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Abstract

The Singular Value Decomposition (SVD) may be extended to tensors
at least in two very different ways. One is the High-Order SVD (HOSVD),
and the other is the Canonical Decomposition (CanD). Only the latter is
closely related to the tensor rank. Important basic questions are raised in
this short paper, such as the maximal achievable rank of a tensor of given
dimensions, or the computation of a CanD. Some questions are answered,
and it turns out that the answers depend on the choice of the underlying
field, and on tensor symmetry structure, which outlines a major difference
compared to matrices.
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1 Introduction

This paper aims at serving as a basis of discussion at the tensor workshop to be
held at AIM, Palo Alto, in July 2004. It should not be considered as a polished
paper, but rather as a first draft, containing more questions than answers.

The key tool that we would like to have at our disposal is the analogue of
the SVD, but for tensors of order higher than 2. There are actually two possible
directions to extend this tool.

Since tensors can have a rank larger than their dimensions, the first idea is
to search for rectangular full rank matrices instead of unitary matrices. This
idea can be traced back to the seventies, and is often referred to as ”Canonical
Decompositions” (CanD, or CanDecomp) [37] [7] [21]. It defines clearly the
tensor rank, through a non unitary congruent diagonalization. Unfortunately,
we have few theoretical results on tensor ranks, and even fewer efficient practical

algorithms.
The second idea consists of keeping the unitary constraint in the change of

coordinates, but of replacing the diagonal structure of the core tensor by an
all-orthogonal structure [36] [16]. This decomposition, now often referred to as
the HOSVD, is computable via an Alternate Least Squares (ALS) algorithm.
However, it is not related to tensor rank, but to the so-called n−mode ranks
[17].

In the present discussion, we shall be interested mainly in the tensor rank
(subsequently defined) induced by the CanD. Then basic questions can be
raised, such as: what are the generic and the maximal tensor ranks, as a func-
tion of the order and dimensions? Is the rank of a given real tensor the same
if understood in the real and the complex fields? Does Symmetry bring any
restriction on the results? Some papers in the literature seem to already give
different answers to these questions. It will be explained in this paper why there
is actually no contradiction.

As already pointed out, one difficulty lies in the fact that quite few numerical
algorithms have been proposed to compute the CanD of a tensor. Obviously, the
solution is not unique in a number of cases (in particular even orders, including
the case of matrices); so what kind of minimal constraints may one impose in
order to restore uniqueness? The so-called ParaFac algorithms impose a strong
constraint on the rank itself, far below its maximal value.

Another problem, only tackled in the present paper, is to approximate a
tensor by another of lower (given) tensor rank. Contrary to the HOSVD, the
CanD cannot be truncated to yield a LS approximation, whereas the SVD can
(a brief analysis of a Courant-Fisher characterization has been given in [10]).

There has been sometimes in the literature (including this author’s work) too
fast or unjustified assimilations of ranks in IR and lC ; ranks of free (asymmetric)
tensors and symmetric tensors have also been sometimes undistinguished. This
may be understood because the distinction is irrelevant for matrices. However,
this author’s view is that this was a mistake. Indeed, these ranks might be all
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different for some values of order and dimensions. This paper is hopefully a first
step towards the definition of a more rigorous framework.

2 Notation

2.1 Arrays

Arrays will more than one index will be denoted in bold uppercase; vectors are
one-way arrays, and will be denoted in bold lowercase. Plain uppercases will
be mainly used to denote dimensions. For our purpose, only a few notations
related to arrays [16] [11] are necessary. In this paper, the outer product of two
arrays of order M and N is denoted C = A◦B and is an array of order M +N :

Cij..` ab..d = Aij..` Bab..d (1)

For instance, the outer product of two vectors, u ◦ v, is a matrix. Conversely,
the mode−p inner product between two arrays having the same pth dimension is
denoted A •p B, and is obtained by summing over the pth index. More precisely,
if A and B are of orders M and N respectively, this yields for p = 1 :

{A •
1
B}i

2
..i

M
,j

2
..j

N
=

∑

k

Aki
2
..i

M
Bkj

2
..j

N

For instance, the standard matrix-vector product can be written as Au =
AT •1 u. Note that some authors [36] [16] denote this contraction product as
A×pB, which we find much less convenient.

We shall say that a d−way array is square if all its d dimensions are identical.
A square array will be called symmetric if its entries do not change by any
permutation of its d indices. The linear space of square d−way arrays of size N
is of dimension Nd, whereas the space of symmetric d−way arrays of same size
is of dimension (N+d−1

d ).
In this framework, only d−way arrays that enjoy the multilinearity property

by linear change of coordinates will be considered; they will be referred to as
tensors [23]. To illustrate this property, let T be a tensor of third order of
dimensions P1×P2×P3, and let A, B, and C be three matrices of size K1×P1,
K2 ×P2, and K3 ×P3, respectively (in general Ki = Pi and matrices A, B and
C are invertible, but this is actually not mandatory in most of our discussion).
Then tensor T is transformed by the multi-linear map {A, B, C} into a tensor
T ′ defined by:

T ′
ijk =

∑

abc

AiaBjbCkcTabc, (2)

which may be written in compact form as T ′ = T •1 A •2 B •3 C.

2.2 Polynomials

Any symmetric tensor of order d and dimension K can be associated with a
unique homogeneous polynomial of degree d in K variables via the expression
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[11]:

p(x) =
∑

j

Tj xf(j) (3)

where for any integer vector j of dimension d, one associates bijectively the
integer vector f(j) of dimension K, each entry fk of f(j) being equal to the
number of times index k appears in j. We have in particular |f(j))| = d. We
also assume the following conventions (rather standard in algebraic geometry):

xj def
=

∏K
k=1 xjk

k and |f | def
=

∑K
k=1 fk, where j and f are integer vectors. The

converse is true as well, and the correspondence between tensors and homoge-
neous polynomials is obviously bijective.

Now for asymmetric tensors, the same association is not possible. In order
to connect tensor spaces with algebraic geometry, tensors are associated with
multilinear maps [35]. This justifies the use of the Zariski topology.

3 Ranks

3.1 Definitions

A tensor of order d and dimensions (K1, . . . , Kd) can always be decomposed
into elementary vector outer products as:

T =

r
∑

i=1

u(i) ◦ v(i) ◦ . . . w(i) (4)

The smallest possible value of r for which this decomposition is possible is
called the tensor rank, and denoted r(T ). The decomposition obtained this way
is referred to as the Canonical Decomposition (CanD) of T .

At this stage, we can make several observations. This definition does not
need tensors to be defined in a field, and a ring is sufficient. Next, the CanD

of a multilinear transform of T , CanD{L(T )}, is obtained as the multilinear
transform of the CanD, L(CanD{T }).

Given a linear space of tensors, T , of given order and dimensions, several
questions are relevant: (i) what is the maximal achievable tensor rank in T , and
(ii) what is the generic tensor rank in T ? Genericity refers to properties that
are almost always true, which depends on the topology assumed (the Zariski
topology in our case). The answers to these two questions turn out to depend
on the field in which the problem is immersed (basically the real or complex
fields, IR and lC), and the symmetry constraints (symmetric tensors or tensors
with free entries).

3.2 Generic and maximal ranks

Define the set of tensors Yr = {T ∈ T : r(T ) ≤ r} with values in lC . Also
denote Ȳr its closure, and Zr = {T ∈ T : r(T ) = r}. Then we obviously have
∀r, Yr−1 ⊆ Yr .
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One can show the following [35]: (i) Zr is dense in Ȳr as long as r < R̄; In
other words, if Ȳr−1⊂ 6=Ȳr, then Z̄r = Ȳr. (ii) if Ȳr−1 = Ȳr , then r ≥ R̄.

Next, even if we know that Y1 is closed as a determinantal variety, Yr are
generally not closed for r > 1. This is another major difference with matrices,
for which all Yr are closed. One can actually prove a more accurate statement,
from known results borrowed from algebraic geometry [14]. The varieties Z̄r

can be ordered by inclusion as follows:

if r1 < r2 < R̄ < r3 ≤ R, then Z̄r1
⊂ Z̄r2

⊂ Z̄R̄ ⊃ Z̄r3
⊇ Z̄R (5)

This will be proved in a forthcoming paper. I also conjecture that R = R̄ + 1.
These statements extend previous results [3], and prove that there can be

only one subset of non empty interior, and the latter is dense in T ; this result
needs however an algebraically closed field (e.g. the field of complex numbers),
and is thus not valid in the real field. The conjecture of Kruskal [29] according
to which there could be several generic ranks for given order and dimensions
may consequently hold true for real CanD of real tensors.

Now what we just described holds also true for symmetric tensors of Ts

immersed in the complex field.
As an example, it has been shown [13] [25] that symmetric tensors of order

3 and dimension 3 have a generic rank Rs = 4 but a maximal rank of R = 5.
This means that only Z4 is dense in Ȳ4 = Ȳ5, and Z3 and Z5 are not closed and
of empty interior. On the other hand, Z1 is closed.

3.3 Asymmetric tensors

Let’s start with tensors without symmetry structure. Then the generic rank R̄ in
T can be lower-bounded [35]. For tensors of order d and dimensions (K1, ..Kd),
this bound can be written as:

R̄ ≥
⌈

∏d
i=1 Ki

1 +
∑d

i=1(Ki − 1)

⌉

(6)

which reduces to the more readable value Kd/(dK − d + 1) is the square case.
It must be stressed that the generic rank R̄ may of course be much larger than
the smallest dimension. Next, the maximal achievable rank in T , denoted R,
can be itself larger than R̄.

For instance in the case of complex square tensors order 3 and dimension
K 6= 3, according to Lickteig [35], the bound would be reached:

R̄ =

⌈

K3

3K − 2

⌉

(7)

Unfortunately, for general values of order and dimensions, only bounds on
generic and maximal ranks are known [3] [23] [32].

Now for real tensors, if the CanD is sought in IR , the rank can be found to
be larger than the value found in lC , as pointed out in [29]. In other words, we
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have actually the (rather natural) inequality, for any tensor T :

rlC (T ) ≤ rIR (T ) (8)

It seems that not much attention has been paid to this up to now.

Example: In order to demonstrate that the equality does not always hold,
define the square symmetric real tensor T of order 3 and dimension 2 as:

T (:, :, 1) =

(

−1 0
0 1

)

, T (:, :, 2) =

(

0 1
1 0

)

,

If decomposed in IR , it is of rank 3:

T =
1

2

(

1
1

)◦3

+
1

2

(

1
−1

)◦3

− 2

(

1
0

)◦3

whereas it admits a CanD of rank 2 in lC :

T =


2

(

−
1

)◦3

− 

2

(


1

)◦3

with 
def
=

√
−1. These decompositions can be obtained with the help of the

algorithm described in [13], for instance. Alternatively, this tensor is associated
with the homogeneous polynomial in two variables

p(x, y) = 3 x y2 − x3,

which can be decomposed in IR into

p(x, y) =
1

2
(x + y)3 +

1

2
(x − y)3 − 2 x3

Now, if this tensor is associated with a multilinear map (which is possible even
for non symmetric tensors) as mentioned in section 2.2, then one would get the
bilinear form:

b(

(

x1

y1

)

,

(

x2

y2

)

) =

(

y1y2 − x1x2

x1y2 + x2y1

)

3.4 Symmetric tensors

Through the bijection (3), the CanD (4) of symmetric tensors can be transposed
to homogeneous polynomials (also called quantics), as pointed out in [13]. This
allows to talk indifferently either about CanD of tensors or quantics.

As for the asymmetric case, symmetric tensors may have only a unique
generic rank R̄s, and this rank is not necessarily maximal [13]. A lower bound
can be derived in a similar manner:

R̄s ≥
⌈

(K+d−1
d )

K

⌉

(9)
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An upper bound has also been derived for real [32] or complex [33] tensors:

R̄s ≤ (K+d−2
d−1 ) (10)

Because the space of symmetric tensors, Ts, is included in the subspace of T of
square tensors, maximal and generic ranks are related for every fixed order d
and dimension K by:

R̄ ≥ R̄s, and R ≥ Rs (11)

On the other hand, given a symmetric tensor S, one can compute its CanD

either in Ts or in T . Since the CanD in Ts is constrained, we obviously also
have the inequality between tensor ranks:

∀S ∈ Ts, r(S) ≤ rs(S) (12)

Note that (11) and (12) are in reverse order, but there is no contradiction: the
spaces are not the same in (11). All this remains to be put in more formal
words.

A question can then be raised: does there exist a symmetric tensor of “sym-
metric rank” rs, but of “asymmetric rank” r < rs? A numerical example
remains to be found.

The value of the generic rank Rs has been reported in [13] for several values
of order and dimension. There does not seem to be an explicit expression for
it. For instance, as pointed out by Reznick [32], Clebsh proved that even when
the numbers of free parameters are the same on both sides of the CanD, then
the generic rank may not be equal to (K+d−1

d )/K; it is precisely the case for
(K, d) = (3, 4), which yields 15 degrees of freedom but Rs = 6 6= 5 = (64)/3.
This still holds true in the complex case [19].

On the other hand, the case of cubics (d = 3) is much better known. The
classification is known since 1964, but a constructive algorithm to compute the
symmetric CanD has been only recently proposed [25]. The case of binary
quantics (K = 2) is much simpler, and is also completely known [37] [13] [30],
and has already been utilized in real world problems [12].

3.5 Uniqueness

We have seen above that it is not easy to determine the rank r(T ) of a tensor
T . But even if its rank is given, is its CanD unique?

The answer is rather simple. Uniqueness is ensured if the number of param-
eters to determine is smaller than the number of free entries in T . This means
that the CanD is essentially unique (understand unique up to scale and per-
mutation) if r < R̄. On the other hand, uniqueness is not generally guaranteed
if r = R̄, and probably never when r = R. The dimensionality of the fiber
of solutions has been given in [13] for generic symmetric tensors of order and
dimension smaller than or equal to 8, and it turns out that the CanD is rarely
unique for r(T ) = R̄s.
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The so-called ParaFac algorithm [22] [28] [4] leads to an essentially unique
solution because it assumes that r(T ) ≤ P (K, d), where P (K, d) is an integer
depending entirely on the numerical algorithm. Unfortunately, it turns out that
P (K, d) < R̄ for almost all values of (K, d). In other words, ParaFac is able
to compute the CanD on a null-measure subset of T , which may seem quite
restrictive at first glance. Another ALS implementation is proposed in appendix
1.

4 Algorithms for the Canonical Decomposition

4.1 Asymmetric Tensors

As already pointed out earlier, the goal is to find matrices A(i), 1 ≤ i ≤ d, so
as to minimize

Ψ = ||T − A(1) •
2
A(2) •

2
. . . •

2
A(d)||2 (13)

This LS criterion can also be rewritten in the form of a joint diagonalization of
matrix slices. Assume d = 3 for simplicity; then we look for three matrices A,
B and C so as to minimize [31]:

Ψ =

K3
∑

k=1

||T (:, :, k) − A Diag(C(k, :))BT||2 (14)

This obviously holds for orders d > 3. At order 4 for instance, one can either
express the LS criterion as the joint diagonalization of K3K4 matrices of size
K1 × K2:

Ψ =

K3
∑

k=1

K4
∑

`=1

||T (:, :, k, `) − A Diag(C(k, :))Diag(D(`, :))BT||2 (15)

or as a joint diagonalization of K4 third order tensors of size K1 × K2 × K3:

Ψ =

K4
∑

`=1

||T (:, :, :, `) − A •
2
B •

2
C •

2
Diag(D(`, :))||2 (16)

For fixed matrices B and C, criterion Ψ is quadratic in A and thus yields
easily a closed-form LS solution for A (involving a pseudo-inversion). Hence,
there is a quite evident Alternate LS (ALS) algorithm to compute the CanD.
This is precisely what the ParaFac algorithm is doing. Implementations based
on (13) have been independently proposed in 1970 by Carroll [8] and Harshman
[21] [28] [4]. However, some limitations can be pointed out. First, the ALS
algorithm can be trapped in local minima depending on the initialization, and
may also converge very slowly. But more importantly, it has been noticed that
there exist an upper bound on the rank of tensors that can be handled, to ensure
uniqueness [34] [29]:

d
∑

p=1

Kp ≥ 2 r(T ) + d − 1 (17)
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As pointed out earlier, in the square case Kp = K, ∀p, this rank is likely to be
below the generic rank R̄ for almost all values of dimension K and order d. This
may be interpreted as a strong limitation, if the algorithm is able to yield an
exact CanD only on a set of tensors of null measure. On the other hand, it
is able to yield an approximation of the CanD of given rank. And as we have
seen, imposing a lower rank also allows to restore uniqueness.

As long as the algorithm has not converged, the joint diagonailization is only
approximate. Moreover, it may happen that the LS error never reaches zero,
which will either indicate that the chosen rank is smaller than the actual rank,
or that the algorithm is stuck in a local minimum, or that the series of tensors
diverges.

4.2 Symmetric tensors

In the symmetric case, the problem is not quadratic anymore, which increases
considerably its complexity. However, there exists a reliable algorithm in the
binary case (K = 2) [13], based on a theorem by Sylvester [37], which permits
the computation of the CanD with a low computational complexity, for any
odd order. For even orders, the solution is not unique, and some tricks have
been imagined (namely to run jointly the CanD of two different but related
tensors) in order to make the CanD usable in practice [12]. These techniques
cannot be extended to higher orders.

For third order tensors, a number of specific results are available, and yield
special purpose algorithms [25], which cannot be extended to orders d 6= 3.

For orders and dimensions higher than two, a solution consists of imposing
only part of the symmetry, for instance to only for 2 of the d factors. Take
example (14) at order d = 3. This means that we ignore that C is supposed to
be equal to A in the criterion below:

Ψ =

K3
∑

k=1

||T (:, :, k) − A Diag(C(k, :))AT||2 (18)

As shown in appendix 1, this minimization is feasible with an ALS algorithm.
Of course the same can be done at order 4, based on (15), or at higher orders
based on the same principle. The approach is suboptimal because symmetry is
only partially imposed.

Another algorithm has been proposed in the complex case for tensors of
even orders enjoying Hermitean symmetries. The so-called Biome algorithm
attempts to exploit as many redundancies as possible, which are present in
the original tensor [2] [1]. In that algorithm, not all symmetries are imposed
however, and the highest achievable rank is Kd/2, which is probably still smaller
than Rs.

4.3 Deflation

Using successive rank−1 approximates in order to compute all the rank-one
tensors entering in the whole (exact) decomposition is not obvious, for it would
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require a Courant-Fisher characterization that is not available [10] [11]. This
is not what might have been understood from the early paper of Carroll and
Chang in the seventies [8].

5 Algorithms for Orthogonal Decompositions

Orthogonal decompositions differ fundamentally from the CanD in the fact
that matrices that we are looking for are unitary, and thus invertible. In the
CanD, these matrices are rectangular, and do not define an invertible change
of coordinate system.

One major advantage of this type of decomposition (here referred to as
HOSVD) is that it allows to approximate a tensor by another of lower rank by
merely truncating the full-size HOSVD.

Beside this Eckart-Young approximation ability, there is another advantage
in searching for unitary decompositions. Indeed, unitary matrices can always
be searched for in the form of products of Givens rotations [20], which reduces
the number of unknowns to find in each iteration to a single angle (but may
also increase the vulnerability to to local minima).

5.1 Asymmetric Tensors

As is well known, a tensor T is not always orthogonally diagonalizable [9]
[15] [26]. That’s why the HOSVD attempts to reduce the tensor into an all-
orthogonal core tensor, and not to a diagonal one [16] [36] [8]. The HOSVD
is an exact decomposition, as CanD is. In addition, as for the CanD, the
decomposition is not always unique.

Originally, the so-called Tucker3 (older) algorithm devised by Tucker was
dedicated to approximating a tensor by another of lower rank [27]. The case
of rank−1 approximates is particular, and can be calculated with specific algo-
rithms [24] [39].

Other types of tensor approximation are also possible, namely of lower
n−mode ranks [17]. n−mode ranks are related to tensor rank only through
inequalities; the set of n−mode ranks may also be sometimes called dimension-

ality vector, e.g. by Kruskal.

5.2 Symmetric tensors

A problem widely addressed in the Signal Processing community is the approx-
imation of a square tensor of order d and dimension K by another of rank K
[9]. As in the Jacobi-type approaches for matrices, the Frobenius norm does not
change by unitary change of coordinates, and it is thus equivalent to maximize
the diagonal terms of the resulting tensor in the new coordinate system.

To my knowledge, the Jacobi sweeping for tensors was first proposed by
Comon in 1989 [9]. The solution in dimension 2 involves the computation of a
single unknown, which can be done in several manners of various complexities;
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see [9] [10] [11] [15] and references therein. We give in appendix 2 another less
complex solution for fourth order complex tensors, when the diagonal tensor
form is known to have real diagonal entries with the same sign.

There exist also algorithms based on slabs. The algorithm presented in [6]
diagonalizes approximately a set of Hermitean matrices; the idea is to consider
a tensor of even order d = 2m as a linear mapping from the space of mth order
tensors onto itself. As such, it can be represented by a Hermitean matrix, whose
eigenvectors should also yield Hermitean mth order tensors, when unfolded [5].
In other words, the idea is again the same: one tries to impose as many sym-
metries as possible. This Joint Approximate Diagonalization (JAD) is thus not
minimizing the original criterion, but only an approximation of it.

The STOTD algorithm [18] is dedicated to 3rd order tensors, but also works
for higher orders. The fourth (or higher) order is solved in [18] by building 3rd
order tensor slices. The optimal Givens rotation is obtained at each iteration
by computing the rank−1 approximate of a 3 × 3 matrix. One can see this
algorithm as a recursion on the slab order.

6 Concluding remarks

To conclude, I list below some problems that seem important to me, and which
are still open, to my current knowledge, despite their fairly basic character:

• The generic rank may take different values in the four cases: symmet-
ric/asymmetric and real/complex. It would be useful to build the four
tables, at least in the square case, for orders 3 ≤ d ≤ 4 and dimensions
3 ≤ K ≤ 8. I don’t know whether these tables have many different entries,
but they definitely may have some.

• The same question can be raised for the maximal achievable rank, and is
apparently much harder to respond.

• Find some simple examples for which these ranks are different; actually 8
examples are necessary if the (generic or maximal) ranks differ in the 4
cases.

• Check out if there exist a numerical algorithm to compute the CanD in
each of the 4 situations, even for moderate orders and dimensions, e.g.
3 ≤ (d, K) ≤ 4.

• Determine for every numerical algorithm the maximal rank it can handle.
Then check out if this rank reaches the generic value or not.

• If an algorithm does not reach the generic rank, it means that it will
generally compute only an approximate CanD. Check that this is useful
in practice: my understanding is that even the dominant factors will be
disturbed if the CanD is approximated. In what cases is the HOSVD
more appropriate as far applications are concerned?
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Appendix 1

Two practical algorithms are described in this section, that are able to compute
the CanD and the symmetric CanD. The former can be seen to be an alterna-
tive description of the well-known Parafac algorithm, and the latter turns out
to have strong similarities with a work of Yeredor [38], developed for diagonal-
izing a set of square matrices by an invertible transform, i.e. applicable only for
rs(T ) ≤ K; however, the algorithm described here also works for square tensors
rs(T ) ≥ K.

Both are Alternate Least Squares (ALS) algorithms, and attempt to approx-
imate a given tensor by another of given rank. We have previously seen that if
the rank is chosen large, the solution may not be unique, whereas if the rank
is chosen smaller than that of the actual tensor, the approximation may not be
possible because of the lack of closure of the subset of tensors of smaller rank. It
is thus hopeless to run a large number of iterations in order to reach a stationary
point; on the contrary, a reasonable number of iterations can still yield a usable
result for practical purposes.

Asymmetric Canonical Decomposition

Given a set of possibly rectangular matrices T [k] (typically tensor slabs), the
algorithm aims at minimizing

Υ =
∑

k

||T [k] − B Λ[k] C†||2 (19)

with respect to matrices B and C, where matrices Λ[k] are diagonal. This
criterion can alternatively be written in the form of a distance between vectors
as

Υ =
∑

k

||t[k] −
∑

n

λn[k] c[n]∗ ⊗ b[n]||2

where t[k] = vec(T [k]), b = vec(B), and c = vec(C). A more compact form
is, with appropriate definition of matrix M (which depends on B and C):

Υ =
∑

k

||t[k] −Mλ[k]||2 (20)

Stationary values of B and C are given by

B = {
∑

k

T [k]CΛ[k]}{
∑

`

Λ[`]C†CΛ[`]}−1 (21)

C = {
∑

k

T [k]†BΛ[k]}{
∑

`

Λ[`]B†BΛ[`]}−1 (22)

whereas stationary values of the diagonal of Λ[k] are given by the vectors

λ[k] = {M†M}−1M†t[k] (23)
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The ALS algorithm consists of executing alternatively (23), (21), and (22).
When matrices involved in a system solution are singular, a LS solution is
computed.

Symmetric Canonical Decomposition

In the asymmetric case, things are more complicated because the optimization
criterion is not quadratic anymore in the unknown rectangular matrix. Again,
two writings are derived in order to obtain stationary values with respect to the
rectangular matrix and to the diagonal one:

Υ =
∑

k

||T [k] − BΛ[k]B†||2 (24)

and
Υ =

∑

k

||t[k] − Bλ[k]||2 (25)

Some manipulations would show that the stationary values λ[k] are given by

λ[k] = {B† B}−1B† t[k] (26)

Last, the stationary value of each column b[`] of matrix B is the dominant
eigenvector of the Hermitian matrix

P [`] =
1

2

∑

k

λ`[k]{T̃ [k; `]† + T̃ [k; `]} (27)

where T̃ [k; `]
def
= T [k] − ∑

n6=` λn[k]b[n]b[n]†.
The ALS algorithm consists of executing successively (26) and the calculation

of the dominant eigenvector of the K matrices (27). As before, a LS solution is
computed when matrices involved are singular.

Note that even when tensor T is square and symmetric, it is still possible to
compute the asymmetric CanD. If the solution obtained is such that B = C

and Λ[k] = Diag(b[k]), then it yields a symmetric CanD.
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