Cumulant matching

MIMO: Cumulant matching and linear prediction (non monic
MA)

Algebraic approaches, Quotient Ring

SIMO: Subspace approaches

MIMO: Subspace, IIR, ...
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BE vs BI

If sources sp[k] are discrete, it is:

rather easy to define a BE optimization criterion in order to
match an output alphabet

difficult to exploit a source alphabet in BI

Example the property of constant modulus of an alphabet is
mainly used in Blind Equalization: CMA (Constant Modulus
Algorithm)
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Interest of Blind Identification

When the mixture does not have a stable inverse
ý When may want to control stability by soft/hard decision
in a Feedback Equalizer

When sources are not of interest (e.g. channel characteristics,
localization only)
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SISO Cumulant matching (1)

Consider first the SISO version of (35):

x [n] =
L∑

k=0

h[k] s[n − k] + v [k]

where v [k] is Gaussian stationary, and s[n] is 4th order white
stationary.

Then, by the multilinearity property of cumulants (slide 52):

Cx(i , j)
def
= Cum{x [t+i ], x [t+j ], x [t+L], x [t]} = h[i ] h[j ] h[L] h[0] cs

with cs
def
= Cum{s[n], s[n], s[n], s[n]}.

By substitution of the unknown h[L] h[0] cs , one gets a whole
family of equations [?] [?]:

h[i ] h[j ] Cx(k , `) = h[k] h[`] Cx(i , j), ∀i , j , k , ` (37)
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SISO Cumulant matching (2)

A solution to the subset of (37) for which j = ` can be easily
obtained:

h[i ] Cx(k , j)− h[k] Cx(i , j) = 0, 0 ≤ i < k ≤ L, 0 ≤ j ≤ L
(38)

This is a linear system of L(L + 1)2/2 equations in L + 1
unknowns
⇒ Least Square (LS) solution, up to a scale factor (e.g.
h(0) = 1).

Since 4th order only, asymptotically (for large samples)
insensitive to Gaussian noise.

Total Least Squares (TLS) solution possible as well
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MIMO Cumulant matching (1)

Inteterminacy

Scale (scalar) factor for SISO, but ΛP factor for MIMO

Reduction to a monic model [COM94b]

If H[0] is invertible, (35) can be rewritten as

y[n] = H[0] s[n], (39)

x[n] =
L∑

k=0

B[k] y[n − k] + w[k] (40)

where B[k]
def
= H[k]H[0]−1.

Because B[0] = I, MA model (40) is said to be monic.

Indeterminacy is only in (39), which is solved by ICA if s[n] is
spatially white
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MIMO Cumulant matching (2)

Kronecker notation

Store 4th order cumulant tensors in vector form:

ca,b,c,d
def
= vec{Cum{a,b, c,d}}

Then, we have the property (where ∗ denotes term-wise
product):

ca,b,c,d = E{a⊗ b⊗ c⊗ d} − E{a⊗ b} ⊗ E{c⊗ d} − E{a⊗ E{b⊗ c} ⊗ d}
−E{a⊗ 1β ⊗ c⊗ 1δ} ∗ E{1α ⊗ b⊗ 1γ ⊗ d}
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MIMO Cumulant matching (3)

Assume monic MA model (40) where s[n] white in time and L
fixed, and denote

cx(i , j)
def
= vec{Cum{x[t + i ], x[t + j ], x[t + L], x[t]}}

Then we can prove [?]:

Cx(i , j) = Cx(0, j) B[i ]T, ∀j , 0 ≤ j ≤ L

where Cx(i , j)
def
= UnvecP (cx) is P3 × P

For every fixed i , B[i ] is obtained by solving the system of
(L + 1)P4 equations in P2 unknowns in LS sense:

[IP ⊗ Cx(0, j)] vec{B[i ]} = cx(i , j) (41)
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MIMO Cumulant matching (4)

Summary of the algorithm
Choose a maximum L
Estimate cumulants of observation, cx(i , j) for i , j ∈ {0, . . . , L}
Solve the (L + 1) systems (41) in B[i ]
Compute the residue y[t] (Linear Prediction)
Solve the ICA problem y[t] = H[0] s[t]

Weaknesses

H[0] must be invertible
FIR model (35) needs to have a stable inverse

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures 273



Equalization Identification Introduction Match Subspace Identifiability ARMA

Algebraic Blind identification (1)

Types of discrete source studied

BPSK: b[k] ∈ {−1, 1}, i .i .d .

MSK: m[k + 1] = m[k] b[k]

QPSK: p[k] ∈ {−1,−, 1, }, i .i .d .
π
4 -DQPSK: d [k + 1] = eπ/4 d [k] p[k]

8-PSK: q[k] ∈ {enπ/4, n ∈ Z}, i.i.d.

etc...
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Algebraic Blind identification (2)

Input/Output relations:

For s[k] BPSK: E{x [n] x [n − `]} = s[0]2
∑L

m=0 h[m] h[m + `]

For s[k] MSK:
E{x [n] x [n − `]} = s[0]2

∑L
m=0(−1)m h[m] h[m + `]

For s[k] QPSK:
E{x [n]2 x [n − `]2} = s[0]2

∑L
m=0 h[m]2 h[m + `]2

etc..

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures 275



Equalization Identification Introduction Match Subspace Identifiability ARMA

Algebraic Blind identification (3)

Principle:

Compute all roots of the polynomial system in h[n].
For instance for MSK sources and a channel of length 2 [?]:

h[0]2 − h[1]2 + h[2] = β0

h[0] h[1]− h[1] h[2] = β1

h[0] h[2] = β2

Choose among these roots the one that best matches the I/O
correlation:

E{x [n] x [n − `]∗} =
L∑

m=0

h[m] h[m + `]∗
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Algebraic Blind identification (4)

Theorem (Bezout) A polynomial system of degree d in N
variables has either:

infinitely many solutions

no solution

exactly dN solutions (distinct or not)

Etienne Bézout, 1730-1783
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Algebraic Blind identification (5)

Standard approaches
Gröbner bases

Efficient solution of polynomial system: Normal Forms
There are two approaches, both working in the Quotient Ring
modulo the Ideal defined by polynomial system:

Eigenvectors of the transposed multiplication matrix MT
u in the

Quotient Ring
The Rational Univariate Representation (RUR) of eigenvalues
of Mu

Main advantage: most (symbolic) calculations depend only
on distribution of s[n], and may thus be stored in ROM →
Limited numerical computations left depending on
measurements.
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SIMO mixture (1)

FIR of length L and dimension K :

x(n) =
L∑

i=1

h(i)s(n − i) + b(n)

with: E{b(m) b(n)H} = σ2
b I δ(m − n)

and E{b(m) s(n)∗} = 0
For T successive values:

x(n)
x(n−1)

...
x(n−T)

=


h(0) h(1) . . . h(L) 0 . . . 0

0 h(0) . . . . . . h(L) . . . 0
...

. . .
. . .

. . .
. . .

...
0 0 . . . h(0) h(1) . . . h(L)


 s(n)

...
s(n−T−L)


Or in compact form:

X(n : n − T ) = HT S(n : n − T − L) (42)

Here, HT is of size (T + 1)K × (T + L + 1)
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SIMO mixture (2)

Condition of “column” matrix
H has strictly more rows than columns iff

(T + 1)K > T + L + 1

⇔ T > L/(K − 1) − 1⇐ T ≥ L

It suffices that T exceeds channel memory.

Disparity condition
Columns of H are linearly independent iff

h[z ] 6= 0, ∀z

Noise subspace
Under these 2 conditions, there exists a “noise subspace”:

∃v / vHHT = 0
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SIMO mixture (3)

Properties of vectors in the null space

Since Rx
def
= E{X XH} = HT HH

T + σ2
b I,

vectors v(p) of noise space can be computed from Rx :

Rx v(p) = σ2
b v(p)

And since convolution is commutative:

v(p)HHT = hH V(p)

where V(p) block Töplitz, built on v(p).

Thus hH = [h(0)H, h(1)H, . . .h(L)H] are obtained by
computing the left singular vector common to V(p).
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SIMO mixture (4)

Summary of the SIMO Subspace Algorithm

Choose T ≥ L

Compute Rx , correlation matrix of size (T + 1)K

Compute the d = T (K − 1) + K − L− 1 vectors v(p) of the
noise space

Compute vector h minimizing the quadratic form

hH

 d∑
p=1

V(p)V(p)H

 h

Cut h into L + 1 slices h(i) of length K

Under the assumed hypotheses, the solution is unique up to a
scalar scale factor [?]
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SIMO mixture (5)

Summary of the SIMO Subspace Algorithm when K = 2

Choose T = L. There is a single vector v in the noise space

Compute Rx , correlation matrix of size (T + 1)K

Compute the vector v of the noise space

Cut v into L + 1 slices v(i) of lengthK = 2

Compute h(i) =

(
0 −1
1 0

)
v(i)

In fact xi = hi ? s ⇒ h2 ? x1 − h1 ? x2 = 0
Approach called SRM (Subchannel Response Matching) [?]
[?]

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures 283



Equalization Identification Introduction Match Subspace Identifiability ARMA

SISO Identifiability

Second order statistics

α` = E{x [n] x [n − `]∗} ý allow to estimate |h[m]|
β` = E{x [n] x [n − `]} ý allow to estimate h[m] if E{s2} 6= 0

Fourth order statistics ý many (polynomial) additional
equations

γ0jk` = Cum{x [n], x [n − j ], x [n − k], x [n − `]}
γk`

0j = Cum{x [n], x [n − j ], x [n − k]∗, x [n − `]∗}

If some sources are 2nd order circular, sample Statistics of order
higher than 2 are mandatory, but otherwise not [?] !
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SIMO Identifiability

With a receive diversity, (deterministic) identifiability conditions
are weaker [?] [?]

Definition A length-N input sequence s[n] has P modes iff
the Hankel matrix below is full row rank:

s[1] s[2] . . . s[N − p + 1]]

s[2] s[3]
. . . s[N − p + 2]

...
...

...
s[p] s[p + 1] . . . s[N]


Theorem A K × L FIR channel h is identifiable if:

Channels hk [z ] do not have common zeros
The observation length of each xk [n] must be at least L + 1
The input sequence should have at least L + 1 modes
(sufficiently exciting)
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Subspace algorithm for MIMO mixtures

Similarly to the SIMO case, we have the compact form:

X(n) = HT S(n) + B(n)

where H is now built on matrices H(k), 1 ≤ k ≤ L, and is of
size (T + 1)K × (T + L + 1)P.

For large enough T , this matrix is ”column shaped”

Again Rx = HT HH
T + σ2

b I

But now, vectors of the noise space caracterize H[z ] only up
to a constant post-multiplicative matrix ⇒ ICA must be used
afterwards

Foundations of the MIMO subspace algorithm are more
complicated [Loubaton’99]

In the MIMO case, HOS are in general mandatory.
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SISO ARMA mixtures

What are the tools when the channel is IIR?

In general, just consider it as a FIR (truncation) → already
seen

But also possible to assume presence of a recursive part

Define I/O relation:
∑p

i=0 ai x [n − i ] =
∑q

j=0 bj w [n − i ]
where w [·] is i.i.d. and a0 = b0 = 1

Second order cx(τ)
def
= E{x [n] x [n + τ ]} can be used to identify

ak :
p∑

k=0

ak cx(τ − k) = 0, ∀τ > q

Then compute the residue and identify b` with HOS (cf. slide
269)

Also possible with HOS only for AR part [?]
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MIMO ARMA mixtures (1)

Results of SISO case can be extended

Take a K -dimensional ARMA model: Define I/O relation:

p∑
i=0

Ai x[n − i ] =

q∑
j=0

Bj w[n − i ]

where w [·] is i.i.d. and A0 = I and B0 inveritible

For instance at order 4, AR identification is based on:∑p
j=1 Aj c̄x(t, τ − j) = −c̄x(t, τ), ∀τ > q, ∀t

with c̄x(i , j)
def
= UnvecK (Cum{x[n], x[n], x[n + i ], x[n + j ]})
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MIMO ARMA mixtures (2)

Limitations

Sources need to be linear processes

B0 needs to be invertible

AR residuals need to be computed (MA filtering) to compute
Bi

One can compute MA residuals (AR filtering) if input s[n] is
requested → but might be unstable
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Part VI

Algorithms for under-determined mixtures
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Back to Essential uniqueness

Recall the general model (22) to fit (here 3rd order):

ε
def
= ||T−

rank{T}∑
q=1

a(q) ◦b(q) ◦ c(q)||2 (43)

For instance, if (A,B,C) is solution, so is
(APΛ,BP∆,CPΛ−1∆−1)

Essential uniqueness: uniqueness up to a common
scale-permuation ambiguity.

The scale indetermination can be fixed by introducing a
diagonal tensor ∆ and imposing unit-norm columns in the
matrices:

T ≈ ∆ •
1

A •
2

B •
3

C
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Essential uniqueness

Sufficient condition The Kruskal rank of a matrix A is the
maximum number kA, such that any subset of kA columns are
linearly independent.

Kruskal’s bound [KRU77] [SB00] [SS07] gives sufficient
conditions. Essential uniqueness is ensured if the tensor rank R is
below an upper bound:

2R + 2 ≤ kA + kB + kC ,

or generically, for a tensor of order d and dimensions N`:

2R + d − 1 ≤
d∑
`=1

min(N`,R)
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Essential uniqueness (cont’d)

Necessary and sufficient condition Essential uniqueness has
been proved via local identifiability, under the condition that the
rank is sub-generic:

rank{T} ≤
⌈ ∏

` N`∑
`(N` − 1) + 1

⌉
This condition is necessary and sufficient up to some exceptions,
for which the maximal rank should be decreased by 1. The proof is
numerical for the general case [CtB08], but algebraic in the
symmetric case [CGLM08].

Questions: What algorithms, and under what conditions?
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James Joseph Sylvester (1814–1897)
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Binary case

Construction of the CanD (1)
Sylvester’s theorem in R

A binary quantic p(x , y) =
∑d

i=0 γi c(i) x i yd−i can be
decomposed in R[x , y ] into a sum of r powers as
p(x , y) =

∑r
j=1 λj (αj x + βj y)d if and only if the form

qc(x , y) =
r∏

j=1

(βj x − αj y) =
r∑

l=0

gl x l y r−l

satisfies


γ0 γ1 · · · γr

γ1 γ2 · · · γr+1
...

...
γd−r · · · γd




g0

g1
...

gr

 = 0.

and has distinct real roots.

Valid even in non generic cases.
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Construction of the CanD (2)

Sylvester’s theorem in C
A binary quantic p(x , y) =

∑d
i=0 c(i) γi x i yd−i can be written as a

sum of dth powers of r distinct linear forms:

p(x , y) =
r∑

j=1

λj (αj x + βj y)d , (44)

if and only if (i) there exists a vector g of dimension r + 1, with
components g`, such that γ0 γ1 · · · γr

...
...

γd−r · · · γd−1 γd

 g∗ = 0. (45)

and (ii) the polynomial q(x , y)
def
=
∑r

`=0 g` x` y r−` admits r
distinct roots
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Algorithm

Start with r = 1 (d × 2 matrix) and increase r until it looses its
column rank

1 2

2 3

3 4

4 5

5 6

6 7

7 8

−→

1 2 3

2 3 4

3 4 5

4 5 6

5 6 7

6 7 8

−→

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8
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Symmetric tensors of larger dimension

We have seen the link with polynomials in slide 124. The idea is to
extend Sylvester’s algorithm to more than 2 variables.

Xx

Xx

xx Tsigaridas Mourrain Comon
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Iterative algorithms

Continue to keep 3rd order case to illustrate the reasoning. Define

p
def
=

 vec{AT}
vec{BT}
vec{CT}

 , and the gradient g =

 gA

gB

gC


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Gradient (1)

Newton update rule: p(k + 1) = p(k)−H(k)−1 g(k)
Pure gradient: p(k + 1) = p(k)− µ(k) g(k)

Systematic step variation:

µ(k) constant if ε(k)− ε(k + 1) > 0.005 ε(k)
µ inreased via µ(k + 1) = 1.1µ(k) if
0 ≤ ε(k)− ε(k + 1) ≤ 0.005 ε(k)
µ decreased via µ(k + 1) = µ(k)/2 if ε(k) < ε(k + 1)
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Gradient (2)

Closed-form expressions of the gradients of ε (43):

gA = [IA ⊗ (CHC�BHB)]vec{AT} − [IA ⊗ (C� B)]vec{TKJ×I}
gB = [IB ⊗ (AHA�CHC)]vec{BT} − [IA ⊗ (A� C)]vec{TIK×J}
gC = [IC ⊗ (BHB�AHA)]vec{CT} − [IC ⊗ (B� A)]vec{TJI×K}

where � denotes the elementwise product (Hadamard)
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Quasi-Newton (1)

Define Jacobians with respect to matrices A, B and C, and the
joint Jacobian:

JA = IA ⊗ (C� B)

JB = Π1 [IB ⊗ (A� C)]

JC = Π2 [IC ⊗ (B� A)]

where Πi are appropriately chosen permutations, and

J = [JA, JB, JC]
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Quasi-Newton (2)

Quasi-Newton iteration:

p(k + 1) = p(k)− [J(k)HJ(k) + M(k)]−1 g(k)

where matrix M(k) is updated from J(k), M(k), g(k) and
p(k).

The Levenberg-Marquardt iteration takes the form:

p(k + 1) = p(k)− [J(k)HJ(k) + λ(k) I]−1 g(k)

where λ(k) is updated according to a specific rule, depending
on the quality of the approximation of the objective:

ε(p + δ)− ε(p) ≈ δHg +
1

2
δH(JHJ + λ I)δ
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Gradient algorithms for tensors with symmetries

In the presence of symmetries, the gradient takes a simpler form,
given here for clarity in the case of 3rd order tensors, with
symmetry in the first 2 modes, i.e. [?]:

Ti ,j ,k = Tσ(i ,j),k

We have two matrices to determine, A and C since:

ε = ||T−
R∑

q=1

a(q) ◦ a(q) ◦ c(q)||2

The gradient and the Jacobian are of the form

g =

[
gA + gB

gC

]
J = [JA + JB , JC ]

where B is set to B = A.
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Other minimization algorithms

Algorithms using explicit expressions of the Hessian

Newton: p(k + 1) = p(k)−H(k)−1 g(k)

Conjugate Gradient: e.g. the “Multilinear Engine” [PAA99]

etc...

ý More costly in terms of memory and complexity per iteration,
but fewer iterations needed.
ý Do not solve the problem of local minima
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Compact writing of Objective

The objective function (43) can be written as:

ε = ||TI×KJ − A(C� B)T||2 (46)

Advantage: compact writing of the best matrix A, for fixed B and
C, since (46) in quadratic in A [HL94]:

Â = TI×KJ · {(C� B)T}†

where † denotes pseudo-inverse.

Similarly:

||TJ×IK − B(A� C)T||2 → B̂ = TJ×IK · {(A� C)T}†

||TK×JI − C(B� A)T||2 → Ĉ = TK×JI · {(B� A)T}†
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Alternating Least Squares algorithm (1)

Start with arbitrary B(0) and C(0)
For k = 1...kmax ,

A(k + 1) = TI×KJ · {(C(k)� B(k))T}†

B(k + 1) = TJ×IK · {(A(k + 1)� C(k))T}†

C(k + 1) = TK×JI · {(B(k + 1)� A(k + 1))T}†

Hence the ALS algorithm also needs that:

R ≤ min(JK , IK , IJ)

According to Kruskal [KRU89], this inequality is always satisfied.
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Alternating Least Squares algorithm (2)

Another compact writing [COM04a]: jointly diagonalize slices of
lower order:

ε =
I∑

i=1

||T[i ]− BΛ[i ]CT||2

where Λ[i ] = Diag{Ai1, . . .AkR}. Let Λ[i ] denote the vecor

containing the diagonal of Λ[i ], and t[i ]
def
= vec{T[i ]}. Hence:

ε =
∑

i

||t[i ]−
R∑

q=1

λn[i ] c[n]⊗b[n]||2 def
=
∑

i

||t[i ]−M λ[k]||2 (47)

Then stationary values are:

B = {
∑
k

T[k]CΛ[k]}{
∑
`

Λ[`]CTCΛ[`]}−1

C = {
∑
k

T[k]TBΛ[k]}{
∑
`

Λ[`]BTBΛ[`]}−1

λ[k] = {MTM}−1MTt[k]Pierre Comon Blind Techniques VI.Algorithms for under-determined mixtures 308



Uniqueness Binary Iterative C.F. BIOME FOOBI Gradient ALS ELS

ALS for symmetric tensors (1)

For clarity, take a symmetric tensor T of order 4:

One can force symmetry in the iteration of page 307:
Start with arbitrary A(0), A(1), A(2)
For k = 2...kmax ,
Soft forcing:
A(k + 1) = TI×I 3 · {(A(k)� A(k − 1)� A(k − 2))T}†
Hard forcing: A(k + 1) = TI×I 3 · {(A(k)� A(k)� A(k))T}†

Obviously applies at any order d ≥ 3 [?].

Pierre Comon Blind Techniques VI.Algorithms for under-determined mixtures 309



Uniqueness Binary Iterative C.F. BIOME FOOBI Gradient ALS ELS

ALS for symmetric tensors (2)

More tricky iteration based on compact writing of page 308.
When T is real symmetric:

ε =
∑

i

||T[i ]− BΛ[i ]BT||2 def
=
∑

i

||t[i ]−M λ[i ]||2

One shows that [COM04a] [YER02]

λ[i ] = {MT M}−1MT t[i ]

and each column of B is the dominant eigenvector of the real
symmetric matrix:

P[`] =
1

2

∑
k

λ`[k]{T̃[k ; `]T + T̃[k ; `]}

where T̃[k; `]
def
= T[k]−

∑
n 6=` λn[k]b[n]b[n]T.
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ALS drawbacks

1 Fairly slow convergence when reaching plateaux

2 May be stuck about local minima
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Uniqueness Binary Iterative C.F. BIOME FOOBI Gradient ALS ELS

ALS with extrapolation

Attempt to face the first drawback [BA98] [BRO97].

Compute stationary values Â, B̂ and Ĉ as in page 306

At every other iteration, set:

A(k + 1) = Â + µ(k) (A(k)− Â)

B(k + 1) = B̂ + µ(k) (B(k)− B̂)

C(k + 1) = Ĉ + µ(k) (C(k)− Ĉ)

where one may take µ(k) = k1/3.

and otherwise A(k + 1) = Â, B(k + 1) = B̂ and C(k + 1) = Ĉ.
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Uniqueness Binary Iterative C.F. BIOME FOOBI Gradient ALS ELS

ALS with Enhanced Line Search (ELS)

Attempt to face both drawbacks [RCH08] [RC05]

Compute stationary values Â, B̂ and Ĉ as in page 306

At every other iteration, set:

A(k + 1) = Â + µ (A(k)− Â)

B(k + 1) = B̂ + µ (B(k)− B̂)

C(k + 1) = Ĉ + µ (C(k)− Ĉ)

where µ = Arg minµ ||T− A(k + 1) •B(k + 1) •C(k + 1)||2.

and otherwise A(k + 1) = Â, B(k + 1) = B̂ and C(k + 1) = Ĉ.

NB: µ(k) is obtained by rooting a polynomial of degree 5. ⇒ one
gets the absolute minimum along the search direction ⇒ increased
capability to escape from local minima.
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Uniqueness Binary Iterative C.F. BIOME FOOBI Gradient ALS ELS

ELS applied to other iterative algorithms

The same principle applies to any iterative algorithm [?]:

Compute a search direction [∆A,∆B,∆C], which can be the
gradient g, a direction H−1g, or a difference
[Â, B̂, Ĉ]− [A(k),B(k),C(k)]...

Compute the 6 first coefficients of the 6th degree polynomial
ε(µ), defined by replacing [A,B,C] by
[A + µ δA,B + µ δB,C + µ δC]

Compute the 5 roots of its derivative

Select the root µo yielding the smallest minumum of ε(µ)

Update: A(k + 1) = A(k) + µo δA,
B(k + 1) = B(k) + µo δB, C(k + 1) = C(k) + µo δC.

Can be executed at every iteration, or less often.
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Uniqueness Binary Iterative C.F. BIOME FOOBI

Definition of c.f.’s

Characteristic functions
First: Φx(u)

def
= E{exp(uTx)}

Second: Ψx(u)
def
= log Φx(u)

Generating functions

First: Φx(u)
def
= E{exp(uTx)}

Second: Ψx(u)
def
= log Φx(u)

Key property
If s has statistically independent components

Ψs(u) =
∑
p

Ψsp (up)
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Uniqueness Binary Iterative C.F. BIOME FOOBI

Characteristic function of a linear mixture

If sp independent, E{
∏

p f (sp)} =
∏

p E{f (sp)}.
Hence if x = H s, then

Φx(u)
def
= E{exp(uTH s)} = E{exp(

∑
p,q

uq Hqp sp)}

=
∏
p

E{exp(
∑
q

uq Hqp sp)}

Thus we have the core equation:

Ψs(u) =
∑
p

Ψsp

(∑
q

uq Hqp

)
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Uniqueness Binary Iterative C.F. BIOME FOOBI

Putting the problem in tensor form (1)

Goal: Find a matrix H such that the K−variate function Ψx(u)

decomposes into a sum of P univariate functions ψp
def
= Ψsp .

Assumption: functions ψp, 1 ≤ p ≤ P admit finite derivatives
up to order r in a neighborhood of the origin.

Then, Taking r = 3 as a working example:

∂3Ψx

∂ui∂uj∂uk
(u) =

P∑
p=1

Hip Hjp Hkp ψ
(3)
p (

K∑
q=1

uq Hqp)
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Uniqueness Binary Iterative C.F. BIOME FOOBI

Putting the problem in tensor form (1)

Several equivalent writings:

A decomposition into a sum of rank-1 terms:

Tijk` =
∑
p

Hip Hjp Hkp B`p

A joint diagonalization of matrix slices via a common
rectangular transform

T[k, `] = H · Diag{H(k , :)} Diag{B(`, :)} · HT

The cumulant tensor case: only one point u = 0, i.e. ` = 1
and matrix B disappears.
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Putting the problem in tensor form (3)

Use of several orders simultaneously:

Order 3:
T

(3)
ijk` =

∑
p

Hip Hjp Hkp B`p

Order 4:
T

(4)
ijkm` =

∑
p

Hip Hjp Hkp Hmp C`p

Orders 3 and 4:

Tijk`[m] =
∑
p

Hip Hjp Hkp D`p[m]

with D`p[m] = Hmp C`p and D`p[0] = B`p.
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Uniqueness Binary Iterative C.F. BIOME FOOBI

BIOME algorithms

These algorithms work with a cumulant tensor of even order
2r > 4

We take the case 2r = 6 for the presentation, and denote

C`mn
ijk

def
= Cum{xi , xj , xk , x∗l , x∗m, x∗n} (48)

In that case, we have

C`mn
x , ijk =

P∑
p=1

Hip Hjp Hkp H∗`p H∗mp H∗np ∆p

where ∆
(6)
p

def
= Cum{sp, sp, sp, s∗p , s∗p , s∗p} denote the

diagonal entries of a P × P diagonal matrix, ∆(6)
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Uniqueness Binary Iterative C.F. BIOME FOOBI

Writing in matrix form

Tensor Cx is of dimensions K × K × K × K × K × K and
enjoys symmetries and Hermitian symmetries.

Tensor Cx can be stored in a K 3 × K 3 Hermitian matrix, C
(6)
x ,

called the hexacovariance. With an appropriate storage of the
tensor entries, we have

C
(6)
x = H�3 ∆(6) H�3H (49)

Because C
(6)
x is Hermitian, ∃V unitary, such that

(C
(6)
x )1/2 = H�3 (∆(6))1/2 V (50)

Idea: Use an invariance property existing between blocks of

(C
(6)
x )1/2.
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Uniqueness Binary Iterative C.F. BIOME FOOBI

Using the invariance to estimate V

Cut the K 3×P matrix (C
(6)
x )1/2 into K blocks of size K 2×P.

Each of these blocks, Γ[n], satisfies:

Γ[n] = (H�HH)D[n] (∆(6))1/2 V

where D[n] is the P × P diagonal matrix containing the nth
row of H, 1 ≤ n ≤ K .

Hence matrices Γ[n] share the same common right singular
space

Algorithm: compute the joint EVD of the K (K − 1) matrices

Θ[m, n]
def
= Γ[m]†Γ[n]

as: Θ[m, n] = V Λ[m, n] VH.
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Estimation of H

Matrices Λ[m, n] cannot be used directly because (∆(6))1/2 is
unknown. But we use V to obtain the estimate of H�3 up to a
scale factor:

Ĥ�3 = (C
(6)
x )1/2 V (51)

Then several possibilities exist to get H from H�3 [ACCF04]. The
best is as follows:

Build K 2 matrices Ξ[m] of size K × P form conjugates rows

of Ĥ�3

From Ξ[m] find matrices D[m] and Ĥ in the LS sense:

xx
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Conditions of identifiability

Xx [ACCF04] [AFCC03]

Xx
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FOOBI algorithms

xx
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xx

Xx

Xx
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xx

Xx VI

Xx
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False beliefs

False beliefs

1 BSS always requires High-Order Statistics (HOS)
−→ Second-order can (rarely) suffice

2 Sources must be statistically independent
−→ Correlated sources can be sometimes separated

(e.g. Discrete/CM sources, Pairwise cumulants...)

3 HOS are always required when sources are i.i.d.
−→ Second-order BSS algorithms exist

4 Even local maxima of a contrast function yield good solutions
−→ sometimes local maxima correspond to bad solutions

5 There should be at least as many sensors as sources: K ≥ P
(sufficient diversity)
−→ Underdetermined mixtures can be identified
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False beliefs

False beliefs (cont’d)

6 Perfect source extraction is impossible if K < P
−→ Discrete sources can often be perfectly extracted from

under-determined mixtures (insufficient diversity)

7 Conditions of application of Parafac are mild
−→ except when one dimension = 2, the typical rank always

exceeds the Parafac bound for uniqueness

8 Approximate a tensor by another of lower rank is as easy as
for matrices
−→ beside for rank 1, there is a lack of closeness

9 The Constant Modulus (CM) property is the best way to
handle PSK sources
−→ The whole alphabet can be taken into account in order

to define a contrast function
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