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Preamble

These are the notes associated with a course on Blind Identification and Equalization (D16) given for
the STIC Master Program “SiCom” (Signal and Digital Communications) at Sophia-Antipolis between
2002 and 2007, belonging to the education program of the University of Nice. Part of this course is also
given in 2005 at the Graduate School in Systems and Control, Leuven, Belgium. A shorter version of
these notes have been given to the participants in the ICASSP 2005 tutorial #TUT10. A superficial
update of these 2005 notes has been performed in January 2010 by adding a few bibliographical pointers
and a subject index.

1 Summary

The problem of identifying linear mixtures of independent random variables only from outputs can be
traced back to 1953 with the works of Darmois or Skitovich. They pointed out that when data are non
Gaussian, a lot more can be said about the mixture.

In practice, Blind Identification of linear mixtures is useful especially in Factor Analysis, in addition
to many other application areas (including signal and image processing, digital communications,
biomedical, or complexity theory). Harshman and Carroll provided independently numerical algorithms
to decompose a data record stored in a 3-way array into elementary “decomposable” arrays, each
representing the contribution of a single underlying factor. In [75], the multilinear model had been
called “Parafac”. Carrol used in [24] the more appropriate terminology of “Canonical Decomposition”.
Another terminology, introduced by [77] is “Polyadic Decomposition”. For these reasons, this tensor
decompositioon is often referred to as the “CP” decomposition.

The main difference with the well known Principal Component Analysis is that the mixture is not
imposed to be a unitary matrix. This is very relevant because the actual mixture often has no reason
to have orthogonal columns. The Alternating Least Squares (ALS) algorithm, widely used since that
time, theoretically does not converge for topological reasons [46], but yields very usable results after a
finite number of iterations under mild conditions.

Independently, the problem of Blind Source Separation (BSS) arose around 1985 and was solved
-explicitly or implicitly- with the help of High-Order Statistics (HOS), which are actually tensor objects
(see [44, Ch.1] for an historical survey). It gave rapidly birth to the more general problem of Independent
Component Analysis (ICA) in 1991. ICA is a tool that can be used to extract factors when the physical
diversity does not allow to store efficiently the data in tensor format, in other words when the multilinear
model cannot be used.

This tutorial provides a very accessible background on Statistical Independence, High-Order
Statistics, and Tensors. Simple examples are given throughout the talk in order to illustrate various
concepts and properties. It emphasizes both the usefulness and limitations of multilinear models and
ICA algorithms. Mathematically advanced topics are only tackled, but striking tensor properties that
are not satisfied by matrices are still touched upon. Some reported results show how strange and
attractive this research area can be.

2 Introduction

2.1 Origins of the subject

Blind Techniques (BT) are born around the seventies, when the first adaptive blind equalizers have been
devised in Digital Communications [124] [67] [12]. Up to recently, channel equalization was performed
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with the help of pilot sequences, which are known to the receiver, and regularly transmitted. The use
of pilot sequences have certain drawbacks.

The first one is the most obvious, and is simply the limitation of throughput (transmission rate),
due to the assignment of part of the symbols to imposed values. Another limitation lies in the fact
that it is difficult to take fully advantage of pilot sequences when they are shorter than channel impulse
responses, or when channels are fast varying with time. On the other hand, blind equalizers do not use
the possible prior knowledge of some symbols in the transmitted bursts, and only exploit the fact that
underlying data have a discrete distribution, and hence non Gaussian.

Without blind techniques, pilot sequences are mandatory when “the eye is not open”, that is,
when the Signal to Noise Ratio (SNR) is too weak or when the fading is too strong in order to be
able to separate the received symbol from the other interferences present in the observation. In other
works, contrary to Decision-Directed Equalizers, Blind Equalizers do not need the eye to be open. The
terminology is thus meaningful with this respect.

After a closer look at the literature, it seems that Blind Techniques can find their roots in even early
results borrowed from statistics, related to linear mixtures of independent random variables [58] [50]
[60]. Applications of these basic principles to exploratory analysis [79] or Digital Communications [57]
[9] have come later.

Beside motivations driven by Digital Communications, another community has pushed the
development of BT. In fact BT, if restricted to static MIMO modeling, are closely related to Factor
Analysis as will be demonstrated subsequently. Other roots are thus located in the works of Tucker
[143], Harshman [75] and others [24] [89] [77]. Some recent works (e.g. [14] and references therein) have
also shown that old results on polynomials in several variables could be useful [123].

It took some years for this subject to raise interest at a much larger scale. The French community
is perhaps responsible for the development of Independent Component Analysis (ICA), since they have
authored most of the publications appeared between 1980 and 1995; see [84] [31] [21] [33] [23] [35]
and references therein. This is of course not true anymore, and a great number of contributions have
appeared since these first shy steps.

In order to close this very brief and necessarily incomplete historical survey, let us insist that some
books begin to come out, each addressing part of this wide area. One can in particular mention on one
hand [132] on Multi-Way Factor Analysis, [90] [76] on Independent Component Analysis (ICA), and on
the other hand [113] [117] on High-Order Statistics or [85] on statistical tools.

2.2 Block methods

Blind techniques have opened a new area of research, which has really been investigated only in the
nineties, probably because of the increasing computational power of microprocessors. Ten years later,
the computational power has so much increased that it can be envisaged to implement block algorithms.
As opposed to the so-called adaptive algorithms, which are actually built on recursions on time, sample
by sample (understand: update of a solution at every symbol period), block algorithms process not only
a sample (one symbol) but a whole block of samples (symbols) at a time.

There are several advantages in proceeding this way. First, most adaptive algorithms cumulate in
a single computation one step of an iterative optimization algorithm, and an implicit update of the
optimization criterion. Because of this combination of two different stages, the convergence time of
the optimization algorithm and that of the criterion estimation cannot be adjusted separately. This
is for instance the case of the so-called LMS algorithm, surprisingly still widely used, despite its poor
capabilities.
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But this is not the worse drawback of adaptive algorithms of this type. In fact, the optimization
step is often as simple as just a Newton gradient descent, which can obviously lead the algorithm to get
stuck in a local minimum. It is indeed important to keep in mind that many optimization criteria do
have many local minima, among which some may yield spurious solutions.

Block algorithms offer, at least theoretically, the possibility to build more fancy optimization
procedures and more freedom in adjusting the parameters. In addition, there are the natural way
to pose signal processing problems in the frame of burst-mode transmissions (Time Division Multiple
Access (TDMA)).

For instance, in the GSM standard, a mobile receiving at 900 MHz and 190km/h would operate on a
channel having a coherence time of less than 2ms, which is of order of 300 symbols only. It is thus very
important to fully exploit the information contained in a so short block, and not to waste the data by
using a poor numerical algorithm needing hundreds of thousands of symbols to converge in a stationary
context.

Block algorithms enjoy other potential advantages, namely a better resistance to loss in
synchronization, and the ability to process the data with time reversal. Hence, they offer more
capabilities, which may be utilized in advanced algorithms.

2.3 Observation model

2.3.1 Notation

Arrays (as opposed to scalars) will be denoted throughout with bold face letters. More precisely, a
K × 1 array will be called a vector, and will be denoted with a lower case bold letter, e.g. x; matrices
and tensors, which are arrays of larger order, will be denoted with upper case bold letters, e.g. H.

The order of an array is the number of its ways, that is, the number of indices that are necessary to
describe its entries. A covariance matrix is for instance a two-way array, and its entries are numbered
in a natural manner with two indices. It is also the central moment of order 2 [87].

Random processes we shall use are random variables depending on some time index. If the time index
is continuous, the dependence will be denoted with parentheses, e.g. x(t); for discrete-time processes,
the time index will be put within brackets, as x[n], n ∈ IN .

2.3.2 Dynamic modeling

In this course, it will be always assumed that the observation x[n] is the result of a noisy linear filtering
of some source process s[n]. In other words,

x[n] = H ? s[n] + b[n] (1)

where ? denotes convolution and where, for every n, x[n], s[n] and b[n] are random vectors of dimension
K, P , and K, respectively. In addition, the noise term b[n] is assumed to be statistically independent
of x[n′] for every pair (n, n′). The integers K and P are commonly referred to as the number of sensors,
and the number of sources, respectively.

In the model above, H[n] represents the impulse response of the filter (often called the channel in
digital communications) linking source and observation; each term H[n] is a K×P matrix, for every n.
For practical reasons, filters will be often assumed to have a Finite Impulse Response, so that 1 ≤ n ≤ L.

Note that model (1) is not always appropriate in digital communications. In fact, consider a
symbol sequence s[k], k ∈ IN , that we wish to transmit through a channel. For this purpose, we
use a continuous-time transmit filter, g(t). The continuous signal transmitted is thus g ? s(t), defines
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without ambiguity as:
g ? s(t) =

∑
k

g(t− kTs) s[k]

where Ts denotes the symbol period. After propagation through the channel, and through a receive
filter, the received signal takes the similar form:

y(t) def= h ? s(t) =
∑
k

h(t− kTs) s[k] (2)

where h(t) denotes the global impulse response, that is, the composition of the receive filter, the channel,
and the transmit filter. If this signal is sampled at a rate 1/T , the obtained discrete-time process is

y[n] =
∑
k

h(nT − kTs)s[k] (3)

which cannot, in general, be put in the form of a discrete convolution. Additionally, even if process y[n]
is the convolution of a linear filter of a stationary process s[n], it is not generally stationary! The only
thing we can claim is all the statistical properties of y(t) are periodic of period Ts, which is referred
to as the cyclo-stationarity property. A sufficient condition for getting a discrete convolution in (3) is
that T = Ts, which means a perfect symbol rate synchronization. Under this condition, we may use the
simplified model below, which may be easily seen to be an instance of model (1):

y[n] =
∑
k

h[n− k]s[k]

where h[n] def= h(nTs).

2.3.3 Static modeling

In some applications, this model can be deflated to a static one, namely:

x = H s + b (4)

In such a case, the channel is entirely characterized by a single (generally complex) K × P matrix.
This is in particular the case in digital communications in the presence of flat fading [122]. This model
is also the starting point of Independent Component Analysis (ICA) [35], now widely used in Factor
Analysis, among other numerous applications. The present tutorial is mainly devoted to the static
model framework.

2.3.4 Problem formulation

The goal of Blind Equalization is to estimate the sequence s[n] from the sole observation of realizations
of y[n], which is assumed to satisfy model (1) with a sufficiently high SNR. When the number of sources
P > 1, this implies to separate the sources.

When the observation model is static, as in (4), the problem is meaningful only when P > 1, in
which case it reduces to Blind Source Separation.

The usage of terminology is such that one may currently understand by “Blind Source Separation”
an estimation of individual sources either from the static model (4) or from the dynamic model (1).
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Another very different problem is that of Blind Identification, which consists of estimating the
global channel H[k], but not of extracting the source processes si[n]. Blind Equalization and Blind
Identification are addressed in different ways, and it is important to distinguish between both problems.

At a methodological level, the following questions should be sequentially answered. First, it is needed
to define a theoretical optimization criterion, having the relevant properties; it can be based on results
borrowed from Information Theory. Then in a second stage, a practical criterion must be derived,
possibly from sample moments. Third, numerical algorithms have to be devised in order to perform
the practical optimization. Last, performances are accessed through evaluation indices, which can be
related directly or indirectly to the optimization criterion. These questions will be the subject of this
course.

2.3.5 Inherent Indeterminations

It is clear that, without additional hypotheses, there are infinitely many solutions to the problems of
Blind Equalization or Blind Source Separation. In fact, if x = H ? s, for some pair (H, s), then the
equality also holds for any pair H ? T ,T ′ ? s, whenever T ? T ′ = I, the identity matrix. Different
problems can be addressed, depending on the additional hypotheses assumed (see section 5.1):

• Each source si[n] is white in the strong sense, that is, independent and identically distributed
(i.i.d.).

• Sources si[n] and sj [m] are mutually statistically independent, ∀i, j, n,m, and at most one source
is Gaussian

• Sources are discrete (but might be statistically dependent)

• Each source si[n] is colored, and the set of the P spectra forms a family of P linearly independent
functions.

• Sources are nonstationary, with linearly independent profiles

The second hypothesis listed above is the most widely utilized to date. Note that in the static case
(4), this hypothesis means that the random variables si are independent, but they may have identical
distributions.

2.3.6 Classification according to diversity

Another important classification relies on the diversity available at the receiver. In the simplest case,
the diversity can be induced by the use of several antennas. With K antennas located sufficiently far
from each other (for instance a half wavelength), the receive diversity is K. A one-source one-antenna
transmission is referred to as Single Input Single Output (SISO) channel. For a larger number of
sources or receive antennas, one shall talk about Multiple Input or Multiple Output channels (MIMO),
respectively. This yields the classification of table 1.

In a more general framework, it is important to stress that there exist other forms of diversity than
just spatial, and that they can be exploited even in the presence of a single antenna, giving rise to
apparent SIMO or MIMO channels.

In the remainder and unless otherwise specified, the second hypothesis will be assumed, namely that
sources are mutually statistically independent.
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# # Sensors
Sources 1 K

1 SISO SIMO
P MISO MIMO

Table 1: Classification according to transmit and receive diversities

2.3.7 Trivial filters

Define the set T of filters that do not affect the statistical independence. Then it is clear that this set
contains the so-called trivial filters of the form:

G[z] = P D[z]

where P is a permutation matrix, and D[z] a diagonal invertible filter.
Another simple way of understanding that is to notice that if (H, s) is solution, then so

is
(
H (PD)−1, PD ? s

)
because statistical independence is not affected by scalar filtering nor

permutation.
As a consequence, our goal is not to find a pair of solution (H, s), but a whole equivalence class of

solutions, the equivalence relation being precisely defined as:

G ∼H ⇔ ∃T ∈ T : G = TH

2.4 Complementary bibliographical remarks

This survey does not aim at being exhaustive. Hundreds of references have been unavoidably omitted
for reasons of space, but many additional pointers can be found in [117], [90], or [44] for more recent
pointers.

In the SISO framework, only the dynamic model is meaningful. The SISO Blind Equalization
problem has been addressed as early as 1975, with the works of Sato [124], and later on Godard with his
famous Constant Modulus Algorithm (CMA) [67], Benveniste [12], Donoho [57], Treichler [142], Shalvi
[125]. In these approaches, the optimization criterion was either the kurtosis, which is a measure of
deviation from normality (i.e. Gaussianity), or the Constant Modulus (i.e. on measures the deviation
of the modulus of the output complex random variable from a constant). Another approach has been
developed independently, and is more well known in astronomy. It is based on the use of bispectral
statistics, as originally proposed by Marron [111], Matsuoka [112], Le Roux [101], or others [72] [64] [73]
[97] [98].

Deterministic approaches exploiting the discrete character of the sources can be found in [105] [152]
[104] [150] . Instead of source statistical independence, these approaches require some conditions of
sufficient excitation.

In the SIMO case, e.g. when using several antennas in the presence of a single significant source,
it is possible to resort to second-order statistics. This has been demonstrated by Slock [131] with
oversampling diversity, Xu[151] , Moulines [116], Gesberg [66], among others. These algorithms are
often referred to as subspace based, as they exhibit a subspace structure allowing to extract the source.

In the MIMO static case, the first contributions can be traced back to the eighties with Bar-Ness [9],
Jutten [84], Comon [31]. Many subsequent works have addressed the static MIMO case since that time,
and one can mention [33] for contrast-based approaches and Jacobi sweeping, [21] for approaches without
pre-whitening, [23] for approximate joint diagonalization of matrices, [10] for entropy interpretations,
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[52] for deflation, [26] [61] for the effect of nonstationarity on solutions based on sample estimates, [148]
for an analytical Constant Modulus solution, [5] for the natural gradient formulation, [135] for non linear
mixtures, and [6] for the geometry of Information. The case of discrete sources has been also addressed
in [65] [137] [134] [149], among others.

In the MIMO dynamic case, the first contribution is apparently that of Comon in 1990 [32], with a
Linear Prediction approach. Linear Prediction approaches have been followed independently six years
later by Ding [54], and deeper analyses by Loubaton and co-authors [2] [69].

Subspace approaches for the MIMO case appear only in 1997 with the works of Loubaton and his
students [68] [29], or [1]. Some identifiability issues by subspace techniques have been investigated in
[107], based on properties of rational spaces [63]. See also Desbouvries [53].

Algebraic versions of the CMA have been investigated for MIMO mixtures in [149]. The use of the
discrete character of the source distribution, or its constant modulus, have been also investigated in
[141] [137] [70].

Contrast criteria have been proposed for MIMO dynamic mixtures in [37], and used for fixed step
descent in [145]. Related references on Blind MIMO Equalization by kurtosis maximization include
[130] [140].

The subject of Blind Identification (BI) has been comparatively much less studied. There are at
least three motivations in going into BI. Firstly, it is useful as a pre-processing when trying to build a
stable SISO equalizer, especially with Infinite Impulse Response; in fact, mainly FIR Blind Equalizers
have been devised. Secondly, the BI problem cannot be avoided when dealing with Under-Determined
mixtures (UDM), since they do not generally admit a linear inverse. And thirdly, in some problems,
the quantity of interest is the mixture and not the sources themselves. In such a case, a direct BSS is
inadequate.

Blind Identification is addressed in [12] [56] [73] [97] [152] for SISO channels, and in [139] [116] [146]
[3] [1] for SIMO channels. BI of static MIMO mixtures is treated in [20] [4] [40] [59] [89] [13] [83]. BI
of convolutive MIMO mixtures is eventually addressed in [34] [133] [138] [16] [107] [149] [55] [144] [106],
among others.

General purpose books on High-Order Statistics (HOS) and their use in Blind Techniques include
[117] [90] or [30]. Reference [82] is not a survey, but mainly dedicated to one adaptive algorithm,
called FastICA, developed by the machine learning community; this book does not account correctly for
previously developed works, nor provides any comparisons. Because of inconsistencies present in [82],
we rather recommend [30] or [44].

2.5 Applications

Known application areas of Blind Techniques, are numerous, due to the general purpose character of
the tool subsequently called Independent Component Analysis (ICA).

First in Antenna Array Processing, when antennas are ill calibrated (or when calibration varies too
much with outside conditions such as temperature or pressure), as in Sonar, Automobile, Control (e.g.
nuclear plants), or Biomedical.

In Surveillance and Interception (especially in the HF range), it is also useful to separate and
classify unknown sources. For instance, Communications Intelligence, ComInt, consists of intercepting
and decoding private electromagnetic transmissions; it is today widely used by the American National
Security Agency (NSA) in order to spy on any selected user. In some cases, the antenna is partly
unknown; examples include sonar buoys dropped on the see surface, ill-calibrated array in cheap
equipment, or decalibration because of extreme conditions, e.g. in submarines.
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In small diversity cases, Blind Techniques can be useful, as in Secondary Radar (air traffic control),
Mobile Radio Communications, or Acoustics. Typical examples can be found in Speech or Image
Processing.

ICA can also be viewed as a general tool to decompose tensors (K−way arrays), central in Data
and Factor Analysis. ICA can thus be used in Econometrics, Chemometrics, Theoretical Psychology,
Pharmacology, Exploratory Analysis, Arithmetic Complexity, or Machine Learning... In fact, for
Supervised Learning in large dimensions, ICA may be useful as a preprocessing, allowing to reduce
the minimum number of samples in order to estimate probability density functions.

3 Algebraic tools

Several algebraic tools are useful in this course. We first review classical Linear Algebra factorizations,
then less well known Filter decompositions. Last, we give some definitions of Multi-linear tools, which
will be used for manipulating tensors.

3.1 Principal Component Analysis and Standardization

The operation of Whitening consists of filtering the data so that the outputs are uncorrelated and of
unit variance. This operation is also frequently called Standardization in the context of Statistics, when
Mixture and Whitening are represented by static filters (i.e. mere matrices).

Singular Value decomposition

It is known that every matrix M may be decomposed into:

M = U Σ V H

where U and V are unitary, and Σ is positive real diagonal diagonale. Columns ui and vi of U and V
are the left and right singular vectors, respectively:

M vi = ui σi MHui = vi σi

In addition, ui are eigenvectors of MMH, and vi those of MHM , associated with σ2
i . This

decomposition is referred to as the Singular Value decomposition (SVD).

Filter decomposition

From Signal theory, we know that any scalar filter g[z] can be decomposed into an all-pass filter u[z]
and a minimum phase filter `[z]. In other words:

γ[z] = u[z] `[z], u[1/z∗]u[z] = 1, ∀z (5)

with `[z] having all its roots inside the unit circle. Recall that an all-pass filter is lossless, and has a
flat frequency response (only its phase varies). This result concerns scalar filters, and thus applies to
the SISO case.

More generally in the MIMO case, any filter defined by its Impulse Response matrix F [z], can be
decomposed into the product of a Triangular filter L[z] with minimum phase and a para-unitary filter
U [z]:

F [z] = U [z] L[z], U [1/z∗]HU [z] = I, ∀z (6)
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Recall that a square Minimum Phase matrix is such that det(L[z]) has all its roots inside the unit circle.
See [86] [147] for further readings on matrices with rational entries in one variable.

There is a particular case of importance, namely the static MIMO. Then, from the above
decomposition, one can easily retrieve the classical QR decomposition of matrices:

F = U L, UHU = I (7)

where L is triangular and U unitary.
These decompositions are not unique.

Time whitening

Consider a scalar second order stationary process x[k], and its z− transform x[z]. Its power spectrum
is given by

γx[z] def= E{x[z]x[1/z∗]∗}

Now from (5), it is possible to decompose the power spectrum as

∃`[z] / `[z] `[1/z∗]∗ = γx[z]

where filter `[z] is not unique, and defined up to an all-pass filter. Filter 1/`[z] is called a whitening
filter since the power spectrum after filtering with `[z] is flat (and actually equal to 1).

Spatial whitening

Consider now a multivariate random variable x, zero-mean for the sake of simplicity, with a finite
covariance matrix:

Γx
def= E{x xH}

Then, from (7),
∃L / L LH = Γx

In other words, we have found a matrix L, such that L−1x has a unit variance. The variable x̃
def= L−1x

is then referred to as a standardized random variable.
Note that L may not be invertible if the covariance Γx is not full rank. In such a case, there always

exists a rectangular matrix R such that RΓxRH = I. the latter matrix can be built from the SVD of
L, or from the EVD of Γx.

Space-time whitening

Consider now the most general case of a multivariate second order stationary random process, with
power spectral matrix:

Γx[z] def= E{x[z] x[1/z∗]H}

Then, from (6)
∃L[z] / L[z] L[1/z∗]H = Γx[z]

thus, the filter with complex gain matrix L[z] may be used to build a whitening filter R[z], defined up
to a para-unitary filter. If L[z] admits an inverse, then we may take R[z] = L[z]−1, and x̃[k] = R?x[k].
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Source extraction

This suggests a Blind MIMO Equalization (or Source Separation) algorithm in three stages:

1. Whitening by a filter L (non unique).

2. Separation with a para-unitary filter U (unique modulo the equivalence class).

3. Construction of an extracting filter W , which can be merely UL, or based on an estimate of H,
e.g. L−1UH. For instance the Space-time Matched Filter (SMF) takes the form:

W = HHR−1
x

whereas the Weighted Least Squares estimate is usable if in addition the noise spatial coherence
B is known [42]:

W = (HHB−1H)−1HHB−1

v

- -

- -

? -H U

y

zxs

W

L-

Figure 1: Processing line of Blind Source Separation with prewhitening

In practice, pre-whitening is only rarely chosen for dynamic mixtures because of difficulties of
implementation, whereas it is widely used for static mixtures. Also note that if the noise covariance is
known up to a multiplicative scalar (i.e. B is known), pre-whitening can be based on B instead of Rx,
leading to a model where additive noise is white.

3.2 Jacobi sweeping

In this section, we recall the standard technique devised by Jacobi for diagonalizing a symmetric matrix
by successive applications of plane rotations. Define a so-called Givens plane rotation, Q, equal to
the identity matrix except for four entries: G(i, i) = G(j, j) = cos θ, G(i, j) = −G(j, i) = sin θ. The
simultaneous application of Q on the left and on QT on the right of any symmetric matrix A allows to
set two zeros at the (i, j) and (j, i) coordinates:

c . s .
. 1 . .
−s . c .
. . . 1

 A


c . −s .
. 1 . .
s . c .
. . . 1

 =


X x 0 x
x . x .
0 x X x
x . x .


Entries denoted with a dot are unchanged by this transformation, where as the others are modified.
More precisely, entries depicted by ‘X’ are maximized. Sweeping successively all the pairs allows to
monotically increase the sum of squares of all diagonal terms, or, equivalently (because the whole
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. . . .
. . . .
. . . .
. . . .

→


X 0 x x
0 X x x
x x . .
x x . .

→


X x 0 x
x . x .
0 x X x
x . x .

→


X x x 0
x . . x
x . . x
0 x x X

→


. x x 0
x X 0 x
x 0 X x
0 x x .

→


. x . x
x X x 0
. x . x
x 0 x X

→


. . x x

. . x x
x x X 0
x x 0 X


Figure 2: cyclic by rows/columns algorithm for a 4 × 4 real symmetric matrix. X: maximized, x:
minimized, 0: canceled, · : unchanged.

Frobenius norm of matrix Q AQT remains unchanged), to monotically decrease all the extra-diagonal
terms. An analysis of stationary points shows that such an algorithm sweeping all the pairs in a
prescribed order, as depicted in figure 2, converges to a diagonal matrix. Proofs are given in algebra
textbooks, but a compact proof may be found in [36].

3.3 Tensor operations

We have just surveyed some basic decompositions of matrices. Matrices are just two-way arrays, that
is, arrays whose entries are described by two indices. In the remainder, we shall need some simple
operators able to act on arrays with more than two ways. in the framework of signal processing, such
arrays often result from the calculation of statistics, and hence enjoy multi-linearity properties allowing
them to deserve the name of tensors. The number of indices (i.e. ways) is sometimes called the tensor
order.

First, the outer product allows to increase the number of ways of an array. For instance, the outer
product of two column vectors u and v is the rank-one matrix A = u vT, which is a two-way array
whose entries are Aijui vj . More generally, given two tensors of entries Ai..j and Bk..`, of order m and
n respectively, one can build a tensor of order m+ n by defining

C
def= A ◦B, Ci..jk..` = Ai..jBk..` (8)

Another useful operation on tensor is the contraction. Given two tensors Aij..k and Bip..q, of same
first dimension, the contraction on the first index is defined by

C
def= A •

1
B, Cj..kp..q =

∑
i

Aij..kBip..q (9)

More generally, the contraction product between two tensors on the kth index will be denoted by •k,
and is possible if their kth dimension is the same.

As an example, the matrix-vector product can be rewritten in the form of a contraction: A v =
AT •1 v. Similarly, the scalar product between two vectors is the contraction: uTv = u •1 v.

The Kronecker product between two tensors of same order is denoted by A ⊗B, and consists of a
tensor formed by the blocks Aij..kB. If A and B are identical, then it is clear that A⊗A is redundant.
Therefore, it may be useful to define a non redundant array A � A. For instance for a vector v of
dimension n, the vector v � v is of dimension n(n+ 1)/2.
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The column-wise Kronecker product between two matrices is often called the Khatri-Rao product,
and is denoted A�B.

Now there exists a mapping vec{} that maps a tensor to a vector. For instance, for a 3−way tensor
A of dimension m×n× p, vec{A} is of dimension mnp. If this tensor is square completely symmetric,
that is if n = m = p and Aijk = Aσ(i,j,k) for all indices (i, j, k) and any permutation σ, then it is possible
to map A to a lower dimensional vector, vecs{A} of dimension n(n+ 1)(n+ 2)/6. By convention, the
entries appearing k times in tensor A, appear in vector vecs{A} with a weighting

√
k; this has the

advantage that the operator vecs{·} preserves the L2 norm.

4 Statistical tools

First, definitions and properties are given for real scalar random variables in sections 4.1 and 4.2. In
a second stage, these statements are extended to multivariate real random variables in section 4.2.2.
The case of complex variables is addressed in sections 4.4 and 4.4.2. These tools will allow to introduce
various definitions of statistical independence in section 5.

4.1 Characteristic functions

For a real random variable x, let Fx(u) denote its cumulative probability distribution, which corresponds
to the probability that x < u. When it exists, denote its density px(u); we have that dF (u) = px(u) du.

One defines generalized moments as

E{g(x)} =
∫ +∞

−∞
g(u) dF (u)

In practice, g(u) is often a monomial, which yields the usual non central moments:

µ′
x (k)

= E{xk} (10)

If the exponential function is used instead, one gets the first characteristic function:

Φ(t) =
∫
e tu dF (u) (11)

where  is the square root of −1.

Example 1: Real Gaussian variable. For a real Gaussian variable, the first characteristic
function takes the form

Φ(t) = exp[µ′1 t−
1
2
µ2 t

2] (12)

For multivariate random variables, the definition is the same, but the product tu is replaced by the
scalar product tT u:

Φ(t) =
∫
e t

Tu dF (u)

The first characteristic function obviously satisfies the following properties:

Φ(0) = 1, |Φ(t)| ≤ 1,∀t

One can also show that Φ is uniformly continuous. When the density px(u) exists, then Φ(t) can be
viewed as its Fourier transform.
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Another interesting property (difficult to prove) is the Lebesgue decomposition [109]:

Φ = ad Φd + aac Φac + as Φs

where Φd is the characteristic function of a discrete distribution, Φac of an absolutely continuous
distribution, and Φs of a singular distribution, and ad, aac and as are probabilities that sum up to
1. The two first distributions are well known: Φd is almost periodic, and Φac tends to zero at infinity.
But the third term is somewhat abstract, and not really encountered in signal processing.

Because Φ(t) is non zero in a neighborhood of the origin, one can define its logarithm, the second
characteristic function:

Ψ(t) = LogΦ(t) (13)

This function always exists in a (sufficiently small) neighborhood of the origin, and is unique as long as
Φ 6= 0.

4.2 Moments and cumulants

4.2.1 Scalar random variables

If Φ can be expanded in Taylor series about the origin, then its coefficients are related to moments:

µ′
x (r)

def= E{Xr} = (−)r ∂rΦ(t)
∂tr

∣∣∣∣
t=0

(14)

It is usual to introduce central moments µ
x (r)

as the moments of the centered variable x− µ′
x (1)

.
Similarly, if Ψ may be expanded in Taylor series about the origin, then its coefficients are the

cumulants:

C
x (r)

def= Cum{X,X, . . . ,X︸ ︷︷ ︸
r times

} = (−)r ∂rΨ(t)
∂tr

∣∣∣∣
t=0

(15)

The relation between moments and cumulants can be obtained by expanding the logarithm and grouping
terms of same order together.

Example 2: Cumulants may not exist. Note that expansion (14) may not always exist. The
classical counter-example is that of the Cauchy distribution

p(u) =
1

π (1 + u2)

for which moments and cumulants of order larger than 1 are infinite.

Example 3: Cumulants of order 2, 3 and 4. The cumulant of 2nd order, κ2, is nothing but
the variance: µ′

(2)
− µ′

(1)

2 = C
(2)

. And for zero-mean random variables, cumulants of order 3 and 4 are
related to moments by: κ3 = µ3 and κ4 = µ4 − 3µ2

2.

Example 4: Skewness and Kurtosis. The skewness is a 3rd order normalized cumulant:
K3

def= κ3/κ2
3/2. The kurtosis is a normalized 4th order cumulant K4

def= κ4/κ2
2

It is clear that skewness and kurtosis are null for any Gaussian random variable. These quantities
can serve as measures of deviation from Gaussianity. In fact, random variables having a negative (resp.
positive) kurtosis can be called platykurtic (resp. leptokurtic) [87]. Conversely, random variables have a
zero kurtosis (referred to as mesokurtic) are not necessarily Gaussian.
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It is sometimes spoken in the literature of sub-Gaussian or super-Gaussian random variables. It is
important to stress that this feature is not well defined, and that at least three different definitions can
be found.

First, Benveniste [12, page 390] proposes a definition involving the monotonicity of

f(u) = −1
u

d log px(u)
du

.

When f(u) is strictly increasing (resp. decreasing), px(u) is said super-Gaussian (resp. sub-Gaussian).
It is clear that some distributions are neither one or the other.

Second, some authors [154] linked the super-Gaussian (resp. sub-Gaussian) character to the fact
that distributions tails are above (resp. below) those of the Gaussian with same mean and variance.
This definition coincides with that of platykurtic (resp. leptokurtic) when the even part of the density
intersects twice the Gaussian of same mean and variance [110]. In other words, the definitions are not
always the same.

xx give example

4.2.2 Multivariate random variables

Denote the cumulants κij..` = Cum{Xi, Xj , ...X`}. As explained above, expressions of moments as a
function of cumulants can be obtained by expanding the logarithm and grouping terms of same order
together. This yields for instance:

µ′i = κi

µ′ij = κij + κi κj (16)
µ′ijk = κijk + [3]κi κjk + κi κj κk

In the relation above, we have used Mccullagh’s bracket notation [113] defined below.
A sum of k terms that can be deduced from each other by permutation of indices is denoted by the

number k between brackets followed by a single monomial describing the generic term. Simple examples
will do it better than a long explanation.

[3] δij δkl = δij δkl + δik δjl + δil δjk, (17)
[3] aij bk cijk = aij bk cijk + aik bj cijk + ajk bi cijk. (18)

The presence of the bracket yields an implicit summation; all terms with r indices are completely
symmetric order-r tensors. The number of distinct monomials that may be obtained by permutation is
equal to the integer appearing between brackets. As additional examples, the following expressions are
consistent:

[3] aiδjk, [6] ai aj δkl, [10] bi bj bk δlm, [35]Aijk BabcdCijkabcd.

Relations (16) can be inverted in order to obtain cumulants as a function of moments. In the case of
non central random variables, multivariate cumulants of order 3 and 4 can be given in a compact form
as a function of multivariate moments as:

C
ijk

= µ′
ijk
− [3]µ′

i
µ′
jk

+ 2µ′
i
µ′
j
µ′
k
, (19)

C
ijkl

= µ′
ijkl
− [4]µ′

i
µ′
jkl
− [3]µ′

ij
µ′
kl

+ 2 [6]µ′
i
µ′
j
µ′
kl
− 6µ′

i
µ′
j
µ′
k
µ′
l
. (20)
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On the other hand, if variables are all zero-mean, then they simplify into:

C
ij

= µ
ij
, (21)

C
ijk

= µ
ijk
, (22)

C
ijkl

= µ
ijkl
− [3]µ

ij
µ
kl
. (23)

and for orders 5 and 6:

C
ijklm

= µ
ijklm

− [10]µ
ij
µ
klm

,

C
ijklmn

= µ
ijklmn

− [15]µ
ij
µ
klmn

− [10]µ
ijk
µ
lmn

+ 2 [15]µ
ij
µ
kl
µ
mn
.

4.2.3 Properties of cumulants

Cumulants enjoy several useful properties. Some of them are shared by moments, but others are not.
First of all, moments and cumulants enjoy the multi-linearity property:

Cum{αX, Y, .., Z} = α Cum{X, Y, .., Z} (24)
Cum{X1 +X2, Y, .., Z} = Cum{X1, Y, .., Z}+ Cum{X2, Y, .., Z}

Another obvious property directly results from the definition, namely that of invariance by permutation
of indices

Cum{X1, X2, ..Xr} = Cum{Xσ(1), Xσ(2), ..Xσ(r)}
In other words, rth order Cumulants (or Moments) can be stored in r−way arrays that deserve the
name of rth order tensors.

Let’s now turn to properties that are specific to cumulants. First, they are invariant to translation;
this means that ∀r > 1 and ∀h constant:

Cum{X1 + h, X2, .., Xr} = Cum{X1, X2, .., Xr},

This property is sometimes referred to as the shift invariance of cumulants. Next, cumulants of a set of
random variables are null as soon as this set can be split into two statistically independent subsets:

{X1, . . . , Xp} independent of {Y1, . . . , Yq} ⇒ Cum{X1, . . . , Xp, Y1, . . . , Yq} = 0

A consequence of this property is the additivity of cumulants:

Cum{X1 + Y1, X2 + Y2, .., Xr + Yr} = Cum{X1, X2, .., Xr}
+ Cum{Y1, Y2, .., Yr} (25)

whenever X and Y are independent.

4.3 The cumulant-based Central Limit Theorem

The Central Limit theorem can be revisited (in a weaker form) with the help of cumulants. Let x[n], 1 ≤
n ≤ N be N statistically independent random variables, each having a bounded cumulant of order r,
denoted C

x[n] (r)
= κ(r;n). Define the average cumulant of order r

κ̄(r) =
1
N

N∑
n=1

κ(r;n)
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and the average random variable

y =
1√
N

N∑
n=1

(x(n)− κ̄(1;n))

Then, if κ̄(r) remain bounded, the probability distribution fy tends to a Gaussian law as N →∞.
Proof. Because of the mutual independence of variables x[n] and by multi-linearity of cumulants,

cumulants of order r of
∑

n x[n] are
∑

n κ(r;n). Hence, cumulants of order r of y are C
y (r)

= κ̄(r)

Nr/2−1 ,
∀r ≥ 2. It is thus clear that all these cumulants tend to zero as N tends to infinity, because κ̄(r) are
bounded. Next, the second characteristic function, Ψy(u), can be expanded in Taylor series because all
the cumulants exist and are finite. In this expansion of Ψy(u), except for the second term C

y (2)
= κ̄(2),

the infinite sum of all remaining terms also tends to zero, for any fixed u. This shows that Ψy(u) tends to
the characteristic function of a zero-mean Gaussian variable, and hence the convergence in distribution,
provided the limit of κ̄(2) is positive, and provided the limiting function is continuous at the origin.

4.4 Complex variables

4.4.1 Definitions

In Signal Processing, it is often suitable to manipulate complex valued random variables, essentially for
the sake of simplicity in the notation. Therefore, it is necessary to introduce the relevant definitions.
Let z = x + y be a complex random variable, where x, and y are real multivariate random variables
of same dimension. Also define the deterministic complex variable w = u + v, where u and v are
mutivariate real variables of same dimension. The probability distribution of z is defined as the joint
distribution of (x, y):

fz(w) def= fx,y(u,v)

This yields without difficulty the definitions below, admitting a compact writing. The cumulative
distribution takes the form:

Fz(w) def= Fx,y(u, v)

and the first characteristic function
Φz(w) = E{e<[zHw]} (26)

since <[zHw] = xTu + yTv

Now contrary to real variables, there is not a unique way of defining a cumulant (or a moment) of
order r of a complex random variable; in fact, it depends on the number of conjugated terms. It is thus
necessary to be able to distinguish between complex random variables that are conjugated and those
that are not. For this purpose, one introduces a specific notation, with superscripts:

Cum{Xi, ..Xj , Xk
∗, ..X`

∗} def= Ck..`i..j (27)

Example 5: The covariance matrix. The covariance matrix of a complex random variable is

E{zi zj∗} − E{zi}E{zj}∗ = C
z

j

i

On the other hand, as will be defined in the next section, if the random variable z is circular at order
2, then the moment µ

x

j

i
= E{z zT}ij = µ

x

j

i
is null for all (i, j).
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4.4.2 Circularity

A complex random variable z is circular in the strict sense if its distribution does not depend on the
phase of z. For a multivariate complex random variable z, strict sense stationarity means that

z and z eθ, ∀θ ∈ IR

have the same joint distribution, and hence statistical properties at any order.

A weaker definition of circularity is often sufficient. According to definition (27), there may be up to
r!/br/2c! distinct definitions, depending on what variables are conjugated. Among all these definitions,
only one will be called circular cumulant, namely the one having exactly half of its arguments conjugated.
All other cumulants may be called non circular cumulants. Note that there exist circular cumulants
only at even orders.

For instance, the cumulant below is circular

C
z

k`

ij
= Cum{zi, zj , zk∗, z`∗}

whereas these ones are non circular

C
z

`

ijl
= Cum{zi, zj , zk, z`∗}

C
z ijk`

= Cum{zi, zj , zk, z`}

A multivariate complex random variable z is said to be circular at order r if its non circular cumulants
of order r are all null:

p 6= r − p⇒ Cum{z1, .., zp, zp+1
∗, .., zr

∗} = 0 (28)

4.5 Examples

Example 6: PSK random variables. For a PSK−4 random variable, ZZ∗ = 1 and consequently:

C(2) = E{Z2} = 0, C(2)
(2) = −1, µ(0)

(4) = 1, C(0)
(4) = 1

It is thus circular up to order 3.

Example 7: Uniform distribution. A random variable uniformly distributed in the interval
[−u,+u], has the following expressions for moments and cumulants: µ2k = u2k

2k+1 , C4 = u4

5 −3 u4

9 = −2 u4

15 ,
K4 = −6

5 .

Example 8: Binary distribution. Let x be a random variable taking two values x1 and x2 with
probabilities P1 and P2. We must have P1 = 1

1+a2 , P2 = a2

1+a2 , and x1 = −a, x2 = 1/a, for some free
parameter a, if x is zero-mean and unit variance. Then the skewness is C3 = 1/a − a and the kurtosis
is C4 = P2 [a2 + 1/a4]− 3. As depicted in figure 3, the minimal value achieved by the kurtosis is −2.

Example 9: Two sources without noise. Assume a static model x = H s of dimension 2,
where s has two statistically independent components. Also assume that a spatial pre-whitening has
been performed, so that the standardized observation exactly follows the model below:

x̃ =
(

cosα − sinα eϕ

sinα e−ϕ cosα

)
s (29)
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Figure 3: Kurtosis of a zero-mean standardized binary random variable

Denote γk`ij = Cum{x̃i, x̃j , x̃k∗, x̃`∗} the fourth order circular cumulants of x̃ and κi =
Cum{si, si, si∗, si∗} those of si. Using the multi-linearity property of cumulants, one gets the
input-output relations:

γ12
12 = cos2 α sin2 α (κ1 + κ2)
γ12

11 = cos3 α sinα eϕ κ1 − cosα sin3 α eϕ κ2 (30)
γ22

12 = cosα sin3 α eϕ κ1 − cos3 α sinα eϕ κ2

From above, one deduces that γ22
12 − γ12

11 = −2 γ12
12 cot 2α eϕ This suggests a simple blind separation

algorithm.

Example 10: Gauss distribution. Let x be a real Gaussian random variable of probability
distribution px(u) = 1

σ
√

2π
exp(− u2

2σ2 ). Then even order moments are given by

µ
x (2r)

= σ2r (2r)!
r! 2r

. (31)

4.6 Statistical Independence and geometry of information

The purpose of this section is to justify the use of the Mutual Information as the appropriate measure
of statistical independence, and to decompose it into the appropriate elementary terms.

Definition 1 Let x be a random vector of size K, admitting a density px(u). Components xi of x are
said to be mutually statistically independent if and only if the joint distribution equals the product of the
marginal distributions:

px(u) =
N∏
i=1

pxi(ui). (32)

Thus a quite natural way of measuring statistical independence between random variables xi is to
measure the distance δ(px,

∏
i pxi) between these distributions. Among the available distance measures,

one is quite often used, namely the Kullback divergence:

K(px, py) def=
∫
px(u) log

px(u)
py(u)

du. (33)
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Note the word divergence has been used, since this distance measure is not a symmetric in both its
arguments (hence it doesn’t deserve the name of distance).

Proposition 2 The Kullback divergence is always positive and cancels if and only if both distributions
are equal almost everywhere (that is except on a set of null measure):

K(px, py) = 0⇔ px(u) ae= py(u). (34)

Proof. For every positive real number w, we have the convexity inequality logw ≤ w − 1, with
equality if and only if w = 1. By applying this inequality to the ratio px(u)/py(u), one gets:

−K(px, py) ≤
∫
px(u) [

py(u)
px(u)

− 1] du.

Yet, the right hand side is always null because
∫
p(u) u = 1 for any probability density. On the other

hand, the function logw being tangent to w − 1 at w = 1, equality holds only if py(u)/px(u) = 1 for
almost all u.

Proposition 3 The Kullback divergence is invariant under invertible transform of both its arguments.

Proof. Let Y = Ay and X = Ax, where A is an invertible matrix. Then pX(v) =
px(A−1v)/| det(A)|, and pY (v) = py(A−1v)/|det(A)|. This yields then

K(pX , pY ) =
∫
px(A−1v) log

px(A−1v)
py(A−1v)

dv

|det A|
.

define u = A−1v, that is dv = | det A|du. Then

K(pX , pY ) =
∫
px(u) log

px(u)
py(u)

du,

which terminates the proof.

Now the Kullback divergence applied to py(u) def=
∏
pxi(ui) leads to the Mutual Information (MI),

as a measure of independence:

I(px) =
∫
px(u) log

px(u)∏N
i=1 pxi(ui)

du. (35)

This quantity is known as the average mutual information in coding theory. Because of proposition 2,
it is always positive, and cancels if and only if random variables xi are mutually independent. The MI
is thus a first possible contrast function [35] [118].

Contrary to what one could perhaps guess, the MI is not invariant by invertible change of
coordinates, although the Kullback divergence was. The reason is that a product of marginals is not
generally transformed into another product of marginals. To check this, just consider the following
counter-example.

Example 11: MI of a Gaussian variate. Take a real Gaussian random variable of size K, of
density

gx(u) = [2π]−K/2 [det V ]−1/2 e−
1
2
uTV −1u, (36)
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where V is an invertible covariance matrix. Then its Mutual Information is given by

I(gx) =
1
2

log
∏
Vii

det V
. (37)

Let A be an invertible matrix such that A AT = V −1. After transform, the MI becomes I(gAx) = 0.
Hence, in order for the MI not to change, it is necessary to have I(gx) = 0, which is possible only in
the particular cases where V is diagonal.

Note that for transforms A of the form ΛP , where Λ is diagonal invertible and P is a permutation
do not affect the MI.

To conclude, if X = Ax, it is in general not true that
∏
pxi(ui) =

∏
pXj (vj). But we shall have

scale invariance, as will be pointed out in proposition 9.

4.6.1 Negentropy

The differential entropy, or simply the Entropy, of a random variable admitting a density px(u) is
defined as:

S(px) def= −
∫
px(u) log px(u) du. (38)

Example 12: Entropy of a Gaussian variate. in the real Gaussian case, the differential
entropy takes the well-known form:

S(gx) =
K

2
(1 + log 2π) +

1
2

log det V

If entropy is defined with a logarithm in basis a (often a = 2), then it is easy to check out that
S(gx) = K

2 loga 2π + K
2 logea

+ 1
2 loga det V

As an example, the MI is a difference beteen entropies:

I(px) =
∑

S(pxi)− S(px)

Entropy plays a special role in statistics. In fact, it is possible to show that there does not exist other
functionals satisfying four basic very general axioms [126, page 27]. But it is convenient for our purposes
to introduce the negentropy.

Definition 4 Let x be a random variable admitting a density px(u). Denote gx(u) the Gaussian density
with same mean and covariance matrix. Then the negentropy associated with px is given by:

J(px) =
∫
px(u) log

px(u)
gx(u)

du. (39)

It can be noticed that negentropy is nothing else but the divergence:

J(px) = K(px, gx) (40)

Hence, it measures some distance to normality. From the results we have seen so far, we also have the
following:

Proposition 5 The negentropy of a distribution px is always positive, and cancels if and only if px is
Gaussian almost everywhere.
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More explicitly, we even have:

Proposition 6 Negentropy is the difference between the two entropies:

J(px) = S(gx)− S(px). (41)

Proof. By definition of entropy, we have

S(gx)− S(px) =
∫
px(u) log px(u) du−

∫
px(u) log gx(u) du

+
∫
px(u) log gx(u) du−

∫
gx(u) log gx(u) du.

Hence, it follows that S(gx)−S(px) = J(px) +
∫

log gx(u) [px(u)− gx(u)] du. But the last term is null
since by definition, gx and px have same variance, and since log gx(u) is a polynomial of degree 2.

Proposition 7 Entropy and Negentropy are invariant by orthonormal changes of coordinates.

Proof. Consider two random vectors, x and y = Q x, where Q is invertible. Then entropy of y can
be written as:

S(px) = −
∫
py(Qu) log [| det Q| py(Qu)] | det Q| du,

which yields the transformation rule for entropy:

S(px) = S(py)− log | det Q|. (42)

It is thus clear that entropy is invariant under any transform whose determinant is 1, and in particular
orthogonal transforms. Negentropy is hence invariant on a set of transform at least as large, from
proposition 6.

The invariance set of Negentropy is actually larger than that of Entropy:

Proposition 8 Negentropy is invariant by invertible basis change.

Proof. One simply applies (42), which is valid for every invertible transform, to px et gx. By
difference, log | det Q| disappears and J(px) = J(gx).

The following proposition states a useful decomposition of the MI, which is depicted in figure 4.

Proposition 9 The Mutual Information is invariant by scale change, and can be decomposed as

I(px) = I(gx) + J(px)−
∑
i

J(pxi). (43)

Proof. By definition of the MI:

I(px) =
∑

S(pxi)− S(px). (44)

Let Λ be an invertible diagonal matrix. Vector Λx has then entropy I(pΛx) =
∑
S(gxi) − log Λii −

S(px) + log det Λ, which proves that I(pΛx) = I(px). Moreover, using property 6, relation (44) yields:

I(px) =
∑

S(gxi)−
∑

J(pxi)− S(gx) + J(px).
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resorting another time to I(gx) =
∑
S(gxi)− S(gx) eventually allows to conclude.

In the above result, note that the Gaussian MI may be replaced by its expression (37).
This last property emphasizes the terms that may enter in a statistical dependence between

components xi. First of all I(gx), which is a contribution of order 2 (it involves only moments of
order 2 or lower), and which may be canceled by a standardization as already seen earlier. We are
left with only two terms in (43), which involve higher order moments. From proposition 7, the first
negentropy is invariant by orthogonal transforms. The last term in (43) is consequently the only one
that remains if only orthogonal transforms are allowed.

J(p)

∑
i J(pi)

I(g)

I(p)

logL

∑
i Ki
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Figure 4: Decomposition of the Mutual Information and Log-Likelihood

However, the practical use of decomposition (43) is rather difficult, especially in large dimension (e.g.
convolutive mixtures), even if some iterative algorithms have been devised [121]; the MI is nevertheless
a powerful tool for separating Non Linear mixtures [136] [8]. Therefore, contrasts based on cumulants
are often preferred in the context of linear mixtures.

For this purpose we shall see, in the following sections, how the Mutual Information can be
approximated with the help of cumulants. We know already several things: (i) Blind problems cannot
be solved under the sole assumption of statistical independence if observations are jointly Gaussian,
(ii) cumulants measure some distance to Gaussianity, (iii) the gaussian distribution plays a central role
in the MI decomposition we have suggested. We shall also see in the next section that (iv) the Gaussian
distribution permits a computationally easier expansion.

4.6.2 Edgeworth expansion

Let x be a scalar random variable with second characteristic function Ψx(u), supposed to be close to
some other function Ψo(u). By definition, Ψx(u) generates the cumulants of x in its Taylor expansion
about the origin:

Ψx(u) = κ1u+
1
2!
κ2u

2 +
1
3!
κ3u

3 + . . . , (45)

where κr denotes the cumulant of order r, C
x (r)

. Denote λr the cumulant of order r in the expansion of
Ψo(u), and define the series ηr = κr − λr. The difference between characteristic functions can then be
written as:

Ψx(u)−Ψo(u) =
∞∑
r=1

1
r!
ηru

r. (46)

Because the above difference is not necessarily a characteristic function, there may not exist a random
variable having ηr as cumulants. But we may still denote µr the moments defined by the relation:

exp[
∞∑
r=1

1
r!
ηru

r] =
∞∑
j=0

1
k!
µku

k. (47)
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Now it is possible to expand the density px(v) about po(v)

px(v) = po(v)
∞∑
k=0

1
k!
µkhk(v), (48)

where functions hk(v) are defined as:

hk(v) =
(−1)k

po(v)
dkpo
dvk

(v). (49)

Expansion (48) takes a simple form only for particular densities po(v), especially when the functions
hk(v) involved are polynomials.

The Edgeworth expansion of type A allows to approximate a density px(v) when po(v) is Gaussian.
For consisency, we shall use the notation po(v) = gx(v) in that case, since we are indeed talking about
the closed Gaussian distribution. For the sake of conciseness, and without restricting the generality, one
may assume the density is zero mean and of unit variance. In that case, functions hk(v) are Hermite
polynomials defined by the recursion:

h0(v) = 1, (50)
h1(v) = v, (51)

hk+1(v) = v hk(v)− d

dv
hk(v). (52)

For instance, h2(v) = v2 − 1 and h3(v) = v3 − 3v.

The terms in the expansion can be ordered by increasing degrees, and this yields Gram-Charlier’s
expansion. But this gives no idea of how large the terms are and when they can be neglected. The other
idea is to sort the successive terms of the expansion by their magnitude order under the assumptions
of the Central Limit theorem (see page 19). The ordering is of no importance if all terms are kept, but
becomes very important when a truncation is mandatory.

The central Limit theorem tells us that if x is a sum of m independent random variables with finite
cumulants, then the rth order cumulant of x is of order m1−r/2. This leads to the arrangement below:

Order
m−1/2 κ3

m−1 κ4 κ2
3

m−3/2 κ5 κ3κ4 κ3
3

m−2 κ6 κ3κ5 κ2
3κ4 κ2

4 κ4
3

m−5/2 κ7 κ3κ6 κ2
3κ5 κ2

4κ3 κ5
3 κ4κ5 κ3

3κ4

Hence, the Edgeworth expansion of a density px(v) about gx(v) can be written as [87, formule 6.49]:
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px(v)/gx(v) = 1

+
1
3!
κ3h3(v)

+
1
4!
κ4h4(v) +

10
6!
κ2

3h6(v)

+
1
5!
κ5h5(v) +

35
7!
κ3κ4h7(v) +

280
9!
κ3

3h9(v)

+
1
6!
κ6h6(v) +

56
8!
κ3κ5h8(v) +

35
8!
κ2

4h8(v) +
2100
10!

κ2
3κ4h10(v)

+
15400

12!
κ4

3h12(v)

+O(m−2). (53)

Now it remains to use this expansion in order to approximate not only a distribution, but also a
negentropy, and eventually a Mutual Information.

4.6.3 Approximation of Negentropy

We have seen with equation (37) that I(gx) = 0 is and only if the covariance matrix is diagonal. For non
Gaussian distributions, decorrelation at order 2 is not sufficient to ensure independence. On the other
hand, negentropy is sufficient to characterize independence. However, as their probability distribution,
negentropy of observations is in general unknown. It is proposed in this section to approximate it with
the help of cumulants of increasing orders.

Let px(u) = g(u)[1+f(u)], where g(u) is the Gaussian distribution with zero mean and unit variance,
as before, and f(u) is given by the Edgeworth expansion. Take the following logarithm expansion
(1 + f) log(1 + f) = f + f2/2− f3/6 + f4/12 + o(f4) and plug it back into the Negentropy expression
(39). Replacing f(u) by its value, it is possible to obtain the expected approximation. In order to obtain
the final result, it is necessary to use the following integral properties of Hermite polynomials:∫

g(v)hp(v)hq(v) dv = p! δpq, (54)∫
g(v)h2

3(v)h4(v) dv = 3!3, (55)∫
g(v)h2

3(v)h6(v) dv = 6!, (56)∫
g(v)h4

3(v) dv = 93 3!2. (57)

After some manipulations, one eventually gets (if x is indeed a random variable with zero mean and
unit variance):

J(px) =
1
12
κ2

3 +
1
48
κ2

4 +
7
48
κ4

3 −
1
8
κ2

3κ4 + o(m−2). (58)

4.6.4 The multivariate case

The previous expansion is valid in only the scalar case. But then how could one apply it for MIMO
mixtures? The first obvious idea is to wonder whether this kind of result can be obtained in the
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multivariate case. The answer is yes, up to a terrific increase in complexity. The result can be
summarized as [35]:

J(px) =
1
48

∑
ijk

κ2
ijk +

∑
ijk`

κ2
ijk` + 3

∑
ijknqr

κijkκijnκkqrκqrn + 4
∑

ijkmnr

κijkκimnκjmrκknr

−6
∑
ijk`m

κijkκi`mκjk`m


However, it turns out that this explicit result is not absolutely necessary in our framework when we
handle standardized variables, and that the result in the scalar case can still be used in a smart way, as
explained in the following section. On the other hand, if observations have not been standardized in a
first stage, this is indeed that expression that should be utilized in (43).

5 Contrast functionals

The interest in using contrast optimization criteria appears in the presence of additive noise with
unknown statistics, in which case it is impossible to resort to Maximum Likelihood (ML) approaches. In
such cases, noise is merely seen as a nuisance, and can often be distinguished from useful source signals
only by its comparatively smaller power.

However, as will be subsequently seen, the ML solution is linked to that of maximum contrast in
the noiseless case, in particular if the Mutual information is utilized.

5.1 Assumptions

In order to blindly equalize convolutive models, the most widely used assumption is the statistical
independence between successive symbols.

Hypothesis H1 Sources sj [k] are all i.i.d. sequences.

For MIMO models, the independence assumption between sources is often utilized:

Hypothesis H2 Sources sj [k] are mutually statistically independent.

These hypotheses can generally be deflated to less strong whiteness/independence properties, because
moments of finite orders are used [42]. Let us stress that the case where sources are linear processes
can also be treated in a similar manner as i.i.d. sources; Hypothesis H1 is thus not very restrictive.
A particular case however raises problems, namely that of Gaussian sources. In that case, all the
information is contained in moments up to order 2, which is not sufficient to establish identifiability.
For this reason, it is necessary to resort to a third hypothesis, along with hypotheses H1 and H2:

Hypothesis H3 At most one source is Gaussian.

Again, this assumption can often be deflated to a weaker one. For instance, when the contrast
optimization criterion is based on cumulants, then it is sufficient to consider the assumption

Hypothesis H4 At most one source has a null marginal cumulant.
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On the other hand, there exist other frameworks in which hypotheses are different. For instance, if
sources have different spectra, or if they are discrete, or non stationary, or cyclo-stationary, then they
can be separated with the help of appropriate techniques.

The interest of exploiting the discrete character lies not only in a more accurate characterization of
the desired output (than just non Gaussian or CM), but also in the fact that some other assumptions
can be dropped. In this section, the sole assumption used is

Hypothesis H5 The sources sj [n] belong to a known finite alphabet A characterized by the d distinct
complex roots of a polynomial Q(z) = 0.

For instance, sources can be correlated and non stationary. In fact, the criterion proposed above
is entirely algebraic and deterministic, so that no statistical tool is required. The simplest case is
Q(z) = zq − 1, for which we have a PSK−q constellation.

Next, for identifiability reasons, another hypothesis will be needed:

Hypothesis H6 Sources sj [n] are sufficiently exciting

By sufficiently exciting, it is meant that sufficiently many distinct states (among the dP possible ones)
of the P−uplet s are present in the source data matrix. For general alphabets, it is sufficient that
all binary sequences are present, which means that the observation length should be at least of (d2)2P

symbols [41].

Hypothesis H7 Each source si[n] is colored, and the set of the P spectra forms a family of P linearly
independent functions.

Hypothesis H8 Sources are nonstationary, with linearly independent profiles.

5.2 Trivial filters

The separating linear filter, F̌ [z], if it exists, aims at delivering an output, y[n], which should satisfy as
well as possible hypotheses H1 and H2. But it is clear that there exist some filters that do not affect
them. These are called the trivial filters, and we can prove

Lemma 10 Under hypotheses H1 to H3, trivial filters are of the form Ť [z] = P Ď[z], where P is a
permutation, and Ď[z] a diagonal filter. In addition, because of the i.i.d. property of hypothesis H1,
entries of Ď[z] must be of the form Ďpp[z] = λp z

δp, where δp is an integer.

Consequently, it is hopeless to estimate the pair (Ȟ[z], s[k]). One should rather try to estimate one
representative of the equivalence class of solutions. Once one solution is found, all the others can be
generated by trivial filtering.

Example 13: Static model. Assume the model is MIMO static. Then x[n] = H s[n], where x[n]
and s[n] are realizations of random variables. In that case, hypothesis H1 is not mandatory anymore.
The estimation of the pair (H, s[n]) from the sole observations x[n] under hypotheses H2 and H3, has
been introduced originally by Jutten and Comon [84] [32], and is now called Independent Component
Analysis (ICA) [35] [118] [82] [99] [76] [39].

Consider now hypotheses H5 and H6 instead of hypotheses H1 to H3. In the PSK−q case, we have
the following

Lemma 11 Under hypothesis H5 and H6 and with Q(z) = zq, trivial filters are of the form P Ď[z],
where Ďpp[z] are rotations in the complex plane of an angle multiple of 2π/q combined with a pure delay,
and P are permutations.
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For more general alphabets (called constellations in the framework of digital linear modulations),
we need to define the following set

Definition 12 Let A be a finite alphabet not reduced to {0}, defined by Q(x) = 0, where Q is a
polynomial of degree d with d > 1 distinct roots, and let G be the subset of complex numbers γ, such that
γA ⊂ A.

Note that, because A is finite, numbers of G are necessarily of unit modulus, and integer roots of
unity (i.e., for every γ ∈ G, there exists an integer q(γ) such that γq(γ) = 1); this is true regardless of
polynomial Q. In other words, γA = A, ∀γ ∈ G. Then, for every γ ∈ G, the equation γA = A implies
that γ−1 ∈ G. Now, a similar statement as lemma 11 holds:

Lemma 13 Trivial filters associated with hypotheses H5 and H6 are of the form P Ď[z], where the
entries of Ď[z] can be written as Dpp[z] = γp z

n, with γp ∈ G and n ∈ ZZ .

It can thus be seen that the size of the set of trivial filters (characterizing the inherent indeterminacy
of the problem) depends on the nature of the alphabet.

5.3 Definition of contrasts

When noise is present in model (1), the estimation of inputs can be carried out according to a Maximum
Likelihood (ML) or a Maximum A Posteriori (MAP) procedure if the noise has a known distribution.
If this is not the case, noise must be considered as a nuisance. Contrast criteria are dedicated to this
kind of situation.

Let H be a set of filters, and denote H·S the set of processes obtained by operation of filters of H
on processes of S. Denote T the subset of H of trivial filters, defined in lemma 10. An optimization
criterion, Υ(H; x), is referred to as a contrast, defined on H×H·S, if it satisfies the three properties
below [37]:

P1 Invariance: The contrast should not change within the set of acceptable solutions, which means
that
∀H ∈ T ,∀x ∈ H·S, Υ(H; x) = Υ(I; x).

P2 Domination: If sources are already separated, any filter should decrease the contrast. In other
words,
∀s ∈ S, ∀H ∈ H, then Υ(H; s) ≤ Υ(I; s).

P3 Discrimination: The maximum contrast should be reached only for filters linked to each other via
trivial filters:
∀s ∈ S,Υ(H; s) = Υ(I; s)⇒H ∈ T .

5.4 Kurtosis and skewness criteria

Most of the contrast criteria described in this section hold valid in the convolutive case. Therefore, they
are described within this framework, without significant increase in complexity.

All the developments presented in the previous sections are valid for any random variable x with
finite cumulants. We shall apply these results to variable z at the output of a separating filter F , as
depicted in figure 5. For this purpose, denote with symbol κ the source (standardized) kurtoses and
with symbol γ the (standardized) cumulants of z.

By inspection of decomposition (43) of the Mutual Information, it can be seen that only marginal
negentropies J(pxi) need to be approximated when the joint negentropy J(px) is invariant, which is
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the case for orthonormal transforms. In such a case, it is sufficient to use approximation (58) for every
component xi, which yields [33] [35]:

I(pz) = J(pz)− 1
48

∑
i

4 γ2
iii + γ2

iiii + 7 γ4
iii − 6 γ2

iii γiiii + o(m−2). (59)

where x is any standardized random variable (hence with I(gx) = 0) with bounded cumulants.
The first term, of order O(m−1), is:

Υ2,3 =
P∑
i=1

(γiii)2 (60)

If 3rd order source cumulants are significantly larger than 4th order, then this quantity is a good
approximation of the MI, up to the constant term J(px). As a consequence, it is sufficient to maximize
Υ2,3 in order to minimize the MI. On the other hand, if 3rd order cumulants are negligible, which
happens for symmetrically distributed sources, then the first non zero term appears to be:

Υ2,4 =
P∑
i=1

(γiiii)2 (61)

which is a O(m−2) term, in the sense of the Central Limit theorem.
One could also imagine to minimize the truncated expansion (59), which would be equivalent to

minimizing the four terms in the sum, with respect to the orthonormal transform. But it turns out that
we do not know whether this quantity is a contrast or not (and it is actually probably not).

In order to make sure that criteria (60) and (61) may be maximized to separate the sources, we must
make sure they are indeed contrast functions. This is precisely the subject of the discussion below.

In the real case, that is, if sources, mixture, and noise are in the real field, then we have:

Proposition 14 If at most one source has a null skewness, then the criterion

Υ2,3 =
P∑
p=1

(γiii)2

is a contrast.

Now in the real or complex cases, the following holds:

Proposition 15 If at most one source has a null kurtosis, then the criterion

Υ2,4 =
P∑
p=1

(γiiii)
2

is a contrast.

More generally:

Proposition 16 If at most one source has a null standardized cumulant of order r > 2, the criterion
below is a contrast for any real number α ≥ 1:

Υα,r =
P∑
p=1

|γ(r)|α
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If all source kurtoses have the same sign, it is possible to drop the absolute value in contrast Υ1,4

(obtained for α = 1) and get a contrast of simpler form:

Proposition 17 If all source kurtoses have the same sign ε, and at most one is null, the following is
a contrast:

Υ1,4 = ε
P∑
p=1

γiiii

This holds true for contrasts based on even order circular cumulants

Proof. We know that
∑

i |γiiii | is a contrast, from Proposition 16. Let us show that this coincides
with Υ1,4 defined in the above Proposition. Denote G = F H the global filter linking the outputs zi of
the separating filter F with the sources sj . Then, by multi-linearity of cumulants, and because sources
are independent, we have that γiiii =

∑
j GijGijG

∗
ijG
∗
ijκ

jj
jj , where κjjjj are source kurtoses. Thus we have∑

i |γiiii | =
∑

i

∣∣∣∑j |Gij |4κ
jj
jj

∣∣∣. But all source kurtoses have the same sign ε, so that this also equals

ε
∑

i

∑
j |Gij |4κ

jj
jj , which is nothing else but Υ1,4.

x
H

s
- -

z
F

x
- -

Figure 5: Contrast criteria aim at estimating a separating filter F

Many other contrast criteria may be thought of, some of them being described in [114] [119] [41].
Let us mention only a simple way to build other extensions, before closing this subsection.

Proposition 18 If Υk(y) are contrasts defined on H·Sk, and {ak} are strictly positive numbers, then
Υ(y) def=

∑
k akΥk(y) is a contrast on H·

⋃
k Sk.

See [41] for a proof. For instance, from Proposition 18, the criterion below is a contrast:

J
(3+4)
2 (x) =

∑
i

4 |γiii|2 + |γiiii|2 (62)

The interest in using proposition 18 is that the contrast built this way is discriminating over a wider
set of sources. In fact, sources need to have either non-zero skewness or non-zero kurtosis.

To conclude, separating sources is equivalent to make the outputs of filter F “the least Gaussian
possible”, as already emphasized in 1980 by Donoho [57].

5.5 Joint Diagonalization contrasts

It may be interesting in some cases to build less efficient contrast criteria, with the goal of reducing the
computational complexity of corresponding optimization numerical algorithms.

Let us explain this idea with the example of contrasts built on fourth order standardized cumulants.
The best possible separation is achieved if all marginal output kurtoses are maximized, as accounted for
in Proposition 15. A sub-optimal way of performing this maximization is to jointly diagonalize all the
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3rd order slices. This idea gives birth to a recursion on the tensor order. Algorithms able to perform
such maximizations are described in [96].

Note that, in the case when the exact diagonalization of the cumulant tensor is possible, diagonalizing
all slices is equivalent to diagonalizing the tensor. This requires no noise, fewer sources than sensors,
and a sufficiently many snapshots, hence the sub-optimality in actual problems.

The same limitations affect the so-called JADE algorithm, proposed in [23]. We shall see easily on
the criterion itself why it is sub-optimal in the presence of noise. Denote Θ the Frobenius norm of the
whole cumulant tensor of z, γk`ij . Then, by definition of Υ2,4:

Θ−Υ2,4 =
∑

ijk` 6=iiii
|γk`ij |2

Instead of maximizing Υ2,4, one can thus minimize the above quantity consisting of all non diagonal
entries.

If we decide to maximize some non diagonal entries, we obviously define a sub-optimal criterion.
Suppose we define:

Θ−ΥJade =
∑

ijk` 6=iik`
|γk`ij |2

Then, some entries are indeed maximized in

ΥJade =
∑
ik`

|Ciki` |2 (63)

In addition, the four indices of the cumulant tensor, which played similar roles because of the (Hermitian
or real) symmetries, now play different roles. The symmetry is consequently broken. But one advantage
is that the above criterion can be written in compact form as:

ΥJade =
P∑

p,s=1

||diag{UH M(p, s) U}||2 (64)

if matrix U is unitary and where matrices M(r) are hermitian and defined as M(r, s)pq = Cqrps . In other
words, the problem has been deflated to the Joint Approximate Diagonalization (JAD) of matrices.

5.6 Darmois’s theorem

The following theorem has been independently discovered by Markinkievicz in 1940 and Dugué in 1951.
It can be found in various textbooks of statistics, including [60] and [109].

Theorem 19 The second characteristic function of a random variable cannot be a polynomial unless it
is at most of degree 2.

Another theorem, very useful for our concern, is due to Darmois (1953), and utilizes the above
theorem:

Theorem 20 Let two random variables be defined as linear combinations of independent random
variables xi:

X1 =
N∑
i=1

ai xi, X2 =
N∑
i=1

bi xi

Then, if X1 and X2 are independent, those xj for which ajbj 6= 0 are Gaussian.



COPYRIGHT PROTECTED © CC

BLIND TECHNIQUES 35

The consequence of Darmois’s theorem is given by the corollary below, and as pointed out in [35],
it is important in the context of Independent Component Analysis.

Corollary 21 If z = C s, where si are non deterministic (their pdf is not reduced to a single mass)
and independent, with at most one of them being Gaussian, then the following properties are equivalent:

1. Components zi are pairwise independent

2. Components zi are mutually independent

3. C = Λ P , with Λ diagonal and P permutation

This corollary allows to process outputs by pairs, as is proposed in many numerical algorithms operating
after prewhitening.

However, it is important to insist that pairwise independence does not imply mutual independence,
as explained by the two examples below.

Example 14: Simplest counter example of pairwise independence. We are given a bag
containing 4 Bowls: 1 Red, 1 Yellow, 1 Green, 1 with the 3 colors. Denote {RB, Y B,GB,RY GB} this
set of bowls. The bowls have equal drawing probabilities P (RB) = P (Y B) = P (GB) = P (RY GB) =
1/4. Define the event “R” of drawing a bowl containing the Red color. We have P (R) = P (RB) +
P (RY GB) = 1/2. By symmetry, we also have P (G) = 1/2 and P (Y ) = 1/2, for Green and Yellow
colors. Then P (R ∩ Y ) = P (RY GB) = 1/4 is equal to P (R) ∗ P (Y ), which shows that events R
and Y are pairwise independent. By symmetry, the two other pairs of color events are also pairwise
independent. But P (R∩Y ∩G) = P (RY GB) = 1/4 since it is the probability of drawing bowl RY GB.
Yet, this is not equal to P (R) ∗ P (Y ) ∗ P (G) = 1/8, which shows that the three color events are not
mutually independent.

Example 15: Pairwise independence of virtual sources. The following property of BPSK
variables has been used in [40] in order to extract 3 sources from a mixture received on 2 sensors.
Consider 3 mutually independent BPSK sources, xi ∈ {−1, 1}, 1 ≤ i ≤ 3. Define x4 = x1x2x3. Then
x4 is also BPSK, dependent on xi. One can verify that xk are pairwise independent : p(x1 = a, x4 =
b) = p(x4 = b |x1 = a).p(x1 = a) =, p(x2 x3 = b/a).p(x1 = a). But x1 and x2 x3 are BPSK, which
yields that p(x2 x3 = b/a).p(x1 = a) = 1

2 ·
1
2 , showing pairwise independence. But xk are obviously not

mutually independent, 1 ≤ k ≤ 4, because x4 is built on the other xi’s. In particular, it can be shown
that Cum{x1, x2, x3, x4} = 1 6= 0.

5.7 Maximum Likelihood

In the noiseless case, it is possible to link ML and MI criteria. As before, denote ps(·) the source joint
pdf and px(·) the joint pdf of observation. In the noiseless case, x = H s implies, by the rule of change
of coordinates, that the likelihood of a measurement xT writes:

px|H(xT |H) =
1

|det H|
ps(H−1xT ) (65)

In the presence of an additive noise v of pdf g(·) independent of s, the Likelihood takes the form:

px,s|H(xT , s|H) = g(xT −H s) · ps(s)
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And the Joint MAP-ML criterion to be used for a joint estimation of sources andmixture takes the form:

(sMAP ,HMV ) = ArgMax
s,H

p(xT , s|H)

= ArgMax
s,H

p(xT |s,H) ps(s)

In the noiseless case, the separating filter is nothing else but F = H−1. Denote pz(·) the joint
pdf of outputs of F , that is, z = Fx. From (65), we have again that px|H(u|F ) = px|H(u|H) =
|det F | ps(Fu). For an increasing number of independent observations, {x1, · · · ,xT }, the average
log-likelihood can be seen to converge to

LT (H) def=
1
T

log p(x1 . . .xT |H)→
∫
px(u) log px|H(u|H) du

Now add and subtract log px(u) in order to have the required terms to build a Kullback divergence
defined in (33), and get:

L∞(H) = −K(px, px|H)− S(px)

Then, because of the invariance of the Kullback divergence by invertible transform seen in property 3
page 23, this average likelihood can be eventually written as, up to the constant term S(px) that does
not depend on F :

ΥML
def= −K(pz, ps) (66)

This equation is interesting because, in contrast to the MI criterion, the ML criterion aims at
minimizing the divergence between the pdf at the output z of the separating filter (here F = H−1) and
the source pdf.

Proposition 22 The average log-Likelihood can be split into two parts thanks to the decomposition
below:

K(pz, ps) = K(pz,
∏
i

pzi) +
∑
i

K(zi, si) (67)

Proof. By definition, K(pz, ps) =
∫
pz log pz −

∫
pz log ps. Because ps =

∏
i psi , the second

term can be rewritten as
∑

i

∫
pzi log psi . Now add and subtract the term

∑
i

∫
pz log pzi . This yields

K(pz, ps) =
∫
pz log pzQ

i pzi
+
∑

i

∫
pz log pzi

psi

In other words, as depicted in figure 4, the log-Likelihood contains the MI, plus a divergence between
the output and source marginal pdf’s. In the absence of knowledge of source pdf’s, it is thus natural
(and recommended) to use only the MI. On the other hand, if source distributions are known, the ML
criterion will be more accurate.

6 Numerical algorithms for static MIMO mixtures

Because the BSS problem has become old since the nineties, there is a whole bunch of numerical
algorithms available today. It is perhaps necessary to make a rough classification in a first stage.

One may distinguish between algorithms according to four features. First of all, one must make the
distinction between Blind Identification algorithms, and Blind Source Separation/Extraction algorithms.

Next, as pointed out in section 2.2, algorithms may be fully adaptive, that is, recursive on time
and calculating a new solution at each sample arrival. This type of algorithm has become less and



COPYRIGHT PROTECTED © CC

BLIND TECHNIQUES 37

less attractive. One can also update the solution every time a block of N samples has arrived; the
algorithm is adaptive block-wise. Conversely, on can process the data in a batch manner, that is when
all the expected data have arrived. In practice, the difference between block-adaptive and purely batch
is rather mild and somewhat arbitrary, since one can always use the estimate obtained with the previous
block, at least as a prior guess.

The third feature of a numerical algorithm is the way sources are extracted: they can be extracted all
together, in a joint manner (and often in a symmetric manner as well). Nevertheless, many techniques
involve sweeping all possible pairs of outputs. In this case, the joint extraction algorithm calls a pair-wise
processing subroutine. The other possibility is to extract sources one by one, which is often referred to
as Deflation.

Lastly, it is important to check out whether the algorithms need a prior standardization (whitening)
or not. For instance, BI of Under-Determined mixtures does not resort to data standardization.

The goal is not to give here an exhaustive list of all available algorithms. Instead, only a few examples
are described, as an illustration.

6.1 Closed-form separation with Υ1,4 for 2× 2 mixtures

The simplest examples leading to closed-form solutions even in the presence of noise are found with 2
sources with same kurtosis sign, when maximizing contrast Υ1,4 defined in Proposition 17 page 33, after
prior standardization. It is convenient to address the real and complex cases separately.

6.1.1 2× 2 real mixtures

Since standardization has been performed beforehand, one looks for an estimate z of sources, expressed
in the form of an orthonormal transform of standardized data:

z =
(

cosα sinα
− sinα cosα

)
x̃ (68)

Denote with symbol κ the output kurtoses, and with γ those of standardized data. Also assume the short
notation κi = κiiii and γi = γiiii. The multi-linearity of cumulants yields the following input-output
relations:

κ1 = γ1 cos4 α+ 4γ1112 cos3 α sinα+ 6γ1122 cos2 α sin2 α

+ 4γ1222 cosα sin3 α+ γ2 sin4 α

κ2 = γ1 sin4 α− 4γ1112 cosα sin3 α+ 6γ1122 cos2 α sin2 α

− 4γ1222 cos3 α sinα+ γ2 cos4 α

Then it is possible to prove, after some basic manipulations, that:

εΥ1,4 = κ1 + κ2 =

[cos 2α sin 2α]
(

γ1 + γ2 γ1112 − γ1222

γ1112 − γ1222
γ1+γ2

2 + 3γ1122

) [
cos 2α
sin 2α

]
The maximum of the contrast is thus obtained when the unit vector is the dominant eigenvector of
the above matrix. It can be computed via EVD for instance. Then angle α can be calculated, up to
indeterminacies entering the inherent scale-permutation indeterminacies of the BSS problem.



COPYRIGHT PROTECTED © CC

38 P. COMON

6.1.2 2× 2 complex mixtures

Let us now turn to complex mixtures; vector z is now a unitary combination of standardized
observations:

z =
(

cosα sinα eϕ

− sinα e−ϕ cosα

)
x̃ (69)

Again define κi the output (circular) kurtoses, C
z

ii

ii
, γi = C

x̃

ii

ii
and γk`ij = C

x̃

k`

ij
. Then contrast Υ1,4 is

again proved to be a quadratic form in some unit vector depending on α [38]:

εΥ1,4 = κ1 + κ2 = uT B u

with
uT = [cos 2α sin 2α cosϕ sin 2α sinϕ]

and

B =

 γ1 + γ2 <{δ} −={δ}
<{δ} 2γ12

12 + <{γ11
22} ={γ11

22}
−={δ} ={γ11

22} 2γ12
12 −<{γ11

22}

 ;

δ = γ11
12 − γ12

22

The contrast maximum is thus obtainable in closed-form, since the EVD of a real 3× 3 matrix can be
computed entirely algebraically (it is not iterative). Angles α and φ are then obtained up to an inherent
indeterminacy, yielding eventually the unitary matrix.

The algorithm based on this algebraic solution will be referred to as CoM1. Other more complicated
algebraic solutions have been proposed before, and names such as CM or CoM have been used [47]
[36]. The the terminology CoMd for algebraic solutions maximizing Υd,4 makes sense, and is assumed
subsequently.

6.2 Jacobi sweeping

We have already described in section 3.2 the standard cyclic Jacobi sweeping for symmetric (or
Hermitian) matrices. The idea is similar for sweeping all the pairs of a symmetric tensor (the number
of pairs of indices is the same, since the sweeping is performed in a symmetric manner). It has been
originally proposed in [31] for the BSS problem. See [36] for convergence issues.

To make it simple, let us describe one sweep of a 3× 3× 3 real symmetric tensor X x x
x x x
x x .

 x x x
x X x
x x .

→ x x x
x x x
x x .



 X x x
x . x
x x x

 x x x
x . x
x x x

→ x x x
x . x
x x X



 . x x
x x x
x x x

 . x x
x X x
x x x

 . x x
x x x
x x X


Symbols X indicate entries that are maximized, x the entris that are minimized, and · entries remaining
unchanged by the last Givens rotation applied on the three tensor ways. As for matrices, there are 3
pairs to process in a sweep over a 3-dimensional symmetric tensor.
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There is an obvious interpretation to make at this point. In order to fix the ideas, take the case
of Υ2,4 =

∑
p |κiiii|2, withour restricting the generality. Under the action of unitary matrices, it can be

easily shown that the quantity
Θ =

∑
abcd

|κcdab|2

remains constant. It is in fact the Frobenius norm of the tensor κ. In other words, maximizing Υ2,4 is
equivalent to minimizing the sum of squares of non diagonal terms. Thus, the procedure is nothing else
but a Tensor Diagonalization attempt.

However, compared to matrices, a major difference is that none of the entries is guaranteed to be
canceled out, contrary to matrices. In fact, not every tensor can be diagonalized by linear invertible
change of coordinates; only rank deficient tensor can. This will be deepen in a subsequent section.

Similarly, the JADE algorithm, maximizing criterion (63), is in general not able to diagonalize exactly
jointly a set of (more than two) matrices. The diagonalization is thus in general also approximate.

6.3 Deflation

The deflation approach of BSS consists of searching for an extracting vector, f , so that its (single)
output

z
def= fTx

maximizes some contrast function. This allows to extract one source. In a second stage, the contribution
of this source can be subtracted in the observation by linear regression. The number of sources present
has been reduced by one, and the process can keep going until all sources have been extracted.

Consider for instance the kurtosis criterion below, valid if data, mixture, and sources are real (the
problem in the complex field is very similar, but a little complicated by notations):

Υ(f) =
E{(fTx)4}
E{(fTx)2}2

− 3

where we have assumed that s, x and z are zero-mean random variables. Because the BSS problem is
known to be identifiable only up to a scale factor, it is not a surprise to see that the kurtosis criterion is
insensitive to the norm of f . It is thus necessary to impose a constraint on vector f ; this can be either
||f ||2 = 1 or E{(fTx)2} = 1.

Under the latter constraint, stationary values of Υ are obtained when the objective and constraint
differentials are collinear:

E{x (xTf)3} = λE{x (xTf)}

where the Lagrange multiplier can be shown to be λ = E{z4}/E{z2}.

If Deflation is run after prior standardization, which is not necessary, then the two above mentioned
constraints are equivalent, and the kurtosis criterion reduces to a moment criterion, up to a constant:

Υ(f) = E{(fTx)4}

The condition of collinearity of differentials then becomes:

E{xi (fTx)3} = λ fi, ∀i (70)

for some Lagrangian multiplier λ to be determined. This would result in a fixed-point equation if λ was
known. Actually, it must be determined so as to satisfy the constraint, and thus unfortunately depends
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again on x and f . In [82] [80], λ is arbitrarily set to a deterministic fixed value, which allows to spare
computations. For this reason, as pointed out in [81], the FastICA algorithm should be viewed rather
as a Newton approximation than a fixed point algorithm.

Beside this approximation of FastICA, there exist other deflation algorithms. One of the very first
is that of Delfosse and Loubaton [52], where the filter f is parametrized by angles of plane rotations
(because a unit norm vector is nothing else but a column of an orthonormal matrix). This algorithm
is thus executed after standardization. Simple gradient ascent can be also implemented, like the fixed
step gradient as in [145]. There exist other solutions making fewer approximations, like the Robust ICA
suggested in [41], where the optimal step size is calculated at every iteration.

7 Multi-way Factor Analysis

The usefulness to use Multi-way factor analysis may be argued in different manners. Taking into account
what has been said so far, the easiest argument to put forward is the case of Under-Determined Mixtures
(UDM).

These mixtures are such that the number of sources, P , strictly exceeds the number of sensors,
K. The consequence is that this mixture obviously does not admit a linear inverse. Thus, there is
no possibility to define contrast criteria as we did so far, or the definition would need to be strongly
revisited.

Another argument is more difficult to explain at this stage. Let’s still introduce the necessary
material, and we shall go back to this later on. In Antenna Array Processing, data are often recorded
for different values of time and space. That’s why they may be arranged in a matrix (array of order 2).
Suppose the data are measured according to more than two indices, say space, time, and frequency for
instance. Then a natural way to store them would be in a 3-way array. This arrangement is meaningful
if frequency slices are not all proportional to each other. If this was the case, one could keep only one
matrix slice without loosing information. One often says that storing in a different way is recommended
when frequency diversity is present.

This discussion suggests that there exist two possible approaches:

• Using the Cumulant tensor of the 2-way data if no additional diversity is present

• Decomposing directly the r-way data array if sufficient diversity is present

In both cases, it will be necessary to decompose a tensor of order larger than 2 into elementary
components. This may be viewed as one of the possible extensions of SVD to higher order arrays.
The main difference between the two approaches is that the Cumulant array is a square tensor, that is,
all its dimensions are equal, and that it also enjoys symmetries. On the other hand, the data array may
have different dimensions.

7.1 Canonical Decomposition

We have already seen before that cumulants enjoy the multi-linearity property. This allows them to
deserve the name of tensors. If data follow the noiseless linear model:

x = H s

where sources si are statistically independent, then the cumulant tensor of observations xj can be
decomposed into (taking the example of the 3rd order):

C
x ijk

=
∑
p

HipHjpHkp Cs ppp
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More generally, given any symmetric tensor T , say of order 3, then its Canonical Tensor Decomposition
(CanD) is defined as:

T =
rank(T )∑
p=1

κp h(p) ◦ h(p) ◦ h(p) (71)

where rank(T ) denotes the smallest integer for which the decomposition is exact. Therefore, every
tensor in the right hand side can be called a rank one tensor.

T = κ1

�� ��

+ . . . + κP

Figure 6: Canonical Decomposition of a 3rd order tensor

Now for a tensor of general form, Tijk, where 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K, the CanD may be
expressed similarly as:

T =
rank(T )∑
p=1

a(p) ◦ b(p) ◦ c(p) (72)

where the scalar weighting factor κp has been pulled into one of the loading vector terms. With the
notation introduced in section 3.3, this can be written in compact form:

T = A •
2
B •

2
C

Matrices A, B, C are the loading matrices, of size I×P , J×P , and K×P , respectively, if P = rank(T ).

The concept of tensor rank has been apparently well defined. But there are several striking differences
with matrix rank that need to be stressed. First of all, the rank of a real tensor may not be the same
if computed in the real or complex fields, as shows the example below.

Example 16: Complex rank:.

T (:, :, 1) =
(
−1 0

0 1

)
, T (:, :, 2) =

(
0 1
1 0

)
,

If decomposed in IR , it is of rank 3:

T =
1
2

(
1
1

)◦3
+

1
2

(
1
−1

)◦3
− 2

(
1
0

)◦3
whereas it admits a CanD of rank 2 in lC :

T =


2

(
−
1

)◦3
− 

2

(

1

)◦3

This is thus extremely important to indicate in which field the rank is computed. Of course, for any
real tensor T , it holds true that:

rank lC (T ) ≤ rankIR (T )
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Similarly, we do not know whether the rank of a symmetric tensor is always the same if the rank-one
tensors involved in the CanD are imposed to be symmetric. Therefore, this constraint will be assumed
in the sequel.

Lastly, contrary to matrices, it is difficult to compute the rank of a given tensor, since we have not
at our disposal a numerical algorithm able to compute the CanD (or even the rank only) in the general
case. The algorithms available today are usable only under constraints concerning either the dimensions
or the rank itself.

7.2 Decomposition of the Cumulant Tensor

We restrict our attention in this section to symmetric tensors, that is, tensors for which Tijk = Tσ(i,j,k)

for any permutation σ among indices.
Let us define the typical rank ω of symmetric tensors of order d and dimension K: this is the rank

that such tensors will have with probability 1 if their entries were drawn independently according to a
continuous distribution on the real line.

Then it can be shown [48] that the typical rank computed in lC of real symmetric tensors takes the
values given in the table 2 below.

ω K 2 3 4 5 6 7 8
3 2 4 5 8 10 12 15

d 4 3 6 10 15 22 30 42

Table 2: Generic rank ω of symmetric tensors as a function of the dimension K and the order d

It can be read for instance in the table that a 3 × 3 × 3 symmetric tensor has generically a rank 4
in lC . However, its CanD is not unique, as reported in table 3.

D K 2 3 4 5 6 7 8
3 0 2 0 5 4 0 0

d 4 1 3 5 5 6 0 6

Table 3: Generic dimension D of the manifold of solutions

At this point, one can stress additional striking differences with matrices. First, the typical rank of a
symmetric tensor is generally larger than its dimension. Next, the CanD of a typical tensor is essentially
unique (i.e. unique up to scale and permutation) only for some values of order and dimension; see [48]
for values for other orders or dimensions. Last, there exist tensors having a rank larger than the typical
rank. In order to show this, just take the example below [39]:

Example 17: Tensor of order 3, dimension 2, but rank 3. Define the 2 × 2 × 2 symmetric
tensor, null everywhere except for the entries T112 = T121 = T211 = 1. This tensor admits the
decomposition:

T =
(

1
1

)◦3
+
(
−1
1

)◦3
− 2

(
0
1

)◦3
which is an explicit irreducible CAND. This decomposition is depicted in figure below.
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In dimension 2, CanD entirely computable thanks to Sylvester’s theorem on polynomials, in IR or
in lC . But the calculation of a CanD is very hard in higher dimensions.

Example 18: Tensor of order 3, dimension 3, but rank 5. Similarly, define the tensor of
order 3 and dimension 3 by Tijk = 0 everywhere except for the entries for which i+ j+ k = 7, for which
the value is 1. It can be shown that this tensor has rank 5. Note that the typical rank is 4 in that case.

Does BI yield the sources?

In general, the Blind Identification of the UDM does not yield the sources. The problem is just changed
into another one, once the mixture is estimated. In fact, the problem then consists of estimating the
inputs of a known linear system whose outputs are observed. But there are cases where it is possible
to estimate the sources perfectly, and in particular when they have a discrete distribution. It is even
sometimes possible to extract directly the sources without prior BI, as shows the example commented
now.

Let us go back to example 5.6 page 35. We defined a system with 3 inputs and 2 outputs. Inputs si
take their values in {−1, 1}, and are mutually statistically independent. In order to be able to build a
linear inverse, it is necessary to increase the size of the observation space, in a non linear manner. This
is made by building the virtual observations [40]: z = [x3

1, x
2
1x2, x1x

2
2, x

3
2]T. Then the new system to

invert is 4× 6, and thus not Under-Determined anymore:

(
x
z

)
=
[

H 0
B

]
·


s1

s2

s3

s1s2s3


with one virtual source s4

def= s1s2s3. The BSS problem is solvable because source s4 is pairwise
independent from the others.

7.3 Decomposition of the Data Tensor

In an increasing number of actual problems, it becomes very useful to be able te decompose a non
symmetric tensor into a sum of rank-one terms. The tensor to be decomposed can be the data recorded
themselves [132], or sample statistics derived from them [49]. The direct decomposition of the Data
tensor finds many applications, mainly in Factor Analysis [132], but also more recently in Sensor Array
Processing [128] [27].

In practice, instead of trying to fit exactly the data tensor with a CanD, it is preferred to approximate
the data tensor by another of lower rank:

T =
ω∑
p=1

κp a(p) ◦ b(p) ◦ c(p) + E (73)
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This is known as the CP decomposition, and was introduced independently by Harshman [75] and Carroll
[24]. See [88] [132] [15] [46] for a general introduction to CP decompositions.

The problem is, given T , to compute an estimate of loading matrices A, B, and C. One may
restrict to the third order for the moment, in order to ease understanding. The error Ψ def= ||E||2 is an
homogeneous polynomial of degree 6 in many variables. Stationary points are thus solutions of a system
of polynomials of degree 5 in many variables. There are algebraic techniques dedicated to thus kind of
problem, such as the Groebner bases, but they are practicable only for very limited values of the degree
and number of variables.

The CP decomposition can be computed by Alternating Least Squares (ALS). In fact, suppose B
and C are fixed. Then error Ψ is quadratic in each a(p), and can then be minimized algebraically
(calling for the SVD for instance). The idea is just to run a relaxation over these 3 modes, and estimate
in turn A, B, and C.

Other useful writings of the criterion to be minimized include:

Ψ =
K3∑
k=1

||T (:, :, k)−ADiag(C(k, :)) BT||2

or
Ψ = ||T (1) −A(C �B)T||2 (74)

This ALS algorithm is of course iterative, and unfortunately known to converge extremely slowly. In
addition, there is no proof of global convergence (the minimum reached might be local is some cases).
There are other algorithms that have been proposed, but none of them is entirely satisfactory; see [46]
[14] references therein.

Kruskal rank and essential uniqueness

Given a matrix A, we have rank(A) = r iff there is at least one subset of r lin. independent columns,
and if this fails for any subset of r + 1 columns. In contrast, one defines the Kruskal rank of a matrix,
k(A): rK(A) = k iff every subset of k columns is lin. independent, and this fails for at least one subset
of k + 1 columns.

Property: An immediate consequence is that k(A) ≤ rank(A) ≤ dim(A).

According to [89] [127] [13], the uniqueness of the CP analysis can be ensured if some sufficient
conditions are satisfied. The sufficient condition proposed by Kruskal in 1977 is

k(A) + k(B) + k(C) ≥ 2ω + 2

where k(A) denotes Kruskal’s rank of A.
This condition attempts to express the need for diversity: matrix slices must be “sufficiently

different”. This Uniqueness sufficient condition can be extended to order d as: 2ω ≤ dK − d + 1.
For instance in the symmetric case, one would need at least that 2ω ≤ 3K − 2, which is almost never
satisfied by the typical rank.

On the other hand, a sufficient condition that allows almost surely a unique CP decomposition is
that the rank is strictly smaller than its “expected value” [46].
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7.4 Unexpected topological properties

In order to approximate in the Least Squares (LS) sense an object of an Euclidian vector space by
another belonging to a subset S, it is required that S be closed (in the sense of the topology induced
by the norm). But is this condition indeed verified for the CP analysis?

It turns out that the answer is no, unfortunately. More precisely, denote Yr the subset of tensors of
rank at most r. Then Yr is closed only for r = 1. In other words, it is theoretically not possible to find
a LS rank-r approximate of a given tensor, unless r = 1. It is even possible to find a series of rank r
tensors converging towards a tensor of rank r+ 1 [43]. This result is very surprising, when we base our
intuition on the algebra of matrices!

This is currently the subject of researches, which have not yet allowed to sketch an solid theory on
the subject. This is the reason why it will not be elaborated on this any further, even if the CP has
been widely used for over thirty years...

8 Concluding remarks

Contrary to ICA, which is now a subject well defined that has been widely studied, Tensor
Decompositions are just beginning to raise increasing interest. Therefore, these notes have only tackled
this strange subject, and have rather raised problems than solved. However, even if little is already
known about identifiability conditions of the CP decomposition, and necessary conditions for uniqueness,
one must recognize that CP is widely used with success, with the help of various suboptimal numeriacl
algorithms, including ALS.

Multi-linear vs Linear Blind Model fitting

As we already stressed, CanD is generally necessary when the number of sources exceeds the number
of sensors, even if we gave an exception with BPSK sources (and there are certainly other exceptions).
If there is enough diversity among loading vectors, a multi-way data tensor can be built, which allows
to use the CP decomposition (cf. figure 7). Otherwise, the data may be stored in matrix form without
loosing information, and need to be treated with the ICA tools (cf. figure ica-fig).

=
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++. . .
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Figure 7: Canonical decomposition (CanD) of a Data -or Cumulant- tensor.

Some Unaddressed Problems

This tutorial was very incomplete, and it is important to stress that. A number of subjects that have
been left aside can be listed, and include the following.

• There are other natural possible extensions of SVD to tensors. One of them is the so-called called
HOSVD [93] [95]. In the HOSVD, the decomposition constructed with matrices A, B, C does
not involve a diagonal tensor but a Core tensor which has all-orthogonal properties. It is diagonal
only in the matrix case. This is one of the instances of the Tucker3 modeling [102] [143] [132] [46].
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Figure 8: BI decomposes a data tensor as if they were stored in matrix format, ignoring
that there are more than two ways. There is nothing else that can be done if diversity
lacks. If the rank does not exceeds the dimension, a contrast-based approach can be
assumed, and ICA may be run. Otherwise, BI of the UDM must be performed, via the
construction of a Cumulant tensor whose CanD will be computed.

• As far as tensor numerical algorithms are concerned, there are some alternatives that have been
proposed. One of them is the recursion on the tensor order, with the Simultaneous lower-order
Tensor Diagonalization (STD) [96] [44, Ch.3].

• Nothing has been said on Performance Indices. For invertible mixtures, the Signal to Interference
plus Noise Ratio (SINR) can be used, keeping in mind that there is a permutation ambiguity,
which makes things more complicated. For UDM or CanD in the presence of more sources than
sensors [44, Ch.9], only an Identification error may be used. Again, the BI index should not be
sensible to scale and permutation.

• When sources are non stationary [120], or have different spectra (even overlapping) [11], there exist
separation techniques based on second order statistics. The latter technique, sometimes referred
to as SOBI, is inspired from previous works [62] [45] [44, Ch.7].

• Taking again into account the time dimension, one can improve on performances. In speech for
instance, not only sources are non stationary, but there are also often some silent periods. During
these periods, the number of sources may be smaller than the number of sources, even if the total
number of audio sources exceeds it. This allows to decompose parsimonious representations in
over-complete bases [103] [100] [44, Ch.10]. This is actually linked to the concept of frames.

• If sources have a discrete distribution, specific techniques may be used, as we have already seen in
these notes. But the subject is only shyly tackled in the literature (see [44, Ch.3] and references
therein).

• Convolutive mixtures are widely studied for a dozen of years. This subject has been completed
left aside for reasons of space, but references have been given in section 2.4 [44, Ch.8].

• Semi-Blind approaches assume that part of source samples are known by the receiver. If this
information can be taken into account, the performances are expected to be better. This difficult
subject is little addressed in the literature, despite its practical great interest [7] [17] [51] [153].
For instance, several mobile transmissions use this assumption (e.g. GSM); they are referred to
as semi-blind techniques [44, Ch.15].

• To close this overview, one can insist on the lack of knowledge of tensors, and in particular on the
unexpected topological properties of tensor spaces that have been above mentioned [43]. This is
the subject of stuttering researches.
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9 Exercises

Exercise 1 Cumulant of independent variables. Let X = a Y + b Z, where Y and Z are independent
random variables with finite moments up to order r, and (a, b) deterministic. By using the definition
of the second characteristic function, prove that rth order cumulants are related by: C

x (r)
= ar C

y (r)
+

br C
z (r)

Exercise 2 Real Gaussian Characteristic function. Show that for a real Gaussian random variable x,
the first characteristic function takes the form bellow, where µ′1 = E{x} and µ2 = E{(x− µ′1)2}:

Φ(t) = exp[µ′1 t−
1
2
µ2 t

2] (75)

Exercise 3 Cumulants may not exist. Let the Cauchy distribution

p(u) =
1

π (1 + u2)

Show that moments and cumulants of order larger than 1 are infinite. Explain why the mean is also
undefined.

Exercise 4 First cumulants. Express the Cumulants of order 2 and 3 of a real scalar random variable
as a function of moments. Assuming a zero mean and a symmetric distribution, express the 4th order
cumulant as a function of moments.

Exercise 5 Uniform distribution. Show that, for a random variable uniformly distributed in the
interval [−u,+u], we have the following expressions for moments and cumulants: µ2k = u2k

2k+1 , C4 =
− 2 u4

15 , K4 = −6
5 .

Exercise 6 Binary distribution. Let x be a random variable taking two values x1 and x2 with
probabilities P1 and P2. (i) Show that we must have P1 = 1

1+a2 , P2 = a2

1+a2 , and x1 = −a, x2 = 1/a, for
some free parameter a, if x is zero-mean and unit variance. (ii) Show that the skewness is C3 = 1/a− a
and the kurtosis is C4 = P2 [a2 + 1/a4] − 3. (iii) What is the value of a and C4 in the symmetric case?
What can be concluded?

Exercise 7 Extremal values of the kurtosis. Consider the set of probability densities defined on the
real line with zero mean and unit variance. (i) What are the distributions reaching extreme values of
the Nth order moment? (ii) What do we get for the kurtosis?

Exercise 8 Circularity of PSK random variables. PSK−r random variables take their values in the
set of rth roots of unity, with equal probabilities. Show that they are circular up to order r − 1.

Exercise 9 The noncircular covariance. The covariance matrix of a complex random variable is

E{zi zj∗} − E{zi}E{zj}∗ = C
z

j

i

On the other hand, if the random variable z is circular at order 2, then the moment µz ij = E{z zT}ij
is null for all (i, j). Analyze the circularity at order 2 of the following random variables: (i) BPSK,
(ii) PSK8, (iii) PAM4, (iv) QAM16. (v) what about the circularity of the 2-dimensional variable x,
where x1 is PSK8 and x2 is PAM4, xi being independent?
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Exercise 10 Strict circularity. Show that a random variable z that is circular in the strict-sense is
circular at any order.

Exercise 11 Two sources without noise. Assume a static model x = H s of dimension 2, where
s has two statistically independent components. Also assume that a spatial pre-whitening has been
performed, so that the standardized observation exactly follows the model below:

x̃ =
(

cosα − sinα eϕ

sinα e−ϕ cosα

)
s (76)

Denote γk`ij = Cum{x̃i, x̃j , x̃k∗, x̃`∗} the fourth order circular cumulants of x̃ and κi =
Cum{si, si, si∗, si∗} those of si.
(i) Using the multi-linearity property of cumulants, establish the input-output relations between cross
cumulants γ12

12 , γ12
11 , and γ22

12 on one hand, and κi, ϕ and α on the other hand.
(ii) From these expressions, deduce a closed-form solution for ϕ and α, and hence the mixing matrix.

Exercise 12 Tendency to Gaussianity. Let s1 and s2 be two statistically independent random
variables, with positive kurtoses κ1 and κ2, respectively. Show that the kurtosis K of the random
variable x = a1 s1 + a2 s2 is smaller than (or equal to) κi. Hint: without restricting the generality and
for the sake of simplicity, assume that si have a unit variance, and show that K reaches its minimum
for κ1κ2/(κ1 + κ2) and its maxima for κ1 and κ2.

NB: This result will be extended in two respects in this course: in the development of the
cumulant-based Central Limit theorem, and in the construction of cumulant-based contrast criteria.

Exercise 13 Inequality between skewness and kurtosis. (i) Show the following inequality between
skewness and kurtosis of real random variables:

K(3)
2 ≤ K(4) + 2

One can restrict the proof to zero mean variables to make it simpler. (ii) Show that −2 ≤ K(4), and
give an example for which the bound is reached. (iii) How could this result change in the complex
case? Hint: consider the variance of a random variable of the form aX + bX2, or the determinant of
the Hankel matrix whose first row is [1, µ′

x (1)
, µ′

x (2)
] and last column [µ′

x (2)
, µ′

x (3)
, µ′

x (4)
]T.

Exercise 14 Statistics of the Gauss distribution. Let x be a real Gaussian random variable of
probability distribution px(u) = 1

σ
√

2π
exp(− u2

2σ2 ). (i) Explain why odd order moments are null.
(ii) Show that even order moments are given by

µ
x (2r)

= σ2r (2r)!
r! 2r

. (77)

(iii) Show that cumulants of order larger than 2 are all null. Hint: use the second characteristic function.

Exercise 15 MI of a Gaussian variate. Take a real Gaussian random variable of size K, of density

gx(u) = [2π]−K/2 [det V ]−1/2 e−
1
2
uTV −1u, (78)

where V is an invertible covariance matrix. Compute its Mutual Information. What happens if V is
diagonal? Can this property be preserved under some congruent transforms?
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Exercise 16 Entropy of a Gaussian variate. (i) Give the expression of the differential entropy of the
Gaussian distribution (78), when the logarithm is computed in basis a. (ii) What happens if the
variable is complex Gaussian circular?

Exercise 17 Entropy of discrete variables. Let a random variable X be equally distributed on N
distinct symbols. What is its discrete entropy? If computed in basis 2, what would be for instance the
entropy of a QAM64 random variable?

Exercise 18 Extreme values of Entropy. (i) What is the general form of distributions reaching extreme
values of the differential entropy? What do we get for distributions with support: (ii) the whole real
line IR , (iii) the positive real line IR+, (iv) a finite interval [a, b]?

Exercise 19 Shannon entropy. Show that the Differential Entropy is not the limit of Shannon entropy,
defined for discrete random variables.

Exercise 20 Kullback divergence. What is the Kullback divergence between a zero-mean uniform
random variable and a zero-mean Gaussian variable of same variance?

Exercise 21 Static 2 × 2 model. In the noiseless real static 2 × 2 blind identification problem, one
measures the following three cross cumulants: γ1112 =

√
3/4, γ1222 = −

√
3/4 et γ1122 = −3/4. Then

what are the acceptable estimates of the mixing matrix among the following:[
1 −

√
3√

3 1

]
,
[ √

3 1
−1

√
3

]
,
[ √

3 1
1
√

3

]
,
[ √

3/2 −
√

3/2
1/2 1/2

]
Can one estimate the source kurtoses?

Exercise 22 Simplest counter-example of pairwise independence. We are given a bag containing 4
Bowls: 1 Red, 1 Yellow, 1 Green, 1 with the 3 colors. Denote {RB, Y B,GB,RY GB} this set of bowls.
The bowls have equal drawing probabilities P (RB) = P (Y B) = P (GB) = P (RY GB) = 1/4. Define
the event “R” of drawing a bowl containing the Red color.
(i) What is the probability of events R, Y , or G?
(ii) What is the probability of event R ∩ Y ? Are the events R, Y , G, pairwise independent?
(iii) What is the probability of R ∩ Y ∩G? Are the events R, Y , G, mutually independent?

Exercise 23 Pairwise independence of virtual sources. Consider 3 mutually independent BPSK sources,
xi ∈ {−1, 1}, 1 ≤ i ≤ 3. Define x4 = x1x2x3.
(i) Prove that x4 is also BPSK, (but dependent on other xi’s).
(ii) Show that xk are pairwise independent
(iii) Show that they are not mutually independent. Hint: one can show that that Cum{x1, x2, x3, x4} 6= 0.

Exercise 24 A class of general contrasts. Let f be a convex strictly increasing function, with f(0) = 0,
and let p and q be two positive (possibly null) integers so that p + q > 2. Denote ζ(q)

i (p) the marginal
cumulants at the output of a unitary mixture. Then show that the functional

Υf (z) def=
∑
i

f(|ζ(q)
i (p)|)

is a contrast, if used after prewhitening. Hint: for the domination property, use first the fact that f is
increasing and that G is unitary, and then that f is convex.
Note: a real function f is convex iff for any set of positive numbers αi such that

∑
i αi = 1, f(

∑
αixi) ≤∑

αif(xi).
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Exercise 25 Comparison of discrimination powers. Let x be a random variable of size P and unit
covariance matrix. It is desired to find a unitary matrix Q such that the random variable z = Q x
maximizes a statistical contrast. Define the following contrast criteria:

ΥCoM2(Q) =
P∑
i=1

|Tiiii|2, ΥSTD(Q) =
P∑
i=1

P∑
j=1

|Tiiij |2, ΥJAD(Q) =
P∑
i=1

P∑
j=1

P∑
k=1

|Tiijk|2

where Tijk` = Cum{zi, zj , zk, z`} denotes the fourth order cumulant of the output z.
(i) Show that ΥCoM2(Q) ≤ ΥSTD(Q) ≤ ΥJAD(Q).
(ii) Show that, for any unitary matrix Q, ΥJAD(Q) ≤ ΥCoM2(I) with equality iff Q = ΛP for some
permutation P and diagonal matrix Λ. What do you conclude?
(ii) Explain why these inequalities show that ΥCoM2 performs better than ΥSTD, itself performing better
than ΥJAD.

Exercise 26 Sources with same kurtosis sign. Assume all source processes have the same kurtosis
sign, ε. Then show that the following is a contrast after prewhitening:

Υ1,4 = ε

P∑
p=1

ζiiii

Exercise 27 Stationary points of contrast CoM2. Let T be a real symmetric matrix, and let G =
Q T QT, where Q is a real orthogonal matrix. Define the CoM2 contrast function Υ2(Q) =

∑
iG

2
ii.

(i) Show that the stationary points of Υ2(Q) satisfy, for any pair of indices (q, r) with q 6= r: Gqq Gqr =
GrrGqr.
(ii) Show that we have a maximum iff G2

qr < (Gqq −Grr)2. What are are thus the possible extrema of
Υ2(Q)?
(iii) Condiser now third order symmetric tensors S and G, with Gijk =

∑
a,b,cQiaQjbQkc Tabc. What

are the stationary points of Υ2(Q)? Can we draw the same conclusions?
Hint: write the differential dQ as dS Q, where dS is skew symmetric, and use a canonical basis for the
space of skew symmetric matrices.

Exercise 28 Blind identification of a MA model. Consider the SISO MA model x[n] =
∑L

`=1 h[`] s[n−
`] + v[n], where s[n] is a i.i.d. non Gaussian sequence and v[n] is Gaussian.
(i) By using the multi-linearity property of cumulants, show that the cumulant C(i, j) def= Cum{x[t], x[t+
i], x[t+ j], x[t+ L]} must be equal to h[i]h[j]h[0]h[L]κs, where κs denotes the 4th order cumulant of
s[n].
(ii) deduce a simple way of identifying the taps h[i] from cumulant estimates C(i, j) when the channel
length L is known.

Exercise 29 Complex rank:. Define the 2× 2× 2 tensor by its two matrix slices:

T (:, :, 1) =
(
−1 0

0 1

)
, T (:, :, 2) =

(
0 1
1 0

)
,

Check out that T can be decomposed in IR as:

T =
1
2

(
1
1

)◦3
+

1
2

(
1
−1

)◦3
− 2

(
1
0

)◦3
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whereas it admits a CanD of rank 2 in lC :

T =


2

(
−
1

)◦3
− 

2

(

1

)◦3
What do you conclude concerning the rank of T ?

Exercise 30 Maximal rank of a tensor. Define the 2×2×2 symmetric tensor, null everywhere except
for the entries T112 = T121 = T211 = 1. This tensor admits the decomposition:

T =
(

1
1

)◦3
+
(
−1
1

)◦3
− 2

(
0
1

)◦3
which is an explicit irreducible CAND. This decomposition is depicted in figure below.
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w
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w

ww w
+ 2+

blue bullets = 1, red bullets = −1.

Similarly, define the tensor of order 3 and dimension 3 by Tijk = 0 everywhere except for the entries for
which i + j + k = 7, for which the value is 1. It can be shown that this tensor has rank 5. Note that
the typical rank is 4 in that case.



COPYRIGHT PROTECTED © CC

52 P. COMON

10 Bibliographical references

[1] K. Abed-Meraim, P. Loubaton, E. Moulines, “A subspace algorithm for certain blind identification
problems”, IEEE Trans. Inf. Theory, pp. 499–511, Mar. 1997.

[2] K. Abed-Meraim, E. Moulines, P. Loubaton, “Prediction error method for second-order blind
identification”, IEEE Trans. Sig. Proc., vol. 45, no. 3, pp. 694–705, Mar. 1997.

[3] K. Abed-Meraim, Others, “On subspace methods for blind identification of SIMO FIR systems”,
IEEE Trans. Sig. Proc., vol. 45, no. 1, pp. 42–55, Jan. 1997, Special issue on communications.

[4] L. Albera, A. Ferreol, P. Comon, P. Chevalier, “Blind identification of overcomplete mixtures of
sources (BIOME)”, Lin. Algebra Appl., vol. 391, pp. 1–30, Nov. 2004.

[5] S. Amari, “Natural gradient works efficiently in learning”, Neural Computation, vol. 10, pp.
251–276, 1998.

[6] S. Amari, H. Nagaoka, Methods of Information Geometry, Am. Math. Soc., 2000.

[7] J. Ayadi, E. Decarvalho, D. T. M. Slock, “Blind and semi-blind maximum likelihood methods for
FIR multichannel identification”, in Proc. ICASSP, Seattle, May 12-15 1998.

[8] M. Babaie-Zadeh, C. Jutten, K. Nayebi, “Blind separation of post-nonlinear mixtures”, in Int.
Conf. Indep. Comp. Ana. (ICA’01), San Diego, Dec. 2001, pp. 138–143.

[9] Y. Bar-Ness, J. W. Carlin, M. L. Steinberger, “Bootstrapping adaptive interference cancelers:
Some practical limitations”, in Proc. The Globecom. Conference, Miami, Nov. 1982, pp. 1251–1255,
paper No F3. 7.

[10] A. J. Bell, T. J. Sejnowski, “An information-maximization approach to blind separation and blind
deconvolution”, Neural Computation, vol. 7, no. 6, pp. 1129–1159, Nov. 1995.

[11] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. MOULINES, “A blind source separation
technique using second order statistics”, IEEE Trans. Sig. Proc., vol. 45, no. 2, pp. 434–444, Feb.
1997.

[12] A. Benveniste, M. Goursat, G. Ruget, “Robust identification of a non-minimum phase system”,
IEEE Trans. Auto. Contr., vol. 25, no. 3, pp. 385–399, June 1980.

[13] J. M. F. Ten Berge, N. Sidiropoulos, “On uniqueness in Candecomp/Parafac”, Psychometrika,
vol. 67, no. 3, pp. 399–409, Sept. 2002.

[14] J. Brachat, P. Comon, B. Mourrain, E. Tsigaridas, “Symmetric tensor decomposition”, Linear
Algebra Appl., 2010, accepted. hal:inria-00355713, arXiv:0901.3706.

[15] R. Bro, “Parafac, tutorial and applications”, Chemom. Intel. Lab. Syst., vol. 38, pp. 149–171,
1997.

[16] H. Broman, U. Lindgren, H. Sahlin, P Stoica, “Source separation: a TITO system identification
approach”, Signal Processing, Elsevier, vol. 73, no. 2, Feb. 1999, special issue on blind separation
and deconvolution.

[17] V. Buchoux, O. Cappe, Others, “On the performance of semi-blind subspace-based channel
estimation”, Trans. on Sig. Proc., vol. 48, no. 6, pp. 1750–1759, June 2000.



COPYRIGHT PROTECTED © CC

BLIND TECHNIQUES 53

[18] A. A. Cadzow, “Blind deconvolution via cumulant extrema”, IEEE Sig. Proc. Mag., vol. 13, pp.
24–42, May 1996.

[19] J. F. Cardoso, “Eigen-structure of the fourth-order cumulant tensor with application to the blind
source separation problem”, in Proc. ICASSP Albuquerque, 1990, pp. 2655–2658.

[20] J. F. Cardoso, “Super-symmetric decomposition of the fourth-order cumulant tensor. Blind
identification of more sources than sensors”, in Proc. ICASSP, Toronto, 1991, pp. 3109–3112.

[21] J. F. Cardoso, “Iterative techniques for blind source separation using only fourth order cumulants”,
in Proc. EUSIPCO, Brussels, Belgium, 1992.

[22] J. F. Cardoso, “High-order contrasts for independent component analysis”, Neural Computation,
vol. 11, no. 1, pp. 157–192, Jan. 1999.

[23] J. F. Cardoso, A. Souloumiac, “Blind beamforming for non-Gaussian signals”, IEE Proceedings
- Part F, vol. 140, no. 6, pp. 362–370, Dec. 1993, Special issue on Applications of High-Order
Statistics.

[24] J. D. Carroll, J. J. Chang, “Analysis of individual differences in multidimensional scaling via n-way
generalization of Eckart-Young decomposition”, Psychometrika, vol. 35, no. 3, pp. 283–319, Sept.
1970.

[25] P. Chevalier, “Méthodes aveugles de filtrage d’antennes”, Revue d’Electronique et d’Electricité,
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