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Introduction

m Modeling
m General concepts, a 2 x 2 example

m Historical survey, Origins
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Observation model

x: observed, dim K

v: additive noise

x=Hs+v

P: source vector, dim P

H: K x P mixing matrix

Pierre Comon Blind Techniques
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Taxonomy (1)

Static/Dynamic and Noisy/Noiseless:

x[n] = H x s[n] + v[n]

Over/Under-Determined:

Number of sources : P <Uderdet K- Number of sensors
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Taxonomy (2)

Transmit/Receive diversity:

Sources Sensors

1 K>1
1 SISO | SIMO

P>1 | MISO | MIMO
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Taxonomy (3)

One additional assumption required on sources:
m mutually independent sources
m discrete sources
m colored sources
n

nonstationary sources
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Principal Component Analysis (PCA)

Goal
Given a K-dimensional r.v., x, find U and z such that

m Observation
x=Uz

m z has uncorrelated components z;

NB: Because of lack of uniqueness, U is often assumed to be
unitary.
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Independent Component Analysis (ICA)

Goal
Given a K-dimensional r.v., x, find H and s such that

m Observation
x=Hs (3)

m s has mutually statistically independent components s;

» “Blind” Source Separation: only outputs x; are observed.
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Uniqueness

Inherent indeterminations
if s has independent components s;, so has APs
where A is invertible diagonal and P permutation

Solutions
If (A, s) solution, then (AAP, PTA™1s) also is.
m ‘“Essential uniqueness”: unique up to a trivial filter, i.e. a
scale-permutation (cf. slide 67)

m Whole equivalence class of solutions = Look for one
representative.
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Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed sources
Consider the mixture of two independent sources

X1 . 1 1 . 51
X2 o 1 -1 So
where E{s?} = 1 and E{s;} = 0. Then x; are uncorrelated:
E{xix} =E{s{} —E{s}} =0

But x; are not independent since, for instance:

E{x{ x5} -~ E{x{}E{x3} = E{s{} + E{s}} ~6 # 0
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PCA vs ICA

Example 2: 2 sources and 2 sensors

Gaussian Mon Gaussian

E

d b e oom
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Historical survey: Static MIMO

m The ancestors: Dugué’51, Darmois’53, Feller'66,
Friedman'74, Donoho'30

m The first shy steps in ICA: Bar-Ness'82, Jutten'83, Fety'88

m The first steps in Multi-Way: Carroll-Chang'70,
Harshman'70, Kruskal'77

m First closed-form solutions: Comon’'89, Cardoso'92

m First IT frameworks: Comon’'91, Cardoso'93, Comon’'94,
Bell'95, Delfosse-Loubaton’95

m Specific applications: Hyvarinen'97, Pajunen’'97, Amari'98,
Grellier'98, Parra’2000

m Discrete/CM: Talwar'96, VanderVeen'97Grellier'00
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Historical survey: Static MIMO (cont'd)

m Other: Cao-Liu'96, VanDerVeen-Paulraj'96,
Moreau-Pesquet'97, Taleb-Jutten'97, Comon’96,
Ferreol-Chevalier'98, Belouchrani’98, Lee-Lewicki'99,
delLathauwer'00, Pham-Cardoso'2000, Yeredor'2000,
Sidiropoulos-Bro'00, Albera’04, Comon-Rajih'05,
delLathauwer'05...
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Historical survey: Convolutive SISO

m ldentification
m Kurtosis Benveniste-Ruget'80, Tugnait'89
= Non circularity/Alphabet: Yellin-Porat'93,
Grellier-Comon’99, Ciblat-Loubaton’02,
Lebrun-Comon’03
m Equalization

m CMA: Sato'75, Godard'80, Treichler'85

m Kurtosis: Benveniste-Goursat'84, Donoho'81,
Shalvi-Weinstein'90

m Bispectrum: Marron'90, Matsuoka'84, LeRoux'93

NB: Earlier equalization algorithms, e.g. Decision-Directed, need
the eye to be open.
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Historical survey: Convolutive SIMO

m Subspace: Slock'94, Xu-Tong'95, Moulines-Duhamel’95,
Xu-Liu-Tong'95, Gurelli-Nikias'95, Gesbert-Duhamel'97

m Linear Prediction: AbedMeraim-Moulines-Loubaton'97,
Gesbert-Duhamel’00
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Historical survey: Convolutive MIMO

m Subspace: Gorokhov-Loubaton'97, Chevreuil-Loubaton’'97,
Loubaton-Moulines’01

m Linear Prediction: Comon’90, Ding'96,
AbedMeraim-Loubaton'97, Gorokhov-Loubaton'99

m Kurtosis: Comon’96, Tugnait'97, Simon-Loubaton’98,
Touzni'98

] Discrete/CM: Touzni-Fijalkow'98, VanDerVeen-Talwar'95,
Ayadi-Slock'98
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Origins of “Blind” Techniques

Pulse Amplitude Modulation (PAM) in baseband:

)=a» h(t—kT)u
k

alpha=0.2, M=4

Pierre Comon Blind Techniques I.Principle & Tools
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General bibliography

m Books on HOS, ICA, or Multi-Way:
Lacoume-Amblard-Comon’97 [LAC97] (freely downloadable,
but in French)

Hyvarinen-Karhunen-Oja’01 (but dedicated only to FastICA)
Smilde-Bro-Geladi'04 [SBG04] (but dedicated only to Factor
Analysis)

Cichocki-Amari'02 [CA02] (but Neural Networks oriented)
Comon-Jutten'06 [CJO7] [JCO7] (but in French)
Comon-Jutten'08 (will cover more topics, but you have to
wait!)

m Other related books:

Kagan-Linnik-Rao'73 [KLR73]
McCullagh'87 [McC87]
Nikias-Petropulu’93 [NP93]
Haykin'2000 [HAY00a] [HAY0Ob]
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Algebraic tools

Singular Value decomposition (SVD)
Spatial whitening (Standardization)
PCA by pair sweeping

Time Whitening
Space-time Whitening

n
n

n

m Filter decomposition
n

[

m Matched filter

Pierre Comon Blind Techniques I.Principle & Tools
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Singular Value Decomposition (SVD)

Every matrix M may be decomposed into:
M=UxV"

where
m U and V are unitary
m X is positive real diagonal
m u; and v; of U and V are the left and right singular vectors:

MV,' = u;o; MHU,' =V;0j

m u; are eigenvectors of MM", and v; those of M"M,
associated with o2.

Pierre Comon Blind Techniques I.Principle & Tools 22
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Spatial whitening (1)
Standardization via Cholesky or QR Let x be a zero-mean r.v.
with covariance matrix:
r, def E{xx"}
Then Cholesky yields:
L/ LL" =T,

Consequence: L™1x has a unit variance.
. . def . . .
Variable X = L~!x is a standardized random variable.
m QR factorization of data matrix as X = L X yields same L as

Cholesky factorization of sample covariance, but more
accurate.

m Limitation: L may not be invertible if the covariance Iy is not
full rank.

Pierre Comon Blind Techniques I.Principle & Tools
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Spatial whitening (2)

Standardization via PCA
Definition
PCA is based on second order statistics

m Observed random variable x of dimension K. Then 3(U, z):
x = Uz, U unitary

where Principal Components z; are uncorrelated
ith column u; of U is called ith PC Loading vector
m Two possible calculations:

m EVD of Covariance R,: R, = UX?U¥
m Sample estimate by SVD: X = UXV"

Pierre Comon Blind Techniques I.Principle & Tools
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Spatial whitening (3)

Summary

) ) . def .
Find a linear transform L such that vector X = Lx has unit
covariance. Many possibilities, including:

m PCA yields x = X1 U"x
m Cholesky R, = LL" yields X = L™ x

Remarks

m Infinitely many possibilities: L is as good as L Q, for any
unitary Q.
m If Ry not invertible, then L not invertible (ill-posed). One may

use pseudo-inverse of X in PCA to compute L, or regularize
R,.
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Plane rotations

Application of a Givens rotation on both sides of a matrix allows to
set a pair of zeros in a symmetric matrix:

c S c . -—s * x 0 x
1 A 1 _ X X
-5 c 5 c 0 x *x Xx

1 . 1 X X

Same result obtained:
m either by setting 0

m or by maximizing *'s

Pierre Comon Blind Techniques I.Principle & Tools
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Jacobi sweeping for PCA

Cyclic by rows/columns algorithm for a 4 x 4 real symmetric matrix

* 0 x x * x 0 x
0 * x x X X
— — —
X X 0 x *x x
X X X X
x x 0 X X X
x *x 0 x x * x 0 X
— —
x 0 * x X X X X ok
0 x x x 0 x =« x x 0
*: maximized, x: minimized, 0: canceled, .: unchanged

Pierre Comon Blind Techniques I.Principle & Tools
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Scalar Filter Decomposition

m Any rational scalar filter g[z] can be decomposed into:
Yzl = ulz] 2], u[l/z]ulz] =1, vz (4)

m ([z] is minimum phase: all its roots inside the unit circle

m u[z] is all-pass, and hence lossless: flat frequency response
(only phase varies).

Pierre Comon Blind Techniques I.Principle & Tools
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Multivariate Filter Decomposition

Any rational filter with Impulse Response matrix F[k] and
complex gain F[z], can be decomposed into:

Flz] = U[z]L[z], U[1/z*]"0[z] =1, Vz (5)

m L[K] is triangular minimum phase filter: roots of det(L[z])
inside unit circle

m U[K| para-unitary filter
m In static MIMO case, one gets QR:

F=UL, U"'U=I (6)

where L is triangular and U unitary.

m Decomposition not unique.

Pierre Comon Blind Techniques I.Principle & Tools
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Time Whitening

Let x[k] be a scalar second order stationary process, X[z] its z—
transform, and its power spectrum given by:

def v v *]%
2] = E{x[z] X[1/2"]"}
From (4), the power spectrum can be decomposed as:
2]/ 2] 1/2T = ]

where filter ¢[z] is not unique, and defined up to an all-pass filter.
1/[z] is a whitening filter, if it exists.

Pierre Comon Blind Techniques I.Principle & Tools

30



Introduction Tools Criteria Algebraic Tools pair sweep Statistical Tools Cum Ml

Space-time Whitening

m Let x[k] be a multivariate second order stationary random
process, x[z] its z— transform, and power spectral matrix:

Mzl < E{x[z] x[1/2°]"}
Then, from (5)
lz)/ LALL/2) =Tz

m If L[z] admits an inverse, then we may take G[z] = L[z] ! as
whitening filter, i.e. X[k] = G[k] * x[k].

Pierre Comon Blind Techniques I.Principle & Tools
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Spatial Matched Filter

If x = H s+ v, where H is known, one can estimate s by spatial
filtering as
s=Wx

m Spatial Matched Filter: W = H"R} !
m Least Squares: W = (H"H) !H"

m Weighted Least Squares: W = (H"B~1H) !H"B~!
where B is the noise spatial coherence.

Pierre Comon Blind Techniques I.Principle & Tools
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Statistical Tools

Statistical Independence
Mutual vs Pairwise Independence

Cumulants of a scalar r.v.

Complex variables, circularity

[
[

n

m Multivariate Cumulants

n

m Central limit, Edgeworth expansion
n

Mutual Information, approximation

Pierre Comon Blind Techniques I.Principle & Tools
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Statistical Independence

Definition
Components s, of a K-dimensional r.v. s are mutually independent

)

The joint pdf equals the product of marginal pdf's:

ps(u) = [ ] ps. (i) (7)
k

Definition
Components si of s are pairwise independent < Any pair of
components (s, s¢) are mutually independent.

Pierre Comon Blind Techniques I.Principle & Tools
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Mutual vs Pairwise independence (1)

Example 3: Pairwise but not Mutual independence

Bag containing 4 Bowls denoted {RB, YB, GB, RYB}:

1 Red, 1 Yellow, 1 Green, 1 with the 3 colors.

Equal drawing probabilities:

P(RB) = P(YB) = P(GB) = P(RYG) =1/4

Event "R’ % draw a bowl containing Red =

P(R) = P(RB) + P(RYG) =1/2

Then P(RNY)=P(RYG)=1/4

equal to P(R) * P(Y) = Pairwise independent Events
But PI(RNYNG) = P(RYG)=1/4

not equal to P(R) * P(Y)* P(G)=1/8 =

Events are not Mutually independent

Pierre Comon Blind Techniques I.Principle & Tools
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Mutual vs Pairwise independence (2)

Example 4: Pairwise but not Mutual independence

m 3 mutually independent BPSK sources, x; € {—1,1},
1<i<3

m Define x4 = x1x0x3. Then x4 is also BPSK, dependent on x;

B X, are pairwise independent:
p(Xl =a, X4 = b) — P(X4 = b|X1 = a).p(xl = a) =
p(x2x3 = b/a).p(x1 = a)

But x; and x» x3 are BPSK =
p(x2x3 = b/a).p(xy =a) =13

m But x, obviously not mutually independent, 1 < k < 4
In particular, Cum{xy, x2, x3,x4} =1 #0

Pierre Comon Blind Techniques I.Principle & Tools
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Mutual vs Pairwise independence (3)

Darmois’s Theorem (1953)
Let two random variables be defined as linear combinations of
independent random variables x;:

N N
Xlzzaixh XZZZbiXi
i1 i—1

Then, if X1 and X5 are independent, those x; for which a;jb; # 0
are Gaussian.

Pierre Comon Blind Techniques I.Principle & Tools
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Mutual vs Pairwise independence (4)

Corollary
If z= Cs, where s; are independent r.v., with at most one of them
being Gaussian, then the following properties are equivalent:

Components z; are pairwise independent
H Components z; are mutually independent
C = AP, with A diagonal and P permutation
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Characteristic functions

First c.f.
m Real Scalar: &,(t) 3 E{e’™} = [ e'™dF,(u)

m Real Multivariate: ®4(t) & E{e’t'x} = N eIt % dF (u)

Second c.f.

= VU(t) o log d(t)

m Properties:

m Always exists in the neighborhood of 0
m Uniquely defined as long as ®(t) #£ 0

Pierre Comon Blind Techniques I.Principle & Tools
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Definition of Cumulants

m Moments:

def r , 0"O(t
iy By = (g T Q
t=0
= Cumulants:
def Loy
Cx(r) = Cum{x,...,x} = (—)) o | (9)

r times

m Needs the existence of the expansion. Counter example:
Cauchy

1
)

Relationship between Moments and Cumulants obtained by
expanding both sides in Taylor series:

Log (Dx(t) = wx(t)

Pierre Comon Blind Techniques I.Principle & Tools 40
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First Cumulants

] C(z) is the variance:
m For zero-mean r.v.: C(3) = iz, and C(4) = fi(g) — 3u%2)
m Warning: it is not true that C(r) is the moment of a variable
X — Xg, Xg Gaussian
m Standardized cumulants:
X —
Ky = Cum O]
(r) (r) I
(2)

e.g. Skewness K3, and Kurtosis Ky.
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Examples of cumulants (1)

Example 5: Zero-mean Gaussian
m Moments
o (2r)!
Fan = 1@ e

In particular:

Hay = 3H(2) sy = 151
] C(4) = 0, ’C(4) =0.

m All Cumulants of order r > 2 are null

Pierre Comon Blind Techniques I.Principle & Tools
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Examples of Cumulants (2)

Example 6: Uniform

m uniformly distributed in [—a, +a] with probability 2—13

m Moments: fi(2x) = %
m 4th order Cumulant: C4) = %4 -3 %4 =-2 f—;
m Kurtosis: K(4) = —g.
A
1/2a
—a a

Proof...
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Examples of Cumulants (3)

Example 7: Zero-mean standardized binary

m x takes two values x; = —a and x; = 1/a with probabilities
Py = Py =

22
1+a2' 1+a2

m Skewness is IC(3) = P a

L 1 5 K
m Kurtosis is IC(4) =2 + a

m Extreme values o

Minimum Kurtosis
fora=1 (symmetric): T R I B R TR
IC(4) =-2

Pierre Comon Blind Techniques I.Principle & Tools
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Sub- and Super-Gaussian r.v.

Warning;:
The concept of Sub/Super Gaussian is not uniquely defined in the
literature. For instance, definitions below are not equivalent:

= Monotonicity of [BGR80]: f(u) = —2 dl%’:x(“).

u
m Tails of the standardized pdf are below/above those of
Gaussian [ZIV95]
m Bsed on kurtosis [KS77]:

m Leptokurtic: positive kurtosis
m mesokurtic: zero kurtosis
m platykurtic: negative kurtosis

Pierre Comon Blind Techniques I.Principle & Tools
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Definition of Multivariate cumulants

m Notation: Cj ¢ def Cum{X;, Xj,..X¢}
m First cumulants:
pi = Ci
/L;-j = CU+CiCj
i = Cik +[3]CiCix + CiCiC
with [n]: Mccullagh's bracket notation.

m Next, for zero-mean variables:

pijke = Cie + [3] CijCre
tijkem = Cijkem + [10] CiiChem

m General formula of Leonov Shiryayev obtained by Taylor
expansion of both sides of W(t) = log ®(t)...

Pierre Comon Blind Techniques I.Principle & Tools
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Arrays and Tensors

Definitions Table T = {Tj; «}
= Order of T # of its ways = # of its indices

m Dimension K def range of the (th index
m T is Cubic when all dimensions K; = K are equal

m T is Symmetric when it is square and when its entries do not
change by any permutation of indices

NB: cf. course lll for definitions and properties
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Definition of Complex Cumulants

Definition

Let z=x+7y. Then pdf p, = joint pdf pxy
Notation

m Characteristic function:
0,(w) = E{exp[s(xTu+ y"v)]} = E{exp[R(z"w)]}

where w & y + yv.
m Generates Moments & Cumulants, e.g.
Variance:  Var{z}; = CZJI.
Higher orders:  Cum{z,...,z,z},...,z} = C ge
where conjugated r.v. are labeled in superscript.

Pierre Comon Blind Techniques I.Principle & Tools
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Circularity (1)

m z is circular in the strict sense if its distribution does not

depend on the phase of z. For a multivariate complex random
variable z, it means that:

zand ze, Vh e R

have the same joint distribution.

m Example 8: scalar circular complex Gaussian r.v.

1 wl?

defines a circular r.v.: only modulus appears.

Pierre Comon Blind Techniques I.Principle & Tools
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Circularity (2)

m There exist up to 2" distinct definitions of complex
multivariate cumulants.
m At even order 2r, cumulants having exacting r complex
conjugations are termed circular cumulants.
m For instance, the cumulant below is circular
ke * %
Czij = Cum{z, z, z;, z;'}
whereas these ones are non circular
L *
C i = Cum{z, zj, zx, z; }

Cz ke = Cum{z, zj, zx, z}

m z is said to be circular at order r if its non circular cumulants
of order r are all null:

p#r—p= Cum{z,.,2,2,.1,.,2} =0 (10)

Pierre Comon Blind Techniques I.Principle & Tools
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Example of complex r.v.

Example 9: PSK random variables For a PSK—4 random
variable, ZZ* = 1 and consequently:

Coy = B{Z%} =0.cl) = ~1.ulg) = 1.y =1

It is thus circular up to order 3, but non circular at order 4.

Pierre Comon Blind Techniques I.Principle & Tools
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Properties of Cumulants

= Multi-linearity (also enjoyed by moments):
Cum{aX, Y,..,Z} = aCum{X,YVY,.., Z} (11)
Cum{X; + X2, Y,..,Z} = Cum{Xy,VY,.,Z}+ Cum{Xy, Y,..,Z}

m Cancellation: If {X;} can be partitioned into 2 groups of
independent r.v., then

Cum{Xi, Xz,.., X, } =0 (12)
m Additivity: If X and Y are independent, then
Cum{X; + Y1, Xo + Y2, .. X, + Y,} = Cum{Xy, Xo,.., X}
+ Cum{VYi, Y2,.,Y:}

m Inequalities, e.g.:
2
Kiz) = Ky +2
Proof...
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Central Limit Theorem

Let N independent scalar r.v., x(n),1 < n < N each with finite rth

order Cumulant, x)(n).
Define:

N

N

_ 1 1

K(r) = N E m(,)(n) and y = N E - K(l)
n=1

n=1

As N — oo, the pdf f, tends to a Gaussian.

Proof.

Thanks to multi-linearity and additivity, C () = Vr>2,

Nr/2 1
tends to zero.
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Edgeworth expansion of a pdf (1)

The pdf px(u) of a r.v. x can be expanded about the Gaussian
density gx(u) of same mean and variance, in terms of a
combination of Hermite polynomials, ordered by decreasing
significance in the sense of the Central Limit Theorem (CLT).

Order
mf1 2 K3
m~1 K4 /{%

m—3/2 Ks  K3Ka Iig

m—2 Ke K3K5 I€§I€4 /@2‘ H§

m_5/2 K7 K3Kg li§/~§5 /@21/&3 Hg K4K5 H§I€4

From slide 53, rth order Cumulants ~ O(m!~"/?).

Pierre Comon Blind Techniques I.Principle & Tools
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Edgeworth expansion of a pdf (2)

Francis Edgeworth (1845-1926).

1 1 10
1+ 3113 hs(v) + 21 4 ha(v) + o K3 he(v)
1 35 280
+a K5 h5(V) + W R3Kka4 h7(V) + ﬁﬁg hg(V) + ...

Blind Techniques I.Principle & Tools
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Mutual Information: definition

m According to the definition of page 34, one should measure a

divergence:
N
5 (px, 1T px,->
i=1

m If the Kullback divergence is used:

K(px, py) € /Px(u) log Z;E:B du,

then we get the Mutual Information as an independence
measure:

1(pe) = [ pelw) Ioglﬂ'f)(u_)du. (13)

Pierre Comon Blind Techniques I.Principle & Tools
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Mutual Information: properties

m MI always positive
m Cancels if r.v. are mutually independent

m Ml is invariant by scale change

Proof...

m Example 10: Gaussian case

1[IV

Pierre Comon Blind Techniques I.Principle & Tools
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Mutual Information: decomposition

m Define the Negentropy as the divergence:

Hp) = Klpe) = [ pilu) g 243 du. (14)

Negentropy is invariant by invertible transforms

m Then MI can be decomposed into:

I(px) = 1(gx) + J(px) ZJ Px;)- (15)
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Sample Measures of Statistical Independence

Independence at order r

m Definition:
Components x; of x are independent at order r if all cross
cumulants of order r are null

m In other words: the Cumulant tensor Cj;. , is diagonal.

Example 11: Uncorrelated but not independent
s non Gaussian, s; independent, then x = Qs has uncorrelated
components at order 2 if Q unitary — cf. example slide 12.
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Edgeworth expansion of the Ml

This yields for standardized random variables x, after lengthy
calculations:

1
I(px) = J(Px)_@ Z4Ciii2+ Ciiii2 + 7Ciii4 - 6Ciii2 Cyii Ho(m™2).
(16)
2

m If 3rd order # 0, then /(py) =~ J(px) — >:C

m If 3rd order ~ 0, then /(py) =~ J(px) — 75 Z,Cﬁﬁz
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Cumulant matching

Optimization Criteria

Cumulant matching
Contrast criteria

Mutual Information
Maximum Likelihood vs MI
CoM family

Other criteria

Pierre Comon Blind Techniques
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|dentification by Cumulant matching

Principle
m Estimate the mixture by solving the 1/O Multi-linear equations

m Apply a separating filter based on the latter estimate
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Noiseless mixture of 2 sources

Example 12: 2 x 2 by Cumulant matching (cf. demo p.13)

m After standardization, the mixture takes the form

Ccos & —sinq ¥
X = . _ s
sina e ¥ Cos «v
m Denote 754 = Cum{x;, x;, x, x; } and

ki = Cum{s;, s;, s7, s''}.
Then by Multi-linearity:

7%22 = cos®a sin’a (k1 + K2)
72 = cos’asinae’” ky — cosa sind a e’ Ky
32 = cosa sin®a e’ ky — cos® a sinae’? Ky
22 12
m Compact solution: % = —2 cot2a e¥¥

Pierre Comon Blind Techniques I.Principle & Tools
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Now the inverse approach

m Cumulant matching (direct approach: identification)

m Contrast Criteria (inverse approach: equalization):
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Noisy Mixtures of 2 sources

Example 13: Separation of 2 non Gaussian sources by
contrast maximization

Source! Sensort Outputi

EREr | E 2 4 o0 1
source2 Sensor2 Output2

| source] | Cong SRR

R Generste Oservatons
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m H1.
H2.
H3.
H4.

m Hb5.

Introduction Tools Criteria Cumulant matching Contrasts

Source additional hypotheses

Each sources s;[k] is an i.i.d. sequence, for any fixed j
Sources s; are mutually statistically independent

At most one source is Gaussian

At most one source has a null marginal cumulant

Sources are Discrete, and belong to some known

alphabet (but may be stat. dependent)

He6.
m H7.

Sources s;[k] are sufficiently exciting

Sources are colored, and the set of source spectra forms

a family of linearly independent functions

m H8.

Sources are non stationary, and have different time

profiles

Pierre Comon

Blind Techniques I.Principle & Tools

66



Introduction Tools Criteria Cumulant matching Contrasts

Trivial Filters

m They account for Inherent indeterminacies, remaining after
assuming Source additional hypotheses
For instance:
m For dynamic (convolutive) mixtures, under H1, H2, H3,
T[z] = P D|[z], where P is a permutation, and D[z] a diagonal
filter, with entries of the form D,,[z] = A, z%, where &, is an
integer.
m For static mixtures, under H2, H3, T = PD, where P
permutation and D diagonal invertible.

m In other words, if s satisfies Hi, then so does Ts

Pierre Comon Blind Techniques I.Principle & Tools
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Contrast criteria: definition

Axiomatic definition
A Contrast optimization criterion T should enjoy 3 properties:

m /nvariance: T should not change under the action of trivial
filters (as defined in slide 67)

m Domination: If sources are already separated, any filter should
decrease (or leave unchanged) T

m Discrimination: The maximum achievable value should be
reached only when sources are separated (i.e. all absolute
maxima are related to each other by trivial filters)
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Mutual Information

T —1(p) is a contrast
m Invariant by scale change and permutation
m Always negative
m Null if and only if components are independent

Proof... cf slide 57
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Likelihood

Given the source pdf's: ps(u) = []; ps,(u;), and a sample x;, the
ML approach consists of maximizing one of the criteria below
w.r.t. H:

m Noiseless case
1

H—l
| det H Ps( x)

Px\H(XT|H) =
m Noisy case

px,s|H(XT75|H) = g(XT —H S) pS(s)

m And the Joint MAP-ML criterion for a joint estimation of
sources:

(Swaps Huy) = Argl\é[ﬁx px,s|H(XT7s’H)

= Arg Max p(xr|s, H) ps(s)
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Noiseless Maximum Likelihood (1)

m For an increasing number of independent observations, the
average log-likelihood converges to

1
Lt déf ? log p(xl .. .XT|H) — Lo = /px(u) log px|H(u) du

which can be seen to be, by making the change v = H 1u,
and up to a constant:

T Lo — S(px) = —K(pa, ps) (18)

Proof...
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Noiseless maximum Likelihood (2)

m Yet, since s; are independent, it can be shown that

K(pza Ps) — K(pza sz,') + Z K(pZ,‘7 pS,')

Mi pdfdeviation

This allows to take into account the source pdf’s, if they are
known

m But ML is not adequate if source pdf’'s are unknown
= just use Ml
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CoM Family of contrast functionss

When observations are standardized, and when only unitary
transforms are considered, then the following are contrasts:

m If at most 1 source has a null skewness [COM94b]:
& def
2 €
T273 = Z(Hiii) y  Riii = Cz jii
i=1
m If at most 1 source has a null kurtosis [COM94a]:
_ ii2 i def i
Toa = Z(Hﬁ) L CZ i

n If(fE most 1 source has a null standardized Cumulant of order
r= p+q>2, and for any a > 1:

P
_ (@) |a (q) def * *
Tor= Z |Hi(p)|  Rip) — Cum{z,...,z,z,...,z'}
1 —_— ——
1= p-times g times
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General Family of contrasts

m Theorem All CoM contrasts belong to the larger family :
Zg ) (19)

where g(+) is convex strictly increasing, and p + g > 2.

Proof...
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Contrast CoM(1,4)

Example 14: Kurtosis-based contrast without squaring

m In particular, if all source kurtosis have the same sign, €, one
can avoid the absolute value:

Proof...
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Other criteria

m Contrasts based on Matrix slices of Cumulant tensor
m Contrasts dedicated to Discrete source alphabets

m Contrasts for convolutive mixtures - basically the same!
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Speech
Biomedical
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Applications

Medical Other

Applications

Sensor Array Processing

Telecommunications

Machine Learning

Exploratory Analysis...
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Application Areas (1)

m Sensor Array Processing

m Speech

m Localization with ill calibrated antennas

m Detection and/or extraction with unknown antennas

(eg. sonar buoys, biomedical, audio, nuclear plants...)
Blind extraction (eg. COMINT: interception, surveillance)
m Localization with reduced diversity (eg. Air traffic control)
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Telecommunications: SISO equalization

Pierre Comon Blind Techniques I1.Applications
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Telecommunications: MISO equalization

I

it

Jammer
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Telecommunications: MIMO equalization
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Comlnt: MIMO equalization

Interceptor
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Speech

The Coktail Party problem
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Deconvolution

Pierre Comon Blind Techniques I1.Applications

Il focussing is a 2-D convolution: mixture with neighboring pixels.
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Electrocardiography (1)
Anatomy

Inlerior Wana Cava
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Electrocardiography (2)

Atrial fibrillation [RCST04]

0.2 0.2

avL j ' ' ' avL
01 01l :
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-0.1 10t ]
~0.2 . : : } -0.2
05 ‘ ‘ ‘ ‘ vi| 05 Vi
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-05 105t ]

-1 1 . . . .
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time (s) time (5) Extractec
Atrial Fibrillation episode Atrial activities
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Electrocardiography (3)

Mother-Phoetus separation [dLdMV003]
),M‘ﬂ‘n,',\' P‘ ‘F‘P‘: . ] A I i ]

— i T T T

B s s ot e Y
Hlr I |

T
L
35
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Application Areas (2)

m Factor Analysis

m Chemometrics
m Econometrics
m Psychology

Compression
Arithmetic Complexity
Machine Learning

Exploratory Analysis

Pierre Comon Blind Techniques I11.Applications
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Machine Learning

Curse of dimensionality

- Epanechnikov, -. Silvermann, - exponential regression

Number of samples required to
reach a given relative error in
pd.f. estimate, O(e), is of
order O(e~1~9/4) [SIL86] =
exponential in d

Sample size

5 6
Dimension d

m Split of space into two lower dimensional subspaces allows the
approximation of the p.d.f. [COM95]:

Px(u) ~ px; (ur) - px, (u2)
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Factor Analysis

Food Sciences:
one of the numerous application areas
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Contents

Introduction

Canonical Decomposition (CanD), Tensor rank

Symmetric tensors, Quantics, Topology
Other tensors
Tucker3, HOSVD

Other decompositions

References
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Introduction

Striking facts

Order, dimensions, outer & inner products
Contraction

Multi-linearity property

Unfoldings & storage

Symmetry
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8.

Striking facts

. The rank of a matrix cannot be larger than its dimensions —

possible for a tensor
Matrices with entries drawn randomly have maximal rank —
not true for a tensor

. The set of matrices of rank at most r is closed, Vr, — not

true for a tensor. Hence the approximation problem is
generally ill-posed.

Worse: the maximal achievable rank of a tensor is generally
still unknown.

There are several ways to extend the SVD to tensors

. The computation of the rank of a given tensor still raises

unsolved difficulties.

Rank and symmetric rank have not yet been proved to be the
same

Subtraction of best rank-1 approximate does not necessarily
decrease the rank

Pierre Comon Blind Techniques I11.Tensors
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Tensor product

m Let V), be vector spaces of dimension K; on a field K, and let
vy € V; be Ky-dimensional vectors.

m A tensor T is an element of a tensor product
VieV,®...®Vp. For instance

ViEV,®. . Bvp

is a tensor of dimensions K1 x Ky x -+ x Kp.

Pierre Comon Blind Techniques I11.Tensors
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Arrays

m If coordinates of u € U/, ve V and w € W are uj, vj, and w
in canonical bases of U/, V and W respectively, then
coordinates of tensor T = u®v®w are given by the array

Tijk = uj vj w

m Given canonical bases, one often assimilates a tensor and its
associated array of coordinates.

Pierre Comon Blind Techniques I11.Tensors
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Order & Dimensions

Definitions Let the array T = {Tj; «}

= Order of T # of its ways = # of its indices

m Dimension Ky def range of the (th index

m T is Cubic when all dimensions K; = K are equal

m T is Symmetric when it is cubic and when its entries do not
change by any permutation of indices

Pierre Comon Blind Techniques I11.Tensors
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Notation

m Let A and B be matrices of dimensions my X n4 and
mpg X ng, respectively

m Notation A o B will be preferred to A ® B, to avoid possible
confusion with the Kronecker product A ® B between
matrices. In fact:
1= A ® B is a matrix of size ma mg X na ng
15 A®B is a tensor of size ma X ng X mg X ng
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Matrix products
Again let A and B be matrices of dimensions ma X n4 and
mp x ng, with entries {a;} and {bj;;}, respectively
m Kronecker product: A ® B is ma mg X nang

allB algB

def [ 31B  a2,B

A®B

m Khatri-Rao product of matrices with same number of
columns, n:

A@Bdéf(a1®b1 aa®by - )

This is a column-wise Kronecker product. A ® B is
mampg X n.

Pierre Comon Blind Techniques I11.Tensors
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Outer product

m Outer or “tensor” product between two arrays, C = AoB:

Cij.tab.d = Ajj.t Bab..d

The orders add up

m Example 15: Outer product between 2 vectors The tensor
uov=uv'

has coordinates u; v; and is of order 2, and is hence a matrix.
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Arrays (cont'd)

=y

Vo3d§fVOVOV:<_}- _1_1

Example 16: Take

Then

This is a “rank-1" symmetric tensor

blue bullets = 1, red bullets = —1.

Pierre Comon Blind Techniques I11.Tensors
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Inner Product (1)

m Mode-1 inner product: A e; B:
{A : B}iz--iMJ2-'jK Z Ak’z iy sz Jx

This is a contraction on the 1st index

®m Mode—p inner product: similarly Ae,B is obtained by
summing up (i.e. contracting) on the pth index

m Example 17: Matrix-vector product Au=AT e u

= NB:
there exists a (less convenient & less used) other notation:
Ax,B
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Inner Product (2)

m Example 18: Matrix products are contractions

A-B= A.BT AT.B

m Example 19: Frobenius norm of a Pth order tensor in C:

HTH2 = Z ‘Tilig...ip|2 :T:;[.DT*
i ip...ip

One contracts on all indices
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Inner Product (3)

m The Contraction is not associative

AI(B:C) #(A;B):C

even for 2nd order tensors (matrices): ATBTC # BTAC
m A convention exists when a single tensor is contracted on

several matrices, to avoid parentheses: the summation is

always performed on the second matrix index.

Example 20: If A, B, C are matrices, and T a 3rd order

tensor,

T’:T:A;BgC: Thar =Y ApiBoj Coc Ty (20)
iik
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Change of basis

Assume a change of basis is performed in every linear space V),
e.g. defined by matrix A in V1, B in V;, ... and C in Vp.

m Multilinearity. An order-P tensor T is transformed by the
multi-linear map {A,B,..C} into a tensor T":

i/j,_k = Z Aiaij . Ckc Tab..c

ab..c

m Compact writing (with convention of slide 105):

T =TeAeB...oC
1 2 P
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Unfoldings (1)

m Storage of a matrix in a vector Let A be a p X g matrix,
with columns A.;. Then:

A:l

def A32

vec{A} < (21)

Agq

m Conversely, A = Unvec, (vec{A}), if g denotes the # of
colums

m Storage of a tensor in a vector
Similarly, the linear operator vec{-} mapsa a x 3 x -+ X 7
tensor onto a vector (af3 ...~ x 1 array)

Pierre Comon Blind Techniques I11.Tensors
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Unfoldings (2)

m Storage of a tensor in a matrix
For a 3rd order tensor T, one defines 3 unfolding matrices:

[ T::l 1 I Tl:: ] [ T—I;.
Tuio=| T |+ Tusxk=| Tiz |, T =| TJ
| T::K | L Tl:: | L T-I:/

m Conversely,
Reshape, , (Trixy), Reshape ; « (Tixk) or
Reshapey (Tkx1)
yield back T up to a permutation of the modes.

m Similar tools for higher orders...

Pierre Comon Blind Techniques I11.Tensors
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/-mode rank

Y.

m Example 21: 2 x2x 2. Let T = Vad

where bullets indicate nonzero entries, equal to 1 (see also
slide 117). Then matrix unfoldings are

1010

1010
Tixki = (1 0 0 0)

1110

m Note that ¢ mode ranks can be different:
ranky = ranky =2 # rankz =1
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Canonical Decomposition

Tensor rank

Properties of the CanD
Normalized CanD

Matrix writings of the CanD
Rank can exceed dimensions

Field can change rank

Pierre Comon Blind Techniques I11.Tensors
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Tensor rank

m Any tensor or array T, of dimensions [ x J x -+ x K can
always be decomposed as

T:Zu(q)ov(q)o...ow(q)
q

m The tensor rank of T is the minimal value of P such that
equality holds
This yields the Canonical Decomposition (CanD), sometimes
referred to as Parafac decomposition:

rank{T}
T= Z u@ov@o. .  ow® (22)
g=1
m Tensor rank is always larger than or equal to all /~-mode ranks:

ranke{T} <rank{T}, W/
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Other writings (1)

m Vectors can be normalized to unit norm, yielding a normalized

version:
rank{T}

T= Z Agul@ov@o.  owl@ (23)
g=1

1= Will be useful for symmetric tensors in the real field
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Other writings (2)

Let T be a 3rd order tensor, and denote U, V, W the matrices
containing u(®), v(P), w(P) as columns.

m Assuming A is a diagonal tensor of same order P as T, with
entries \q, the normalized CanD (23) admits a writing by
contractions, with convention (20) of slide 105:

T=AeUeV...e W
1 2 P

In other words, the CanD is a means to model a tensor as a
transformation from a diagonal one.

1= Warning: matrices U, V,... W may not be invertible nor even
square!
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Other writings (3)

m The CanD (22) can be written in matrix form:
Tk =UWaoV)' (24)
m Alternatively, each matrix slice of T can be written as
T.« = U Diag{W(k,:)} VT (25)

NB: This extends to any order. In particular at order 4, with
appropriate notations:

T.... = A Diag{C(k,:)} Diag{D(¢,:)} BT
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Properties

m The CanD of a multilinear transform is the transformed CanD:

If T def NeiUerVe3W is transformed into

T/ = T01A02BO3C,
then T’ admits the CanD:
T = I\:(A U) ;(B V) g(C W)

m The CanD is valid in a ring (only multiplies)
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Examples (1)

m Example 22: 2 x 2 x 2 tensor of rank 2

(3o s)=(2)02)e(2)(5)=(1)=(%)

here matrix slices are proportional
m Example 23: 2 x 2 x 2 of rank 2

= (LD ()-()-()(2)-()-()

even if matrix slices are not proportional

T
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Examples (2)

m Example 24: 2 x 2 x 2 tensor of rank 3 [COMO02b]
0 1j1 0
T_<1 00 0)
o3 o3 o3
1 -1 0
em=(1) +(3) w2 (5)

1= This is the maximal rank in dimension 2 x 2 x 2
v Here we have ranks = 1 < rank; = ranky = 2 < rank{T} (cf.
slide 109).

and

NB: Other writing: 6x%y = (x +y)3 + (=x + y)* — 2y3
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Field can change rank

m We have for any real tensor T

rank{T}c < rank{T}r

Example 25: A 2 x 2 x 2 tensor of rank 3 in R, but 2 in

C [CMLGO06]
-1 0|0 1
T_< 0 1|1 O)
In fact

T_l 1 o3+1 1 o3+2 _1 03_1 - 03_
T2\ 1 2\ -1 0 2 1
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Symmetric tensors

Usefulness

Symmetric rank

Link with quantics

Why rank can exceed dimension
Generic & typical ranks
Clebsh’s statement

Topology

Hirschowitz theorem
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Usefulness of symmetric tensors

m They occur as derivatives of a multivariate function

m Moments
m Cumulants
m Hessian

Pierre Comon Blind Techniques I11.Tensors
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Space of symmetric tensors

m Sk: symmetric tensors of dimensions K and order d
v space of dimension D, (K,d) = ("7~ 1)

quadric | cubic | quartic | quintic | sextic
K\d 2 3 4 5 6
2 3 4 5 6 7
3 6 10 15 21 28
4 10 20 35 56 84
5 15 35 70 126 210
6 21 56 126 252 462

Number of free parameters in a symmetric tensor of order
d and dimension K

m Ag: general tensors of dimensions K, = K, 1 </ <d
v space of dimension D (K, d) = Kd
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Symmetric rank

m Definition For decomposing a symmetric tensor, one can
impose symmetry of each rank-1 term. Hence the symmetric

rank:
rank(T)

T= Z [u(q)]OF’

q=1

m Property We have that
rank{T} <ranksT, VT symmetric

m It is not yet proved that both coincide for all values of order

and dimensions:
this is a conjecture [CGLMO3].
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Link with quantics (1)

m A quantic is a homogeneous polynomial in several variables.
For instance: quadric, cubic, quartic...

m Example 26: Binary cubic (d,K) = (3,2)
Take again example in slide 117:

p(x1,x2) = Z?,j,k:l Tijk Xi Xj Xk
0 1/1 0
T_(l 0|0 0)‘ et

= p(x) = 3xPx, = 3xP1
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Link with quantics (2)

m Bijection: Symmetric tensor of order d and dimension K «
quantic of degree d in K variables:

p(x) = Z T; xf0) (26)

m integer vector j of dimension d « integer vector f(j) of
dimension K

m entry fi of f(j) being def #of times index k appears in j

m We have in particular [f(j))| = d.

:  def - def
= Standard conventions: x} = []}_; x} and |f| =

where j and f are integer vectors.

K
k=1 i,

Pierre Comon Blind Techniques I11. Tensors 124



Intro CanD Symmetric Gene Tucker3 Other Appendix Quantics Closeness
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Why rank can exceed dimension

Theorem Let v(y), v(2), ... V(y), be r pairwise linearly independent
vectors, then for all k > r — 1, the rank-1 symmetric tensors are
linearly independent:

k k k
"?1)7 v?z),...vor)
Example 27: 3 vectors in dimension 2

1 0 1
V=1 g VO =\ 1 ) V® = 1

are pairwise linearly independent, but matrix of {v?qz)} is full rank:

O O O
= O O o
=
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Orbits (1)

m General Linear group GL: group of invertible matrices

m Orbit of a polynomial p: all polynomials g that can be
transformed into p by A € GL: q(x) = p(Ax).

m Allows to classify polynomials

Pierre Comon Blind Techniques I11. Tensors 127



Intro CanD Symmetric Gene Tucker3 Other Appendix Quantics Closeness

Orbits (2)

Example 28: Quadrics

m Binary quadrics are associated with 2 X 2 symmetric matrices
(tensors of order 2)

m Orbits in R: {0, x2, x2 + y2, x> — y?}
= 2xy € O(x? — y?) in R[x, y]

m Orbits in C: {0, x?, x2 + y?}
= 2xy € O(x? + y?) in C[x, y]

m Set of singular matrices is closed
m Set ), of matrices of at most rank r is closed
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3x3

Classification of ternary quadrics
Orbits in C:

GT —orbit ‘ w(p)

0 0

x? 1

x2 +y? 2

x? +y? + 2% | 3 (generic)

Question: what is the answer in R?
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CanD of polynomials

By using bijection (26), decomposing a dth order symmetric tensor
into a sum of rank-1 tensors means

r(p)
p(x) =Y (v{yx)? (27)
q=1

m This is a sum of powers of linear forms.
m r(p) coincides with the rank of associated tensor
m r(p) is sometimes called the width of p [REZ92].
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Generic & Typical Ranks

m Informal definition A property is typical if it holds true on a
non-zero-volume set

m Informal definition A property is generic if is true almost
everywhere.

m There can be several typical ranks, but only a single generic
rank.
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Bounds on generic rank (1)

For quantics of degree d in K variables

|'(K+dd1)-‘ - ﬁ

= Lower bound
K
m Upper bound [Reznick'92]

R< (%9
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Bounds on generic rank (2)

m Tensors of order d and dimensions (K1, ..Ky) without
symmetry:

m Upper bound

’V H?:l Ki “ <R
1+ (Ki—1) |~

m Square case K; = K:
KY/(dK —d +1) <R
m Lower bound (Square case):

KI/(dK-d+1)<R
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Topology of quantics

def . . .
m Every elementary closed set = varieties, defined by p(x) =0
m Closed sets = finite union of varieties

m Closure of a set &£: smallest closed set £ containing £

® s called the Zariski topology in C [CLO92]

® this is not Euclidian topology, but results still apply [CGLMO08]:
Tensors with entries randomly drawn according to a continuous pdf
are generic
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Clebsch’s statement

Alfred Clebsch (1833-1872)

The generic ternary quartic cannot be written as the sum of 5
fourth powers

m D(3,4)=15

m 3r free parameters in the CAND

m But r =5 is not enough — r = 6 is generic !
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Tensor subsets

m Set of tensors of rank at most r with values in C:
YV ={TeT:r(T)<r}
m Set of tensors of rank exactly r: Z, ={T €7 : r(T)=r}
Z2=Yr=Vr-1, r>1

m Zariski closures: V,, Z, ?
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Lack of closeness of Z,

m PROPOSITION
Z, is closed, but not Z, for any r > 1

[Burgisser'97] [Strassen'83]

m Proof
If rank{T} > 1, there exist Top € Z,_1 and y # 0 such that

T=To+y

Then define T, = To +cy®9. This series converges to
To¢ Zrase—0
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Lack of closeness of Y, (1)

m PROPOSITION
If d > 2, YV, is not closed for 1 < r < R.

m Example 29: Sequence of rank-2 tensors converging
towards a rank-4:

1
T. = - [(u+cv)°* —u®?
In fact, as € — 0, it tends to:

To=uououov+uouovou+uovouou-+vououou

which can be shown to be proportional to the rank-4 tensor:
3To =8 (u+v)°*—8(u—v)°*—(u+2v)°*+(u—2v)°* (28)

where u and v are not collinear.
== This is the maximal rank of 4th order tensors of dimension
2.
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Lack of closeness of Y, (2)

Successive sets YV, = {T : rank(T) < r}

» A tensor sequence in ), can converge to a limit in V,1p
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Lack of closeness of Y, (2)

Successive sets YV, = {T : rank(T) < r}

» A tensor sequence in ), can converge to a limit in V,1p
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Lack of closeness of Y, (2)

Successive sets YV, = {T : rank(T) < r}

» A tensor sequence in ), can converge to a limit in V,1p
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Lack of closeness of Y, (2)

Successive sets YV, = {T : rank(T) < r}

» A tensor sequence in ), can converge to a limit in V,1p
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Lack of closeness of Y, (2)

Successive sets YV, = {T : rank(T) < r}

» A tensor sequence in ), can converge to a limit in V,1p
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Lack of closeness of Y, (2)

Successive sets YV, = {T : rank(T) < r}

» A tensor sequence in ), can converge to a limit in V,1p

Pierre Comon Blind Techniques I11. Tensors 144



Intro CanD Symmetric Gene Tucker3 Other Appendix Quantics Closeness

Genericity

m Formal definition r is a typical rank if (density argument
with Zariski):
Z, is the whole space

m Formal definition Generic rank is the typical rank when
unique

m In C a typical rank is unique, and hence generic

m For given values of order d and dimension K, the smallest
typical rank in R coincides with the generic rank in C
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Existence of the generic rank in C

m LEMMA  The series of ) is strictly increasing for k < R
and then constant:

y1C¢y2C# “ e C#yﬁ = y§+l = ... T
which guarantees the existence of a unique R

m PROPOSITION  For tensors in C
Ifrp <rm<R< <R, then

ZWCZ,CZrD 2,2 2g (29)

» Proves that R is the generic rank in C
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21

7

Z3 = )3—2Z1— 2

Generic rank in C

Zo=Y— 2

| —

Z4=YV4s— 3

= T-2Z21—-2,— 24
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Numerical computation of the Generic Rank (1)

Mapping
{u(), 1<e<ry 5 D ()
=1
S
Rank

The rank of the Jacobian of ¢ equals dim(Z,), and hence D for
large enough r. B
® The smallest r for wich rank(Jacobian(y)) = D is R.
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Numerical computation of the Generic Rank (2)

Example 30: 3rd order symmetric tensors

{u(),1<t<r} 5 T= zr:u(g)m

(=1

T has coordinate vector: Y ;_; u(f) ® u(f) ® u(¢). Hence the
Jacobian of ¢ is the rn x n3 matrix:

LhLou ()@u'(1) +
) LLou (2Q®u'(2) +
N +
LLou(r)@u'(r) +

and

u()T @1, ®u™(1)
u2)" @1, @u’(2)

u(r)’ ®.|.,,'® u'(r)

{ rank{J} = dim(Im(y))
R = Min{r: Im{p} =S}
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Numerical computation of the Generic Rank (3)

The symmetric rank is generically:

1 3 4 5 6 7 8

2
3 2 4 5 8 10 12 15
4 3 6 10 15 21 30 42

_ 1 (K+d-1
>

Bold: exceptions to the ceil rule: Rs > [ (K+571)]
[CMOI6]
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Uniqueness of CanD

Number of solutions

m T he fiber of solutions has dimension

F(n)=KR - <K+j_1>

3 4 5 6

2
3 0 2 0 5 4
1 3 5 5 0

S Ofl oo

» (0 means a finite number of solutions
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Hirschowitz theorem

From Alexander-Hirschowitz theorem (cf. appendix), one can
deduce [CGLMO8]:

THEOREM  For d > 2, the generic rank of a dth order symmetric
tensor of dimension K is always equal to the lower bound

- (K+d—1)
Rs = {; (30)

except for the following cases:
(d,K) € {(3,5),(4,3),(4,4),(4,5)}, for which it should be
increased by 1.

» Only a finite number of exceptions !
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Classification of ternary cubics

k

g7 —orbit ‘
3

x3 +y3

x2y

x3+3y%z

x3+y3 +6xyz

x3 + 6 xyz

a(x*+ y3>+ 23) +6bxyz
xz% + yzz

S
=~
o
<

(generic)

[ I N O O NG R

George Salmon (1819-1904)
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Other tensors

Numerical computation of the Generic Rank
Uniqueness of the CanD
Tensors with particular symmetries

Link with polynomials
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Numerical computation of the Generic Rank (1)

Mapping

{u@),v(@),...,w(),1<t<r} = Zu(ﬁ)ov(ﬁ)o...ow(ﬁ)
/=1

{Cmo...oChM}y £,

® The smallest r for wich rank(Jacobian(y)) = D is the generic
rank, K.
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Numerical computation of the Generic Rank (2)

Example 31: 3rd order non symmetric tensors
{a(0).b(0).c(0)} == T =} a()ob(¢)oc(t)
(=1

T has coordinate vector: Y, ; a(¢) ® b(£) ® ¢(£). Hence the
Jacobian of ¢ is the r(ny + n2 4+ n3) x nyinyn3 matrix:

l, ® b'(1) ® c'(1) ]
b, ® ... & ...
I, ® b'(r) ® c'(r)
a)t @l ® (1) rank{J} = dim(Im
J= e ® Il ® o and { R = Min{r: Imi
a(r)_. ® l,,  © c(r)
a(l)’ ® b)) @ Iy
& ® |,,3
La(nN™ @ b(NT @ |
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Numerical computation of the Generic Rank (3)

Example 32: Tensors of order d with dimensions all equal to

K
L K] 2 3 5 6 7
3 2 5 7 10 14 19
4 4 9 20 37 62 97
_ Kd
R >
~ Kd-d+1

Bold: exceptions to the ceil rule R = [deizuﬂ
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Uniqueness of CanD

Number of solutions

m Example 33: 3rd order with dimensions n,

F(nl, ng,n3) = (n1 + ny + n3 — 2) R —ninyn3

m Example 34: dth order with equal dimensions, K
F(n)=(Kd —d +1)R — K¢

IR 3 5 6 7
3 o 8 6 5 8 18
4 4 0 4 4 6 24

® For generic/typical values, almost always infinitely many
CanD's
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Numerical computation of the Generic Rank (4)

Example 35: 3rd order tensors with unequal dim. N, [CtB08]
[CtBO6]

N 2 3 4

Ny || 2 3 4 5|3 4 5|4 5
Ng 2123 3 4 4 (34 4 5 |45 5
3/3 34 4 5|5 5 566 6
41 4 4 45 5|5 6 6|7 8
5/ 4 5 5 56|(56 6 8|8 9
6| 4 6 6 6|6 7 8|8 10
74 o6 7 7|7 7 9,9 10
8|l 4 6 8 8|8 89 9 10 11
994 6 8 919 9 9 |10 12

m There are exceptions to the ceil rule R = [Z(,l:,[[ilvfw

o(Ne —1)+1

m Bold: values that have not yet been proved theoretically
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Third order tensors with symmetric slices

Example 36: Typical ranks for Ny x Ny x N> arrays, with
N> x N> symmetric slices.

(M M2 3 4 5]

2 23 34 45 56
3 3 4 6 7
4 3 45 6 8
5 3 56 7 9
6 3 6 7 9
7 3 6 7 10
8 3 6 8 10
9 3 6 910 11
10 3 6 10 11

Bold: smallest typical ranks computed numerically.
Plain: known typical ranks; in C, the smallest value is generic.

Pierre Comon Blind Techniques I11. Tensors 160



Intro CanD Symmetric Gene

m Definitions
m Properties

m Usefulness

Pierre Comon

Tucker3 Other Appendix

HOSVD

Tucker 3

Blind Techniques

I11. Tensors

161



Intro CanD Symmetric Gene Tucker3 Other Appendix HOSVD

Definition (1)

According to Ledyard R. Tucker (1910-2004), any dth order
lh X I x - x Iy tensor T can be decomposed as [TUC66]:

T=SeUDeuU® . oy
1 1 1

where S has smaller dimensions than T (or equal to), and U are
semi-unitary, i.e. uOTY® = by ne < Iy

®» S is called the core tensor.

®» This decomposition is referred to as Tucker3 or as HOSVD
[dLdMV00b] [SBGO4].
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Two equivalent optimization problems

Max HT.U(l)ToU(z)T...oU(d)TH2
U, Uy 1 1 1

Min  [[T—SeUBeU?® ould)?
u®, U@, ul 1 1 1
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Definition (2)

Other writing with unitary matrices U(). In that case, the core

tensor S has same dimensions as T but is padded with zeros
[dLdMV0O0b]:

I; /1
<y
i [r;iiﬁ
I I @ |/‘
—/}n 5L : ; s
" _-—-——---. I :’ I
I = I L | b |
H __-“ ] 1
A :_ L 5 L J
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Properties (1)

The dth order core tensor can be imposed to be quite particular

m All its d — 1st order subtensors obtained by fixing one index
are all orthogonal (w.r.t. scalar product induced by Frobenius
norm); there are d of them.

m Entries of the core tensor can be sorted in such a way that for
every mode /:

1Sic=1ll > [ISi=2ll = - - [|Si=1]

m These norms may be viewed as /-mode singular values.

m When T is a matrix, so is S, and all-orthogonality can be
satisfied only when S is diagonal. The sequence of norms
oi =1|S.i|| = [|Si:|| are then the singular values.
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Properties (2)

m /-mode singular vectors can be computed as singular vectors
of the /~-mode unfolding matrix; hence an easy computation

m The {-mode singular values are uniquely defined

m When ¢-mode singular values are different, corresponding
£-mode singular vectors are unique up to a unit-modulus scale
factor

m For any fixed mode ¢, the sum of all mode-¢ squared singular
values yields ||T|[?
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Usefulness

m The nesting of /-mode singular values & vectors allows to
easily find the best approximate of a tensor of lower ¢-mode
rank by truncation of the HOSVD [dLdMV0Oc].

m May be applied to noise reduction

m May reduce subsequent computational complexity (dimension
reduction)

m May be used as a pre-processing before the CanD calculation
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Other decompositions

m Exact decompositions (if not truncated):
m CanD
m Tucker3 — HOSVD

m Approximate decompositions:

m Diagonalization by orthogonal transform
m Diagonalization by invertible transform
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Conclusions on Tensors

m Still open problems
m Efficient numerical algorithms lacking
m Several ways of extending SVD to tensors

m Very powerful, and numerous application areas
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Polynomial interpolation

Alexander-Hirschowitz Theorem [AH92] [AH95] Let £(d, m)
be the space of hypersurfaces of degree at most d in m variables.
This space is of dimension D(m, d) % (mh9) —1.

THEOREM Denote {p;} K given distinct points in the complex
projective space P”. The dimension of the linear subspace of
hypersurfaces of £(d, m) having multiplicity at least 2 at every
point p; is:

D(m,d) — K(m+1)

except for the following cases:
ed=2and2< K<m
ed>3and (md,K)ec{(245),(3,49),(4,1,14),(4,3,7)}

In other words, there are a finite number of exceptions.
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Contents of part IV

Overview
e Introduction

e Algorithms based on pair sweeping (CoM1, CoM2)
Link with tensor diagonalization

e Algorithms based on matrix slices (JADE, STOTD)
e Algorithms based on Deflation (FastICA, RobustICA, SAUD)
e Finite alphabet inputs (APF, MAP, ILSP...)

References
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What we have seen so far

m Cumulants can measure independence at a given order
m Cumulants form a (symmetric) tensor object

m Tensors may have a rank larger than dimensions, even
generically

m We have well-founded optimization criteria. Some of them
amount to approximately diagonalizing a tensor.
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Hypotheses

m Mixture is over-determined

m The rank of the signal cumulant tensor is equal (at most) to
its dimension

m The mixture may be given by the CanD of the signal
cumulant tensor

m Noise & measurement errors yield a measured cumulant
tensor that has generic rank
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Performance measure

How to test performances of algorithms in computer simulations?
m Difficulty because of the AP indeterminacy
m ldentification: Gap between F H and matrix of the form AP

m Source extraction: SINR (Signal to Interference plus
Noise): needs exhaustive search for best AP
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Example of Gap

This gap does not need a combinatorial search, because it is
A P-invariant [COM9%4a]:

e(MA) = D1 Pyl -1+ IDy*~1]
i j

+ D 1D DG =1+ Dy -1
J i i

where D = A~1A

Properties
m c{AAP,A} =c{A A} ={A AN'P}
mc{A A} =0< A = AAP
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Algorithms based on pair sweeping

Block vs Adaptive
Closed-form solutions in dimension 2, for various contrasts

Sweeping of all pairs

Complexity and convergence

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Numerical Algorithms

What problem are they supposed to solve?
m Are we given a single block of data?
m Are we observing a sequence of blocks, or a series of samples?

m Must we update the solution at every block, or at every
sample?

What kind of algorithms?
m Gradient ascent: the simplest

m Gradient-based ascents (Newton, quasi-Newton, conjugate
gradient..)

m Quasi-algebraic algorithms: try to avoid local maxima

m Algebraic algorithms: find all absolute maxima in closed-form
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Block vs Adaptive

Increase power of DSP

Limitations of time-recursive Adaptive Algorithms

m Convergence time of optimization algorithm
m Convergence time of moment estimators
m Local extrema harder to handle

m Coherence time sometimes limited
(e.g. GSM: 900MHz, 190km/h, T, ~ 2ms ~ 300 symbols)

Well matched to block transmission (TDMA)

Better exploitation of data
(uniform weight, resistance to loss in synchro, time reversal)
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Solution of the 2-dimensional problem

m Assume data x have been standardized into X.

m Then one looks for an estimate z of the source vector s as:
z=0Qx
where Q is unitary, and may be assumed of the form:
Q:< .cosﬁ sinﬁeﬂﬂ"): 1 ( 1 9)
—sin@Be™J?  cospf V1460 \ —0° 1
(31)

def
where 6 = tan 3 e’? denotes the complex tangent, and

Be]-n/2, /2.
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Invariance & Indeterminacy (1)

m There is a whole class of equivalent absolute maxima, which
can be deduced from each other by trivial filtering

m In the 2 x 2 real case, there are 8 equivalent absolute maxima,
generated by two P A transformations:

01 q 1 0
10) ™ 0 -1
m In the complex case, there are infinitely many, when ¢ € R.

m Expression (31) fixes this indeterminacy, so that only 2
solutions remain
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What is the problem in dimension 2 ?

m T, is a homogeneous trigonometric polynomial in
(cos 3,sin 3) of degree acr.

m And we want a closed-form (algebraic) solution

m But only polynomials of a single variable of degree at most 4
can generally be rooted algebraically

m Our problem: check out whether T, , could be transformed
into a particular function that can be algebraically maximized
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Invariance & Indeterminacy (2)

m Remark that Q[f] and Q[—1/6%] are PA-related:

ol-j1-am (5 57)

m Thus, rational function T satisfies 'T‘[—H—:Ek] = T[0].

m Consequently if 6, is stationary point of T, so is —1/60% =

Stationary points are roots of a polynomial w(&) in

c%9_1/0*

m ldea of algorithm:
m Compute coefficients of w from cumulants of X

m Compute roots &, of w
m Root 62 — &,60 — 1 in order to get (6,,—1/0%).
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Solution for contrast T3 in R (1)

m Contrast T5 3 is defined as:

def
Ta3 = Cum{z, z1, z1 Y2 +Cum{z, 22, 2}> = (k111)*+(K222)?

m Yet, by multilinearity of cumulants:

. def ~ o~ o~
Kiii = E Qij Qik Qie Yjke, Vike = Cum{X;, X, %}
ke

m Then T3 3 is a degree-6 polynomial in (cos 3, sin 3), or a
rational function in the tangent 0:

3
v3(6) = (0 + %)-3 > ai (67— (—6)7)
i=1
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Solution for contrast T3 in R (2)

m Denote { =6 —1/6.
Because of the invariance under transformation 6 — —1/0),
stationary points are roots of a very simple polynomial:

w3(€) = h &+ di € — 4 d>

where di = a;/3 — a3, and db = a,/6
and:

a = 7%11 + ’Y%zza
a = 6(y1227222 — 7111 7112),
9 (V3o + V312) + 6 (7112 7222 + V111 V122)

ai

m Conclusion: solution obtainable algebraically from estimates
of cumulants 7jig def Cum{%;, %, X, } [COM94b].
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Another solution for contrast T53 in R (2)

Algebraic Quasi-algebraic

T23 = K3;, + K3y, can be proved to be a quadratic form u'Bu

where

and
B <=

with [dLdMVO1]:

Pierre Comon

(

3

ai
az
as

as

u [cos243, sin 2B]T

al

3a4/2 >

34/2 932/4+3a3/2+a1/4

2 2
= 7111 T 7222
2 2
= Y12 T 7122
= Y111 Y122 + Y112 Y222

= 71227222 — Y111 Y112

Blind Techniques

IV.Algorithms for static mixtures
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Solution for contrast T4 in R

def
= Now take Toa = (k1111)? + (K2222)?
m This contrast is a degree-8 polynomial (cos 3, sin 3).

Denote again £ = 6 — 1/6. Then it is a rational function in &:

4
ba(§) = (C+4)2> bi¢
i=0

m Then its stationary points are roots of a polynomial of degree

4:
4

wa(€) =) ¢
i=0
whose roots are thus obtainable algebraically
(e.g. via Ferrari's technique).
m Coefficients b; and ¢; are given in [COM94b] as functions of
Yijke
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Solution for contrast T14 in R

Same approach feasible, but easier because absence of squares
= Here another easier-accessible approach

m Input-Output relations

K1 = 7108’ B+ 47111 cos® Bsin B + 671122 cos® Bsin® B
4ry1995 cos Bsind B + v sin* 8
y1sin® 3 — 441112 cos Bsin® 3 + 6741122 cos? Bsin? 3
— 41995 cos® Bsin § 4 4o cost B

_l’_

K2

m Then cT14 = k1 + k2 =
[cos 23 sin 2] < 71+ 72 Y1112 — V1222 ) [ cos2
Y1112 — Y1222 W + 371122 sin2(

m Conclusion: again entirely algebraic since dominant
eigenvector of a matrix of size < 4.

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Solution for contrast T;4 in C

. . Kkl o o~ s o~
m Define k; = Cum{z;, z;, 2}, 27}, ;" = Cum{%;, X, %, '}

m Then... again a quadratic form

€T174 = K1+ K= UT Bu

with

u' =[cos23 sin2Bcosp sin26sin ]
and

Y1111 + Y2222 R{o} —{d}
B = R{0} 2915 + R{723} {133}

-3{4} {23 2715 — R{1%;

§ = 73—

Conclusion: unexpectedly entirely algebraic! [COMO01]
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Jacobi Sweeping

Cyclic sweeping with fixed ordering: Example in dimension P =3

X Y4

X

L -

Carl Jacobi, 1804-1851
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Jacobi Sweeping for tensors

Question: Why not select another ordering, e.g. process pairs
having cross cumulants of largest magnitude?

Response: the computational complexity would be dominated by
the computation of the tensor entries themselves!

How do we compute tensor entries then?

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Jacobi Sweeping for tensors

Sweeping a 3 x 3 x 3 tensor [COM89]

X x x X x x X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
x X x — X X — x X x
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X x x X x x X

X : maximized
x : minimized ) by last Givens rotation
unchanged
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Two possible updates of T

After processing every pair, one can:

m Update based on multilinearity:
7_ij‘.k — Z Qip qu - Qkr qu..r
pq..r
requires an initial computation of T
m Update of observations themselves

X—QX

and then
Tij.« = Cum{x;, Xj, .xi }

The best choice (i.e. least costly) depends on data length and
dimensions.
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Influence of ordering

With update based on multilinearity.

Contrast of Com2 & Gap of Com2
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Deflation Alphabet

Algebraic  Quasi-algebraic

Complexity

Number of real flops

Pierre Comon

15 20

Number of sources

Blind Techniques

IV.Algorithms for static mixtures
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Interpretation in terms of pairwise independence

m Pairs are processed in turns, so as to make outputs as
independent as possible

m Ultimately: a set of pairwise independent outputs

m Legitimate because of corollary of Darmois’s theorem (cf.,
slide 38)

Pierre Comon Blind Techniques IV.Algorithms for static mixtures 196



Introduction Pair sweep Slices Deflation Alphabet Algebraic  Quasi-algebraic

Interpretation in terms of tensor diagonalization

Explanation for order 3 tensors

m Given a tensor gjj, find a matrix Q transforming g into
Gpgr = Zijk Qpi Qg Qrk gjji such as to maximize:

v3(Q) & > 1Giil?

1

: . : £ .
m Theorem: if Q is unitary, then Q o > ik |Gjjk|? is constant
independent of Q
Proof: uses Zp QipQjp = 9jj
m Corollary: Maximize T35 < minimize all non diagonal entries

Hence: “Tensor Diagonalization”
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Tensor diagonalization

Warning: Tensors cannot in general be diagonalized by congruent
transforms, even non unitary!

Why?

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Stationary points

Example of diagonalization of real symmetric matrices

m Given a matrix g with components gj;, it is sought for an
orthogonal matrix @ such that 1, is maximized:

P2(G) = Z G/%? Gj = Z Qip Qjq &pg-

p,q

m Stationary points of v satisfy for any pair of indices
(q,r),q #r:
Gaq Gar = Grr Gar
m Next, d?yy <0< G2 < (Ggq — Gyr)?, which proves that
m Ggr =0, Vq # r yields a maximum

B Ggq = G, Vg, r yields a minimum
m Other stationary points are saddle points

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Stationary points

Procedure applied to real 3rd or 4th order tensors

m Similarly, one can look at relations characterizing local

maxima of criteria W3 and W4 [COM94b]:

Gaqq Gagr — Grrr Garr

4'Ggqr + 4G§rr - (quq - qur)2 - (Grrr - qur)2

Gaqaq Gagar — Grrer Garrr
3

4'Ggqqr + 4'Gcgrrr - (quqq - 5 qu,r)z
3
_(Grrrr - 5 qurr)2

N

<

0.

for any pair of indices (p, q), p # g. As a conclusion, contrary
to Wy in the matrix case, W, might have theoretically spurious

local maxima in the tensor case, r > 2

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Algorithms based on matrix slices

m JADE contrast

m JADE algorithm

m STOTD recursion on the order
m Other

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Tensors as Linear Operators

Overview

m Linear Operator € acting on square matrices:

M — Q(M); = Zc,k/wk@

admits eigen-matrices N(p), 1 < p < P2,
m In the absence of noise, P nonzero eigenvalues

m In practice, retain P dominant eigen-matrices = (i) reduced
complexity P2, and (ii) noise reduction

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Joint Approximate Diagonalization (JAD)

Back to tensor diagonalization
Example of 4 x 4 x 4 tensors

..ar o
PRy i

Matrix slices diagonalization # Tensor diagonalization

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Real symmetric tensors

Definition (reminder)
G is real symmetric iff:

Gij.k = Go(j..k)

for all permutation o
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Two equivalent writings (order 3)

Lemma 1 Let U be an orthogonal real matrix, relating two 3rd
order real symmetric tensors G and g, then

> Gi =) ||Diag(UTM(r) U)||?
ik r

. o f
where M(r) are symmetric matrix slices of g: Mpq(r) & 8pqr
Proof...

def

Theorem One can prove that J =
least 2 indices are equal)

Dok |Giik|? is a contrast. (at

Pierre Comon Blind Techniques IV.Algorithms for static mixtures



Introduction Pair sweep Slices Deflation Alphabet

Hermitian tensors

Definition
G is complex hermitian iff it is of even order, and enjoys the
symmetries:

pPq..r __ ~pq..r
[ Gij“k =G

o(ij..k)
pq..r _ ~o(pq..r)
= Gij_'k = Gij..k
Pq..r ik )"
m Gy = (qu~~r>

for any permutation o.
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Two equivalent writings (order 4)

Lemma 2 Let U be a unitary matrix relating two complex
hermitian tensors of even order 4, G and g, then

D G P =) ||Diag(U"M(r,s) U)||?

ik¢ rs

. . . def
where M(r, s) are hermitian matrix slices of g: Mpq(r,s) = gk

Proof...

def
Theorem One can prove that 7 = >, . |Glk-m|2 is a
contrast. (only 2 indices are equal)

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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JADE as an approximation of T, 4

Lemma 3 denote the EVD g =} A,N(p)N(p)", i.e.
8jkrs = >_p ApNik(p) Nis(p), then 3rd writing:

@-ZA |diag(U" N(p) U)||”

Second approximation: Keep only the most significant
eigen-matrices, p < P, which amounts to maximizing:

def
TE, ZAQ diag(U" N(p) U)|2
p=1

m Hence the name of Joint Approximate Diagonalization of
Eigenmatrices (JADE).

m 7, 4 can be seen as an approximation of T, 4

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Implementation of JADE with pair sweeping

Algebraic solution in dim 2
m Goal is to maximize the diagonal terms of Q"N(r) Q

m Denote N(r) = < ir Zr > and
t r

Q- < cos @ sin 6 7% >

—sinfe™7¥  cosf
m Then this amounts to maximizing w.r.t. (6,¢): v! R(GH'G)v

where
ar—d "
GHG:Z br+Cr [ar_dra br+cr7 ](Cl’_bf)]
r J(Cr - br)

and v = [cos 26, sin 26 cos @, sin20sin @] "
m Thus, solution is the dominant eigenvector of a (real)
symmetric matrix
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Lower order simultaneous diagonalization (1)

Extend the idea: Slicing decreases the order

m Similarly, one can try to diagonalize a 4th order tensor
T = [jjke] by jointly diagonalizing 3rd order slices T(¢)
(STOTD) [dLdMVO01]

m Algorithm: Each Givens rotation is obtained again by
maximizing a quadratic form u'Bu

m Noise reduction possibility: replace slices by a family of 3rd
order tensors forming a basis of the map CK — CKxKxK

(consider the 4th order tensor as a linear map; basis obtained
by SVD)
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Lower order simultaneous diagonalization (2)

In the real case, B is given as in slide 186 by:

B — al 334/2
-\ 3a1/2 9ay/4+3a3/2+a1/4

with [dLdMVO1]:

_ 2 2
a = Z Y11e t V2200
¢
_ 2 2
a = Z M12¢ T V1220
¢
a = Z Y111e Y1226 + Y112¢ Y2220
‘
a4 = Z Y1220 72220 — Y1112 71120
¢
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Diagonalization algorithms

Obtain a diagonal tensor or diagonal slices:
m by orthogonal transforms [dL78] [CS93] [Com92]

m by invertible transforms [AFS07] [YERO2] [?] [PHAO1]
[LAT06]

m by rectangular transforms [PAA99] [VO06] [COMO04a] [NLO6]
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Algorithms based on Deflation

Principle: Joint extraction vs Deflation
Unitary adaptive deflation

A so-called fixed point: FastICA
RobustICA

Deflation without spatial prewhitening, algebraic deflation

Discussion on MISO criteria

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Joint extraction vs Deflation
z

X fH

Deflation:

m Advantage: (a) reduced complexity at each stage, (b) simpler
to understand

m Drawbacks: (i) accumulation of regression errors, limitation of
number of extracted sources, (ii) possibly larger final
complexity
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Adaptive algorithms

Deflation by Kurtosis Gradient Ascent

Again same idea

After standardization, it is equivalent to maximize 4th order
moment criterion, M, 4y = E{|z|*}, whose gradient is:

VM = 4E{x (f"x)(x"f)?}

Overview
m Fixed step gradient on anglular parameters: [DL95]
m Locally optimal step gradient on filter taps: FastICA [HYV97]

m Globally optimal step gradient on filter taps: RobustICA
[COMO02a]

m Semi-Algebraic Unitary Deflation (SAUD) [COMO5]
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Adaptive algorithms

Adaptive implementation
m Fully adaptive solutions (update at every sample arrival)
nowadays little useful

m Always easy to devise fully adaptive, or block-adaptive
solutions form from block semi-algebraic algorithms (but
reverse is not true!)
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Unitary adaptive deflation (1)

m Extraction
m To extract the first source, find a unitary matrix U so as to
maximize the kurtosis of the first output
m Matrix U can be iteratively determined by a sequence of
Givens rotations
m At each step, determine the best angle of the Givens rotation,
e.g. by a gradient ascent [DL95]

NB: only P — 1 Givens rotations are involved

m Deflation

m After convergence, the first output is extracted, and the P — 1
remaining outputs of U can be processed in the same way
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Unitary adaptive deflation (2)

"
At stage k, Q = ( g"z > is unitary of size P — k + 1, and only its
first row is used to extract source k, 1 < k<P -1

() (5) (%)

Blind Techniques
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A so-called fixed point: FastICA (1)

m Any gradient ascent of a function M, = E{p(f"x)} under
unit-norm constraint ||f||> = 1 admits the Lagrangian
formulation:

E{xp(f"x)} = A\ f

m Convergence: when VC and f collinear (and not when

gradient is null, because of constraint ||f|| = 1).

m Remark: It is not a fixed point algorithm, contrary to what
had been claimed in [HYVO7], because \ is not known!

m One can take p(z) = |z|*
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A so-called fixed point: FastICA (2)

Details of the algorithm proposed in [HYV99] in the real field; only
difference compared to [TUG97] is fixed step size.

= Gradient: VM = 4E{x(f'x)3}
m Hessian: 12E{xx" (f"x)?}
m Heavy approximation of Hyvarinen [HYV99]:

E{xx" (fTx)?} ~ E{xx"} E{(f"x)?}

m If x standardized and f unit norm, then Hessian equals Identity.
m This yields an approximate Newton iteration: a mere fixed step
gradient!
f—f—L1E{x(f'x)®} or f—E{x(f'x)}—3f
f—f/[|f]]

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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FastlCA: weaknesses

This is a mere fixed step-size projected gradient algorithm,
inheriting problems such as:

m Saddle points (slow/ill convergence)
m Flat areas (slow convergence)

m Local maxima (ill convergence)

NB: slow convergence may mean high complexity to reach the
solution, or stopping iterations before reaching convergence
(depends on stopping criterion).
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Polynomial rooting

Theorem (1830). A polynomial of degree higher than 4 cannot in
general be rooted algebraically in terms of a finite number of
additions, subtractions, multiplications, divisions, and radicals
(root extractions).

Niels Abel, 1802-1829 Evariste Galois 1811-1832
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How to fix most drawbacks: RobustICA

Principle: Cheap exhaustive Line Search of a criterion J

m Look for absolute maximum in the gradient direction (1-dim
search)

m Not costly when criteria are polynomials or rational functions
of low degree (same as AMiSRoF: polynomial to root, but
here at most of degree 4)

m Applies to Kurtosis Maximization (KMA), Constant-Modulus
(CMA), Constant-Power (CPA) Algorithms...

This yields corresponding Optimal-Step (OS) algorithms:
OS-KMA, OS-CMA, OS-CPA... [2C08] [2C05]

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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RobustICA

Algorithm

m compute coefficients of polynomial a% J(f+ pV) for fixed f
and V

m compute all its roots {u;}

m select p10pr among those roots, which yields the absolute
maximum

mset f—f+ 1oV

[2C07]
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RobustICA vs FastICA

0
B
N
_5 —
%_10 [ - R S
W el el
) + — = —+-
2 _15| - - - Fastica :
— OS-CMA
- = OS-KMA
o MMSE L
-20H * sourcel
+ source 2 L
4 source 3
o source 4
_25 T L
0 10 20 30 40

SNR (dB)
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Semi-Algebraic Unitary Deflation

CoM1 [COMO1]

- Loop on sweeps
fori=1toP—-1
for j=1ito P
{Algebraic 2 x 2 separ.
end
end
- end
Extraction

Pierre Comon Blind Techniques

IV.Algorithms for static mixtures

SAUD [ACX07]

rfori=1toP—-1
Loop on sweeps
for j=1ito P
{Algebraic 2 X 2 separ.
end
end
Extraction
~end
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Equivalence between KMA and CMA

m Recall the 2 criteria:

Cum{z, z, z*, z*}

Tkma = B

Tema = E{[ |z]* — R]?}

m Assume 2nd Order circular sources: E{s?} =0

m Then KMA and CMA are equivalent
Proof.
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Discussion on Deflation (MISO) criteria

Let z % fx. Criteria below stationary iff differentials p and q are
collinear:
f
= Ratio: Max&
o q(f)

Example: Kurtosis, with p = E{|z|*} — 2E{|z|?}? — |E{z?}?
and g = E{|z]*}?

m Difference: Mfin p(f) — aq(f)
Example: Constant Modulus, with p = E{|z|*} and
g = 2aE{|z|?} — a? or Constant Power, with
q=2aR(E{z?’}) - a°

m Constrained: Max p(f)
q(f)=1

Example: Cumulant, with

b= E{|z|*} — 2B{|2]2}? — [E{z2}?

Example: Moment, with p = E{|z|*}, if standardized and
with either g = ||f||? or ¢ = E{|z|?}?
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Finite alphabets

Back to contrast criteria: APF

Approximation of the MAP estimate

Semi-Algebraic Blind Extraction algorithm: AMiSRoF
Blind Extraction by ILSP

Convolutive model

Presence of Carrier Offset (in Digital Communications)

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Contrast for discrete inputs (1)

m Hypothesis H5 The sources take their value in a finite
aphabet A defined by the roots in C of some polynomial
q(z) =0

m Theorem [COMO04b]

Under H5, the following is a contrast over the set H of
invertible P x P FIR filters.

T(G; z) o Z Z lq(zi[n])I?

APF: Algebraic Polynomial Fitting

Pierre Comon Blind Techniques IV.Algorithms for static mixtures
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Contrast for discrete inputs (2)

m For given alphabet 4, denote G the set of numbers ¢ such
that c A C A.

m Lemma 1 Trivial filters satisfying H5 are of the form:
PD|[z]

with D[z] diagonal and Dpp[z] = ¢, 2", for some n € Z and
some ¢, € G.

m Because A is finite, any ¢ € G must be of unit modulus, and
we must have c A = A,Vc € G.
Also any ¢ € G has an inverse cling.
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Contrast for discrete inputs (3)

Sketch of proof of the theorem. We prove the 3 properties of slide
68:
B VT €7, T(T;x)="T(I;x)
m VG € H, Vs € S, set of independent sources in A,
T(G;s) < T(I;s)
m VG € H, Vs € S, equality T(G;s) = T(l;s) = G trivial.
The proof needs the lemma
® Lemma 2 Let A be {ax, 1 < k < d} # {0}. If
Z,-Lzl Ci as(j) € A for all mappings o from {1,...,L} to
{1,...,d}, then only one ¢; # 0.
m The proof of this lemma needs sources to be sufficiently
exciting, e.g. that all binary states are present.
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Contrast for discrete inputs (4)

Idea of the proof of Lemma 2

m Assume that for some ¢ € CL, we have xTc € A for all
x € AL,
m Then c must be trivial:
Non trivial vectors ¢ may generate symbols that lie outside

the convex
hull of A, or between the two closest symbols.
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Contrast for discrete inputs (4)

Advantages
m The previous contrast allows to separate correlated sources
m But it needs all sources to have the same (known) alphabet

m If sources have different alphabets, one can extract sources in
parallel with different criteria: Parallel Extraction [RZC05]

m By deflation with different criteria, one can extract more
sources than sensors: Parallel Deflation [RZCO05]
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Parallel Deflation

1,1,2,2 2(1)
e w) : T
59 - L a
- . ! ~(1
K o H s
52 W (1122) g |
2 | C 2
81 77777 §(2)
| S
4’(2) 51 [
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Parallel Extraction

1,2,3,4
wg A)
st > hy 50
— - >
CEER
5@ 2 ag h 2(2)
—_— - 2 5
> -
53 C (123 -
—- 3 <B 53
- ——
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-
— 1,2,3,4 > .
wfl A) = hy W
- -

Pierre Comon Blind Techniques IV.Algorithms for static mixtures 236



Introduction Pair sweep Slices Deflation Alphabet Criterion Algorithm

Parallel extraction

Parallel extraction of 3 sources (QPSK, QAM16, PSK6), from a
3-sensor length-3 random Gaussian channel [RZC05]

o Le=2, Lh=13
T
-7 QAM16
—6- QPSK
PSK-6

e
T
o
&
u X
5 \ i
£ N =
@ v
107 i ; i i i
0 5 10 15 20 25 30

Signal to Noise ratio (dB)
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APF extraction

Parallel Deflation from a mixture of 4 sources (2 QPAK and 2
QAM16) received on 3 sensors. Extraction of a QPSK source in
figure, compared to MMSE [RZCO05]

| Underdetermined mixture (4 inputs - 3 ouputs), 600 samples
T T T T T T

—&— APF extraction filter
—— MMSE filter

10 T

SNR(dB)
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MAP estimate

m Optimal solution
(H,8)piap = Arg Max Psjx,1(%: 8, H)
m If s, € A, and if noise is Gaussian, then

H.s = Arg Min ||x — Hs||?
(H,8)map £, eAPH I

b

m Less costly to search (inverse filter when it exists)

F,s = Arg Min ||Fx —s||?
( Jmap gF,seAPH |

m or by deflation:

f.8 = Arg Min |[|f"x — s]||? 34
(F,8)mar gfseAPH I (34)

b
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Approximation of the MAP estimate

For alphabet of constant modulus, MAP criterion (34) is

asymptotically equivalent (for large samples of size T) to [GCI8]:

T cardA
Tr(f) = Z H [F'x[t] — aj¢]|?
t=1 j=1

where a;[t] € A
We have transformed an exhaustive serach into a polynomial
alphabet fit
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Algorithm AMiSRoF

Absolute Minimimum Search by Root Finding [GC98]
m Initialize f = f,
m For k =1 to kmax, and while |ux| >threshold, do
Compute gradient g, and Hessian Hy at fi_;
Compute a search direction vy, e.g. vy = H, " 1g,
Normalize v to [|vk|| =1
Compute the absolute minumum puy of the rational function in
1%

def
S(u) = Tr(fa—1+ pvi)
Set fy =f,_1 + Mk Vi
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Introduction Pair sweep Slices Deflation Alphabet Criterion Algorithm

Algorithm ILSP

Iterative Least-Squares with Projection [TVP96]
m Assumes that components s;[n] € A, known alphabet

m Assumes columns of H belong to a known array manifold
m Initialize H, and start the loop

m Compute LS estimate of matrix S in equation X =HS
Project S onto A

Compute LS estimate of H in equation X =HS
Project H onto the array manifold
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Equalization ldentification

Contents

Here limited to over-determined mixtures
e Blind equalization,

m Modeling, Carrier offset
m Contrast criteria
m Algorithms (Pajod, subspace, linear prediction...)

e Blind identification

m Cumulant matching

Algebraic approaches
Subspace techniques
ARMA mixtures

References
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Equalization Identification SISO SIMO Contrasts Deflation Paraunitary Other

Blind Equalization

Modeling of Dynamic Mixtures
Contrast-based

m MISO Deflation
m Para-unitary

m SIMO channel

m subspace
m mutually referenced
m Linear prediction

MIMO
Matched Filter after Blind Identification
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SISO Modeling

Sequence of symbols s[k] at a rate 1/ T,
m Overall channel h(t), containing transmit&receive filters and
propagation
m received process x(t) = >, h(t — k Ts) s[k]
m If sampled at a rate 1/T:
x[n]=> h(nT — k T5)s[k]
keZ
m If sampled exactly at symbol rate, we get a discrete
convolution:
x[n] =" h[n — k] s[k]
kEZ
def

with h[m] = h(m T)

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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Equalization Identification

MIMO Modeling

In practice, one often assumes the approximation of discrete
convolutive FIR:

L
x[n] = H[k]s[n — K] + v[K]

k=0

Either:

= Blind Identification
Estimate the finite matrix sequence H[k], or

m Blind Equalization
Estimate a FIR filter F[¢], 0 < ¢ < [

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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Equalization Identification SISO SIMO Contrasts Deflation Paraunitary Other

Carrier offset (1)

In practical contexts of Blind Techniques, carrier frequency might
be unacurately estimated

m In the SISO case, this yields

x[n] = h[n— k] s[k] e’*°
k
m An equivalent writing is

x[n] =" > " H[n— K] s[k]
k

where h'[m] o h[m] e?m9.
m alphabet fitting at the output may be limited by the presence
of this Carrier residual. But Blind Equalization is still feasible.
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Carrier offset (2)

m In the MIMO case, the carrier offset cannot be pulled into the
channel anymore, unless all sources have the same carrier
offset

m In fact on sensor k:
Xk[n] = Z Z Hkp[n — K] sp[Z] eﬂ‘sp
L p

or

xk[n] = ZZ el Hipln — ] sp[¢]
)

. def
with Hy [m] = Hip[m] e7mdp
m Thus blind equalization is not possible anymore before carrier
residual mitigation
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Carrier offset (3)

Summary
m SISO case: BE and CO can be permuted
m MIMO case: BE and CO cannot generally be permuted

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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Equalization SISO

Carrier offset (3)

BLOCK CMA
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SISO

Carrier offset (4)

BLOCK KURTOSIS

Equalization
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Equalization Identification SISO SIMO Contrasts Deflation Paraunitary Other

SIMO mixture with diversity K = 2 (1)

h, O X1
S /

O x,

Disparity condition:

h[z] A ha[z] = 1 = x1[z] A xo[z] = s]Z]

Bézout:
Inz], wlz]/ wi[z] h[z] + wz] h2[z] = 1
= vi[z] x1[z] + w[z] x2[z] = s[Z]
Thus
FIR filter h = ( Z; > admits the FIR inverse v = ( Vi, W )

Pierre Comon
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Equalization Identification SISO SIMO Contrasts Deflation Paraunitary Other

SIMO mixture with diversity K = 2 (2)

Theorem

If two polynomials p(z) = Y- a;z' and q(z) = Y1, biz' are
prime, then the resultant below is non zero:

aQ ... am O
0 .0
0 0 a ... am|def A
Rea)=| . h o éG'et<|3>
0 0
0 0 b bn
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Equalization Identification SIMO

Use of time diversity

Time diversity
If channel bandwidth exceeds symbol rate % (excess bandwidth),

then a sampling faster than % brings extra information on
channel. [?] [?]

How to build a SIMO channel from a SISO?
m sample twice faster: x[k] = x(k Ts/2)

m denote odd samples x;[k] = x[2k + 1], and even samples
xo[k] = x[2k]

m then 2
x1|k H; def
(5 )= () s et
Matrix H is full rank (well conditioned) if sufficient excess
bandwidth

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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Mutually Referenced Equalizers (1)

m Recall the compact modeling of equation (42) slide 279:
X(n) = H7t S(n)

Then observe that if H 1 is column shaped and full rank (here
T+ L+1):
v VV'Hr =1

m Each row of V" defines an equalizer v!!, deduced from each
other by a delay [?]:

Vi X(n— i) = v X(n—j)=s(n—i—))

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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Mutually Referenced Equalizers (2)
= The equations E{|v{X(n) — v}, X(n+1)]°} =0 for
0<k<T+L yield:
VIRY =0 with
R(0) —-R(1)" 0

vo ~R(1) 2R(0) . 0
def Vi def , , ,
V= . , and R = 0 ) . .
! 0 ... 0 2R(0)
VT+L )
- —R(1)
def

and R(k) = E{X(n+ k) X(n)"}.

m Thus, take V as being the dominated eigenvector, and extract
vy from it

m In practice, necessary to add a constraint to avoid
vk € null(H")

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures

257



Equalization Identification SISO SIMO Contrasts Deflation Paraunitary Other

Contrast criteria (1)

Proofs derived in the static case hold true in the convolutive case,
e.g. family of contrasts of slides 73-74
Proofs...

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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Equalization Identification Contrasts

Contrast criteria (2)

But also possible to devise new families of contrasts for
para-unitary equalizers after prewhitening [?] [?]. For instance:

= ZZZ |Cum{y;i[n], yi[n], yjln — P, yk[n — Q]}‘z
i jp kgq
(36)

In the above, one can conjugate any of the variables y;'s

Holds true for almost any cumulants of order > 3

Only two indices need to be identical with same delay

Proof Based on the property that, for para-unitary filters G:

IS D60 sl = () =303 16l el

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures

259



Equalization Identification SISO SIMO Contrasts Deflation Paraunitary Other

MISO Dynamic Extractor: Deflation

m Fixed step gradient Deflation [TUG97]

m Optimal Line search along a descent direction, OS-KMA [?7]
[2C05]

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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PAJOD (1)

m Technique applied after space-time prewhitening

m Then one looks for a para-unitary equalizer, by maximizing
the contrast

Jor(y) =Y ||Diag{H" M(b, 3) H}|?
B

b

Matrix H is now defined differently, and is semi-unitary.
Matrices M(-) contain cumulants of whitened observations

m Contrast (36) is maximized again by a sweeping technique
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PAJOD (2)

PAJOD: Partial Approximate Joint Diagonalization of matrix slices

One actually attempts to diagonalize only a portion of the tensor

q4q

.
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MIMO Blind Equalization

m linear prediction after Bl [?]
m linear prediction [?] [?] [?]
m subspace [?] 7] [?] [?] [7]

m identifiability issues by subspace techniques [?] [?]

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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Equalization after prior Blind Identification

Assume channel H[z] has been identified, with:
x[n] = H[z] x s[z] + v[Z]
An estimate of s[z] is obtained with F[z] x x[z].
Possible equalizers F[z]:
m Zero-Forcing: F[z] = H[z]!
m Matched Filter: F[z] = H[1/z*]"
(used in MLSE; optimal if channel AWGN; maximizes output
SNR)
® Minimum Mean Square Error (MSE):
Flz] = (H[z]H[1/z*]" + Ry[2]) "*H[1/z]"
® One can insert soft or hard decision to stabilize the inverse, or
to reduce noise, e.g. decision Feedback Equalizers (DFE).
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Overview

Interest
MA identifiability (second order vs hOS)
SISO: Cumulant matching

MIMO: Cumulant matching and linear prediction (non monic
MA)

Algebraic approaches, Quotient Ring

SIMO: Subspace approaches
MIMO: Subspace, IIR, ...
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BE vs Bl

If sources sp[k] are discrete, it is:

m rather easy to define a BE optimization criterion in order to
match an output alphabet

m difficult to exploit a source alphabet in Bl

Example the property of constant modulus of an alphabet is
mainly used in Blind Equalization: CMA (Constant Modulus
Algorithm)

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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Interest of Blind Identification

m When the mixture does not have a stable inverse
® \When may want to control stability by soft/hard decision
in a Feedback Equalizer

m When sources are not of interest (e.g. channel characteristics,
localization only)

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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SISO Cumulant matching (1)

m Consider first the SISO version of (35):

L

x[n] = hlKk] s[n — K] + v[K]

k=0

where v[k] is Gaussian stationary, and s[n] is 4th order white
stationary.

m Then, by the multilinearity property of cumulants (slide 52):
Celij) 2 Cumfx(e+1], x[e-+4], x[e+L], x[e]} = li] hlj] AIL] AO] cs

with ¢; % Cum{s[n], s[n], s[n], s[n]}.
m By substitution of the unknown h[L] h[0] ¢, one gets a whole
family of equations [?] [?]:

hlil hlj] Gk, €) = h[K] AlE] Ce(i,J), Vi g, ko€ (37)
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SISO Cumulant matching (2)

m A solution to the subset of (37) for which j = ¢ can be easily
obtained:

hli] Cc(k,j) — hlk] C(i,j) =0, 0<i<k<L 0<j<L
(38)
m This is a linear system of L(L + 1)?/2 equations in L + 1
unknowns
= Least Square (LS) solution, up to a scale factor (e.g.
h(0) =1).
m Since 4th order only, asymptotically (for large samples)
insensitive to Gaussian noise.

m Total Least Squares (TLS) solution possible as well
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MIMO Cumulant matching (1)
Inteterminacy
m Scale (scalar) factor for SISO, but AP factor for MIMO

Reduction to a monic model [COM94b]
m If H[O] is invertible, (35) can be rewritten as

y[n] = HI[0]s[n], (39)
L
x[n] = Y B[k]y[n— k] + w[K] (40)
k=0
where B[k] % H[k]H[0] 2.

m Because B[0] = I, MA model (40) is said to be monic.

m Indeterminacy is only in (39), which is solved by ICA if s[n] is
spatially white

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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MIMO Cumulant matching (2)

Kronecker notation

m Store 4th order cumulant tensors in vector form:
def
Cab,c,d = vec{Cum{a,b,c,d}}

m Then, we have the property (where % denotes term-wise
product):

Caped=E{a®@b®c®d} —E{a®b}®E{c®d} —E{a®E{b
—Efaglzecelsi«E{l,®b® 1, ®d}
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MIMO Cumulant matching (3)

Assume monic MA model (40) where s[n] white in time and L
fixed, and denote

cx(irj) % vec{Cum{x[t + i], x[t + j], x[t + L], x[t]}}

m Then we can prove [?]:
G(i.) = GO /)BT, vj, 0<j <L

where (i, /) % Unvecp (cx) is P3 x P

m For every fixed i, BJ[i] is obtained by solving the system of
(L + 1)P* equations in P2 unknowns in LS sense:

[1p ® (0,))] vec{B[]} = (i, )) (41)

Pierre Comon Blind Techniques V.Algorithms for convolutive mixtures
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MIMO Cumulant matching (4)

® Summary of the algorithm

Choose a maximum L

Estimate cumulants of observation, (i, ) for i,j € {0,..., L}
Solve the (L + 1) systems (41) in BJ[/]

Compute the residue y[t] (Linear Prediction)

m Solve the ICA problem y[t] = H[0] s[¢]

m Weaknesses

m H[0] must be invertible
m FIR model (35) needs to have a stable inverse
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Algebraic Blind identification (1)

Types of discrete source studied

m BPSK: b[k] € {-1,1}, i.i.d.

m MSK: m[k + 1] = y m[k] b[K]
QPSK: p[k] € {—-1,—7,1,3}, i.i.d.
Z_DQPSK: d[k + 1] = e/™/* d[k] p[K]
8-PSK: g[k] € {e"™/* ne Z}, i.id.

m etc...
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Algebraic Blind identification (2)

Input/Qutput relations:
m For s[k] BPSK: E{x[n] x[n — €]} = s[0]? Z,ano h[m] h[m + (]
m For s[k] MSK:
E{x[n] x[n — ]} = s[0]* 3,_o(~1)™ hlm] h[m + £]
m For s[k] QPSK:
E{x[n)? x[n — 07} = s[0]” 37, hlm]? h[m + £

m etc..
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Algebraic Blind identification (3)

Principle:

m Compute all roots of the polynomial system in h[n].
For instance for MSK sources and a channel of length 2 [?]:

A[O)? — h[1]* + h[2] = fo
AOTAL] — (1] A[2] = [
hi0]h[2] = 2

m Choose among these roots the one that best matches the 1/0
correlation:

L
E{x[n]x[n— "} = > h[m] h{m + {*

m=0
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Algebraic Blind identification (4)

Theorem (Bezout) A polynomial system of degree d in N
variables has either:

m infinitely many solutions

m no solution

m exactly d" solutions (distinct or not)

w8

Etienne Bézout, 1730-1783
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Algebraic Blind identification (5)

m Standard approaches
m Grobner bases
m Efficient solution of polynomial system: Normal Forms
There are two approaches, both working in the Quotient Ring
modulo the ldeal defined by polynomial system:
m Eigenvectors of the transposed multiplication matrix M] in the
Quotient Ring
m The Rational Univariate Representation (RUR) of eigenvalues
of M,
Main advantage: most (symbolic) calculations depend only
on distribution of s[n], and may thus be stored in ROM —
Limited numerical computations left depending on
measurements.
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SIMO mixture (1)

Subspace

m FIR of length L and dimension K:

x(n) = Zh( (n— i) +b(n)

with: E{b(m)b(n ) } I o(m—n)
and E{b(m)s(n)* }: 0
m For T successive values:
x(n) h(0) h(1) ... h(L) 0 ... 0
x(n-1) 0 h() ... ... h(L) ... 0
x(n-T) 0 0 ... h(0) h(1) ... h(L)

Or in compact form:
X(n:n—=T)=H7S(h:n—-T - L)
Here, Ht is of size (T + 1)K x (T + L +1)
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SIMO mixture (2)
m Condition of “column” matrix
‘H has strictly more rows than columns iff
(T+1)K>T+L+1
SeT>L/(K-1)-1<T>L

It suffices that T exceeds channel memory.
m Disparity condition
Columns of H are linearly independent iff

hlz] # 0, Vz

m Noise subspace
Under these 2 conditions, there exists a “noise subspace”:

v/ vi"Hr=0
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SIMO mixture (3)

Properties of vectors in the null space
def

m Since Ry = E{XX"} = H1 HY + 071,
vectors v(P) of noise space can be computed from Ry:
R, v(P) = o2 y(P)
m And since convolution is commutative:

viPH L = KPP

where V(P) block Téplitz, built on v(P).
m Thus h" = [h(0)", h(1)", ...h(L)"] are obtained by
computing the left singular vector common to V(P).
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SIMO mixture (4)

Summary of the SIMO Subspace Algorithm
m Choose T > L
m Compute Ry, correlation matrix of size (T + 1)K

m Compute the d = T(K — 1) + K — L — 1 vectors v(P) of the
noise space

m Compute vector h minimizing the quadratic form
d
hH Z WAVOLE IS
p=1

m Cut hinto L + 1 slices h(i) of length K

Under the assumed hypotheses, the solution is unique up to a
scalar scale factor [?]
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Introduction Match Subspace Identifiability ARMA

SIMO mixture (5)

Summary of the SIMO Subspace Algorithm when K =2

Choose T = L. There is a single vector v in the noise space

Compute Ry, correlation matrix of size (T + 1)K

[
[

m Compute the vector v of the noise space

m Cut v into L + 1 slices v(i) of lengthK = 2

Compute h(i) = < > )v(i)

Infact x;, = hjxs= hy*xx; —hi*x =0
Approach called SRM (Subchannel Response Matching) [?]

7]

Pierre Comon
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SISO Identifiability

m Second order statistics
m op = E{x[n] x[n — £]*} ® allow to estimate |h[m]|
m 3 = E{x[n]x[n — ¢]} ® allow to estimate h[m] if E{s?} # 0
m Fourth order statistics ® many (polynomial) additional
equations
= Yojke = Cum{x[n], x[n — j], x[n — k], x[n — (]}
[ 'y(’)‘f = Cum{x[n], x[n — j], x[n — k|*, x[n — £]*}
If some sources are 2nd order circular, sample Statistics of order
higher than 2 are mandatory, but otherwise not [?] !
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SIMO Identifiability

With a receive diversity, (deterministic) identifiability conditions
are weaker [?] [?]

m Definition A length-N input sequence s[n] has P modes iff
the Hankel matrix below is full row rank:

s[1]  s[2] ... S[N—p+1]]
s[2]  s[3] . s[N—p+2]
ol slp+1 ... s[N]

m Theorem A K x L FIR channel h is identifiable if:
m Channels hi[z] do not have common zeros
m The observation length of each xx[n] must be at least L 4 1
m The input sequence should have at least L + 1 modes
(sufficiently exciting)
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Subspace algorithm for MIMO mixtures

m Similarly to the SIMO case, we have the compact form:
X(n) = H7 S(n) + B(n)
where H is now built on matrices H(k),1 < k < L, and is of
size (T+ 1)K x(T+L+1)P.
m For large enough T, this matrix is " column shaped”
m Again R, = HT HT + 0'12)|
m But now, vectors of the noise space caracterize H[z| only up

to a constant post-multiplicative matrix = [ICA must be used
afterwards

m Foundations of the MIMO subspace algorithm are more
complicated [Loubaton’99]

In the MIMO case, HOS are in general mandatory.
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SISO ARMA mixtures

What are the tools when the channel is IIR?
m In general, just consider it as a FIR (truncation) — already
seen
m But also possible to assume presence of a recursive part
m Define I/O relation: 37 aix[n —i] = 37 by wln — ]
where w[-] is i.i.d. and ag = by =1
m Second order ¢, () def E{x[n] x[n+ 7]} can be used to identify
dg:

P
ZakCX(T—k) =0, Vr>gq
k=0

m Then compute the residue and identify by with HOS (cf. slide
269)

m Also possible with HOS only for AR part [?]
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MIMO ARMA mixtures (1)

Results of SISO case can be extended
m Take a K-dimensional ARMA model: Define 1/O relation:

ZA;x[n— il= Zij[n— i
i—0 =0

where w(-] is i.i.d. and Ap = | and By inveritible
m For instance at order 4, AR identification is based on:
m P A E(t T ) = —E(t,7), VT > q, Vi
m with &(/,J) o Unvecy (Cum{x[n],x[n], x[n + i],x[n + j]})
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MIMO ARMA mixtures (2)

Limitations

m Sources need to be linear processes

m B needs to be invertible

m AR residuals need to be computed (MA filtering) to compute
B;

m One can compute MA residuals (AR filtering) if input s[n] is
requested — but might be unstable
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Part VI

Algorithms for under-determined mixtures
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Back to Essential uniqueness

m Recall the general model (22) to fit (here 3rd order):

rank{T}
e T - Z a(® o b(® o (9|2 (43)
qg=1

m For instance, if (A, B, C) is solution, so is
(APA,BPA,CPA AT

m Essential uniqueness: uniqueness up to a common
scale-permuation ambiguity.

m The scale indetermination can be fixed by introducing a
diagonal tensor A and imposing unit-norm columns in the

matrices:
Ta~AeAeBeC
1 2 3
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Essential uniqueness

Sufficient condition The Kruskal rank of a matrix A is the
maximum number kg, such that any subset of kg columns are
linearly independent.

Kruskal’s bound [KRU77] [SB00] [SS07] gives sufficient
conditions. Essential uniqueness is ensured if the tensor rank R is
below an upper bound:

m 2R+ 2 < ka+ kg + ke,

m or generically, for a tensor of order d and dimensions Nj:

d
2R+d—1<) min(Ny, R)
(=1
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Essential uniqueness (cont'd)

Necessary and sufficient condition Essential uniqueness has
been proved via local identifiability, under the condition that the
rank is sub-generic:

rank{T} < { I1, Ne -‘

Yoo(Ng —1) +1
This condition is necessary and sufficient up to some exceptions,
for which the maximal rank should be decreased by 1. The proof is

numerical for the general case [CtB08], but algebraic in the
symmetric case [CGLMO8].

Questions: What algorithms, and under what conditions?

Pierre Comon Blind Techniques VI.Algorithms for under-determined mixtures 293



Uniqueness Binary Iterative C.F. BIOME FOOBI

James Joseph Sylvester (1814-1897)
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Binary case

Construction of the CanD (1)
Sylvester’s theorem in R
m A binary quantic p(x,y) = Z,C'l:o vic(i) x* y9=7 can be
decomposed in R[x, y] into a sum of r powers as

p(x,y) = Z}:l A (aj x + Bjy)? if and only if the form

r

qc(Xa)/) = H(ﬁjx — ajy) = Zglxlyr—/
=0

j=1
Yo Mo O &0
YooY2 o U+l 81
satisfies _ r_ | =o0.
Yd—r T Vd 8r

and has distinct real roots.
m Valid even in non generic cases.

Pierre Comon Blind Techniques VI.Algorithms for under-determined mixtures



Uniqueness Binary Iterative C.F. BIOME FOOBI
Construction of the CanD (2)

Sylvester’s theorem in C

A binary quantic p(x,y) = Zfl:o c(i)yix'yd=
sum of dth powers of r distinct linear forms:

" can be written as a

r

p(x,y) =D i (ajx+ B y)?, (44)
j=1

if and only if (i) there exists a vector g of dimension r + 1, with
components gy, such that
7o 0 T
: | g =0 (45)
Yd—r 0 Yd-1 Vd
. . def r 0 r—¢ .
and (ii) the polynomial g(x,y) = >, o g x"y "~ admits r

distinct roots
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Algorithm

m  Start with r = 1 (d x 2 matrix) and increase r until it looses its
column_rank

112 1123 11234
2|3 2134 21345
3|4 31415 3/4/5]|6
415 — |4|5|6| — |4]|5]6]|7
516 51617 516|718
6|7 6|78

718
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Symmetric tensors of larger dimension

We have seen the link with polynomials in slide 124. The idea is to
extend Sylvester’s algorithm to more than 2 variables.

m XX
m XX

xx Tsigaridas Mourrain Comon
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lterative algorithms

Continue to keep 3rd order case to illustrate the reasoning. Define

vec{AT} ga
P def vec{BT} |, and the gradient g = | gg
vec{CT} gc
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Gradient (1)

= Newton update rule: p(k + 1) = p(k) — H(k) "1 g(k)
Pure gradient: p(k + 1) = p(k) — u(k) g(k)
m Systematic step variation:
m (k) constant if e(k) — e(k + 1) > 0.005¢(k)
m p inreased via p(k + 1) = 1.1 p(k) if
0 <e(k)—e(k+1) <0.005¢(k)
m u decreased via p(k + 1) = u(k)/2 if e(k) < e(k +1)
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Gradient (2)

Closed-form expressions of the gradients of ¢ (43):

gan = [la®(C"CEB"B)vec{AT} —[I4® (C® B)lvec{Tkx/}
gg = [lz® (A"ALEC"C)lvec{B"} — [I4 ® (A ® C)]vec{ Tk~ }
gc = [lc®(B"BEA"A)vec{CT} — [Ic ® (B ® A)]vec|{T jjxk}

where & denotes the elementwise product (Hadamard)
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Quasi-Newton (1)

Define Jacobians with respect to matrices A, B and C, and the
joint Jacobian:

Ja = lh®(CeB)
Jg = Mg (A Q)
Jc = Mflc®(BoA)

where [1; are appropriately chosen permutations, and

J= [JA7 J37 JC]
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Quasi-Newton (2)

m Quasi-Newton iteration:
p(k + 1) = p(k) — [J(k)"I(k) + M(Kk)] " g(k)

where matrix M(k) is updated from J(k), M(k), g(k) and
p(k).
m The Levenberg-Marquardt iteration takes the form:

p(k +1) = p(k) — [J(k)"I(Kk) + A(k) 1|7  g(k)

where (k) is updated according to a specific rule, depending
on the quality of the approximation of the objective:

1
e(p+9)—e(p) ~ g+ 5 I+ AN
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Gradient algorithms for tensors with symmetries

In the presence of symmetries, the gradient takes a simpler form,
given here for clarity in the case of 3rd order tensors, with
symmetry in the first 2 modes, i.e. [?]:

Tijk = To(i)k
We have two matrices to determine, A and C since:
R
e=|IT-> a(g)oa(q)oc(q)|]?
g=1

The gradient and the Jacobian are of the form

8A 1+ 88
g [ gc ]
J = [Ja+Js, I

where B is set to B = A.
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Other minimization algorithms

Algorithms using explicit expressions of the Hessian

m Newton: p(k + 1) = p(k) — H(k) 1 g(k)
m Conjugate Gradient: e.g. the “Multilinear Engine” [PAA99]

m etc...

» More costly in terms of memory and complexity per iteration,
but fewer iterations needed.
®» Do not solve the problem of local minima
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Compact writing of Objective

The objective function (43) can be written as:
e=[Tixks —A(COB)T|J (46)

Advantage: compact writing of the best matrix A, for fixed B and
C, since (46) in quadratic in A [HL94]:

A=Ti k- {(CoB)T}
where 1 denotes pseudo-inverse.
Similarly:

=Tk - {(A0C)T}H
= Trxu - {(BOA)TH

1Tk —BA®C)T|?

—~ B
ITksxs —C(BOA)T|? — C
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Alternating Least Squares algorithm (1)

Start with arbitrary B(0) and C(0)
For k = 1...kmax,

= A(k+1) = Tixks - {(C(k) © B(K)T}

= B(k+1) = T - {(A(k+1) © C(Kk)T}

m C(k+1) = Trxu {(B(k+1) @ A(k+1))T}
Hence the ALS algorithm also needs that:

R < min(JK, IK, 1J)

According to Kruskal [KRU89], this inequality is always satisfied.

Pierre Comon Blind Techniques VI.Algorithms for under-determined mixtures



Uniqueness Binary Iterative C.F. BIOME FOOBI ALS
Alternating Least Squares algorithm (2)

Another compact writing [COMO04a]: jointly diagonalize slices of
lower order:

I
e =TI - BAUICT?

where A[i] = Diag{Aj1, ...Akr}. Let A[i] denote the vecor
containing the diagonal of A[i], and t[i] def vec{T[/]}. Hence:

R
e =Y IItli1= D" Adli] elnl@b[n]|? = >~ [t~ M A[K]|[* (47)
i g=1 i

Then stationary values are:

B = {> TIKCAK}D A[CTCA[]}
k ¢

C ) TIKITBAKI{D _A[BTBA[]} !
k 14

~raa raalTaay_TaaT_rin
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ALS for symmetric tensors (1)

For clarity, take a symmetric tensor T of order 4:
m One can force symmetry in the iteration of page 307:

Start with arbitrary A(0), A(1), A(2)

For k = 2...kmax,

Soft forcing:

Ak +1) =T, {(A(k) Ak —1) © A(k —2))T}

Hard forcing: A(k +1) = T, 5 - {(A(k) ® A(k) ® A(k))T}
Obviously applies at any order d > 3 [?].
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ALS for symmetric tensors (2)

More tricky iteration based on compact writing of page 308.
When T is real symmetric:

e=Y_|IT[i] — BAIIBT|2 € S It[i] — M A[]|?

m One shows that [COMO04a] [YERO02]
Ali] = {MT M} IMT ¢[1]

and each column of B is the dominant eigenvector of the real
symmetric matrix:

P =5 S AIK{TI AT + Tk )
k

Tkl — 3,20 AnlKIb[n]b[n]T.
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ALS drawbacks

Fairly slow convergence when reaching plateaux

May be stuck about local minima
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ALS with extrapolation

Attempt to face the first drawback [BA98] [BRO97].
m Compute stationary values A Band €Casin page 306

m At every other iteration, set:

A(k+1) = A+ pu(k)(A(k)—A)
B(k+1) = B+ pu(k)(B(k)—B)
C(k+1) = C+ u(k)(C(k)-C)

where one may take p(k) = k/3.
= and otherwise A(k+1) = A, B(k+1) = B and C(k+1) = C.
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ALS with Enhanced Line Search (ELS)

Attempt to face both drawbacks [RCH08] [RC05]
m Compute stationary values A Band € asin page 306

m At every other iteration, set:

Ak+1) = A+pu(A(k)-A)
B(k+1) = B+ pu(B(k)—B)
Ck+1) = C+pu(Ck)-€)

where 1 = Arg min,, ||T — A(k + 1) eB(k + 1) e C(k + 1)| 2.
= and otherwise A(k+1) = A, B(k+1) = B and C(k+1) = C.

NB: 1(k) is obtained by rooting a polynomial of degree 5. = one
gets the absolute minimum along the search direction = increased
capability to escape from local minima.
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ELS applied to other iterative algorithms

The same principle applies to any iterative algorithm [?]:

m Compute a search direction [AA, AB, AC], which can be the
g[adAienAt g, a direction H™1g, or a difference
[A, B, C] — [A(k),B(k),C(k)]...

m Compute the 6 first coefficients of the 6th degree polynomial
e(p), defined by replacing [A, B, C] by
[A+ p0A, B+ 1 6B, C+ 1 CJ

m Compute the 5 roots of its derivative

m Select the root y, yielding the smallest minumum of e(u)

m Update: A(k + 1) = A(k) + uo A,
B(k + 1) = B(k) + 10 6B, C(k + 1) = C(k) + po 0C.

Can be executed at every iteration, or less often.
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Definition of c.f.’s

Characteristic functions

First: b, (u) e E{exp(yux)}
Second: W, (u) o log ®,(u)
Generating functions

First: ®y(u) o E{exp(u'x)}
Second: W, (u) o log ®x(u)

Key property
If s has statistically independent components

V() = YW, (up)
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Characteristic function of a linear mixture

m If s, independent, E{][, f(sp)} = [I, E{f(sp)}
m Hence if x = Hs, then

Ox(u) E E{expuTHs)} = E{exp(> ug Hapsp)}
p,q

= H E{exp(z Ug Hgp sp)}

m Thus we have the core equation:

Vs(u) = Z Vs, <Z Ug qu)
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Putting the problem in tensor form (1)

Goal: Find a matrix H such that the K—variate function W, (u)

def
decomposes into a sum of P univariate functions v, = Vg, .

m Assumption: functions v,, 1 < p < P admit finite derivatives
up to order r in a neighborhood of the origin.

m Then, Taking r = 3 as a working example:
PV,
Bu,aujauk (u) = Z Hip Hjp Hip ¢p Z ug Hgp)

p=1 =
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Putting the problem in tensor form (1)

Several equivalent writings:

m A decomposition into a sum of rank-1 terms:

Tixe =) Hip Hjp Hip B
P

m A joint diagonalization of matrix slices via a common
rectangular transform

T[k,/] =H - Diag{H(k,:)} Diag{B(¢,:)} - HT

m The cumulant tensor case: only one pointu =20, ie. /=1
and matrix B disappears.
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Putting the problem in tensor form (3)

Use of several orders simultaneously:

m Order 3: )
3
Tijke = Z Hip Hjp Hip Bip
P

m Order 4: "
4
Tijkme = Z Hip Hjp Hip Hmp Cep
P
m Orders 3 and 4:

Tije[m] = Z Hip Hjp Hip Dep[m]
p

with Dgp[m] = Hmp Cgp and Dgp[O] = ng.
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BIOME algorithms

m These algorithms work with a cumulant tensor of even order
2r > 4

m We take the case 2r = 6 for the presentation, and denote

Cgmn def

ik Cum{x;, Xj, Xk, X', Xpm» Xp } (48)

m In that case, we have

Emn * g *
x ijk — Z HIP Hkp HZp Hmp an AP

where A(6) ' Cu m{sp, Sp, Sp; Sp Sp» Sy} denote the

diagonal entries of a P x P diagonal matrix, A(®)
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Writing in matrix form

m Tensor Cx is of dimensions K x K x K x K x K x K and
enjoys symmetries and Hermitian symmetries.

= Tensor Cy can be stored in a K3 x K3 Hermitian matrix, C'®

called the hexacovariance. With an appropriate storage of the
tensor entries, we have

C(X6) — HO3 A6) HO3H (49)
m Because C£6) is Hermitian, 3V unitary, such that
(C(X6))1/2 — HO3 (A(ﬁ))l/2v (50)

m ldea: Use an invariance property existing between blocks of

(C§<6))1/2.
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Using the invariance to estimate V

m Cut the K3 x P matrix (Cf(f)))l/2 into K blocks of size K2 x P.

m Each of these blocks, [n], satisfies:
[n] = (H © H')D[s] (A®)}/2 v

where D[n] is the P x P diagonal matrix containing the nth
rowof H, 1 < n<K.

m Hence matrices [[n] share the same common right singular
space

m Algorithm: compute the joint EVD of the K(K — 1) matrices

®[m,n ¥

M[m]'r[n]
as: ©[m, n] =V A[m, n] V".
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Estimation of H

Matrices A[m, n] cannot be used directly because (A(®))!/2 is

unknown. But we use V to obtain the estimate of H®3 up to a
scale factor:

Ho3 = (cP)/2v (51)

Then several possibilities exist to get H from H®3 [ACCF04]. The
best is as follows:

m Build K? matrices =[m] of size K x P form conjugates rows
of H®3

m From =[m] find matrices D[m] and H in the LS sense:

XX
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Conditions of identifiability

m Xx [ACCF04] [AFCCO03]
m XX
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False beliefs

False beliefs

BSS always requires High-Order Statistics (HOS)
— Second-order can (rarely) suffice
H Sources must be statistically independent
—— Correlated sources can be sometimes separated
(e.g. Discrete/CM sources, Pairwise cumulants...)
HOS are always required when sources are i.i.d.
—— Second-order BSS algorithms exist
A Even local maxima of a contrast function yield good solutions
—— sometimes local maxima correspond to bad solutions
A There should be at least as many sensors as sources: K > P
(sufficient diversity)
— Underdetermined mixtures can be identified
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False beliefs

False beliefs (cont'd)

@ Perfect source extraction is impossible if K < P
—— Discrete sources can often be perfectly extracted from
under-determined mixtures (insufficient diversity)

Conditions of application of Parafac are mild
— except when one dimension = 2, the typical rank always
exceeds the Parafac bound for uniqueness

Bl Approximate a tensor by another of lower rank is as easy as

for matrices
—— beside for rank 1, there is a lack of closeness

B The Constant Modulus (CM) property is the best way to
handle PSK sources
—— The whole alphabet can be taken into account in order
to define a contrast function
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