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General

P.COMON

Principal Component Analysis (PCA)

Goal

Given a K-dimensional r.v., «, find U and z such that

m Observation

x=Uz

m 2z has uncorrelated components z;

NB: Because of lack of uniqueness, U is often assumed to be

unitary.
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General

Independent Component Analysis (ICA)

Goal

Given a K-dimensional r.v., x, find H and s such that

m Observation
r=Hs (1)

m s has mutually statistically independent components s;

®» “Blind” terminology: only outputs z; are observed.

I3s
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General

Uniqueness

Inherent indeterminations
if s has independent components s;, so has AP s

where A is invertible diagonal and P permutation

Solutions
If (A, s) solution, then (AAP, PTA™'s) also is.

m “Fssential uniqueness” unique up to a trivial filter, i.e. a

scale-permutation

m Whole equivalence class of solutions = Look for one

representative.
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General

Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed
sources

Consider the mixture of two independent sources

1 1 1 S1

To 1 -1 S9
where E{s?} = 1 and E{s;} = 0. Then z; are uncorrelated:
E{wi 2} = B{si} — E{s3} =0
But z; are not independent since, for instance:
E{ai a3} — B{ai}B{a3} = B{s{} + E{sy} — 6 #0

> demolCA2x2
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General

PCA vs ICA

Example 2: 2 sources and 2 sensors

Gaussian Mon Gaussian
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General

Applications (1)

m Sensor Array Processing

e Localization with reduced diversity
e Localization with ill calibrated antennas

e Detection and/or extraction with unknown antennas

(eg. sonar buoys, biomedical, audio, nuclear plants...)

e Blind extraction (eg. COMINT: interception, surveillance)

I3s
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General

Applications (2)

m Factor Analysis

e Chemometrics
e Econometrics

e Psychology
m Denoising
m Compression
m Arithmetic Complexity
m Machine Learning

m Exploratory Analysis
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General

Taxonomy (1)
Static/Dynamic and Noisy/Noiseless:

x[n] = H x s[n] + v[n] (2)

Linearly Invertible/Under-Determined:

UnderDet
Number of sources : P z K : Number of sensors

Tnvertible

I3s
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General

Taxonomy (2)

Transmit /Receive diversity:

Sources Sensors

1 K

1 SISO | SIMO
P MISO  MIMO
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General

Taxonomy (3)

Assumptions required on sources:

m H1. use of Time coherency of s(n): separation by exploiting

spectral differences.
m H2. Sources s; are mutually statistically independent

e Static case: r.v. statistically independent (but may have
identical p.s.d.) — ICA

e Dynamic case: Sources are i.i.d. (i.e. white) processes
m H3. Sources are Discrete (but may be stat. dependent)

m H4. Sources are non stationary (and have different time profiles)
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General

Historical survey (Static MIMO only)

m The ancestors: Dugué’51, Darmois’53, Feller’66, Friedman’74, Donoho’80

m The first shy steps in ICA: Bar-Ness'82, Jutten’s3, Fety’s8

m The first steps ins Multi—way: Carroll-Chang’70, Harshman’70,
Kruskal'77

m First closed-form solutions: Comon’s9, Cardoso’92

m First IT frameworks: Comon'91, Cardoso’93, Comon’94, Bell95,
Delfosse-Loubaton’95

m Specific improvements:  Hyvarinen’97, Pajunen’97, Amari’98,
Grellier’98, Parra’2000

m Recent advances: Cao-Liu'96, Moreau-Pesquet’97, Taleb-Jutten’97,
Comon’96, Ferreol-Chevalier’98, Belouchrani’98, Lee-Lewicki’99, deLathauwer’00,

Pham-Cardoso’2000, Yeredor’2000, Sidiropoulos-Bro’00
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General

General bibliography

m Books on HOS, ICA, or Multi-Way:
Lacoume-Amblard-Comon’97
Hyvarinen-Karhunen-Oja’01
Smilde-Bro-Geladi’04

Comon’07

m Other related books:
Kagan-Linnik-Rao’73

McCullagh’87
Nikias-Petropulu’93
Haykin2000
I3S
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Contents

Part II: Tools

Algebraic tools

m PCA, SVD, Standardization

m Plane rotations, Jacobi sweeping
Statistical tools

m Mutual & Pairwise Independence
m Cumulants

m Mutual Information
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Algebraic tools

Back to PCA

Definition

PCA is based on second order statistics
m Observed random variable & of dimension K. Then 3(U, z):
x = Uz, U unitary

where Principal Components z; are uncorrelated
1th column u; of U is called 1th PC Loading vector
m Two possible calculations:
e EVD of Covariance R,: R, = UX*U"
e Sample estimate by SVD: X = UX V"

I3S
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Algebraic tools
Standardization
) ) ~ def .
Find a linear transform L such that vector = La has unit

covariance. Many possibilities, including:
mPCAyieldsz =X 'U"x

m Cholesky R, = L LM yields & = L'«

Remarks

m Infinitely many possibilities: L is as good as L Q, for any unitary
Q.

m [f R, not invertible, then L not invertible. One may use

pseudo-inverse of 3 in PCA to compute L.

I3S
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Algebraic tools

Plane rotations

Application of a Givens rotation on both sides of a matrix allows

to set a pair of zeros in a symmetric matrix;

c . s . Xz 0 x c . —s
1. . r . T . 1
-s . C . 0z X z s . ¢
1 zT .z . |

Same result obtained:
m either by setting 0

m or by maximizing X’s

I3S
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Algebraic tools

Jacobi sweeping for PCA

Cyclic by rows/columns algorithm for a 4 x 4 real symmetric

matrix
X 0 z x X z 0 =z X zx 0
0 X =z =z T T T T
— — —
T T 0z X z T T
T T . . T . T . 0z xz X
z x 0 . T T T
r X 0 xz z X x 0 T
— —
r 0 X x .z T rx X 0
0z x . z 0 z X xx 0 X

X maximized, z: minimized, 0: canceled, .: unchanged
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Statistical tools

Statistical independence

Definition
Components s, of a K-dimensional r.v. s are mutually

independent
)

The joint pdf equals the product of marginal pdf’s:

po() = [ [ poyur) (3)
k

Definition
Components s of s are pairwise independent < Any pair of

components (g, s¢) are mutually independent.

I3s
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Statistical tools

Mutual vs Pairwise independence (1) ©

Example 3: Pairwise but not Mutual independence

m Bag containing 4 Bowls denoted {RB, YB, GB, RYB}:
1 Red, 1 Yellow, 1 Green, 1 with the 3 colors.

m Equal drawing probabilities:
P(RB)=P(YB)=P(GB)=P(RYG)=1/4
m Event “R” % draw a bowl containing Red =
P(R)=P(RB)+ P(RYG)=1/2
m Then P(RNY)=P(RYG)=1/4
equal to P(R) * P(Y') = Pairwise independent Events
mBut PIRNY NG)=PRYG)=1/4
not equal to P(R) x P(Y)x P(G) =1/8 =

Events are not Mutually independent

I3Ss
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Statistical tools

Mutual vs Pairwise independence (2)

Example 4: Pairwise but not Mutual independence

m 3 mutually independent BPSK sources, z; € {—1,1},1 < i <3
m Define x4 = x129x3. Then x4 is also BPSK, dependent on x;

m x; are pairwise independent:
ple1=a,ry="b) =p(xs =blz1 = a).p(r; = a) =
plxsxs =b/a).p(ry = a)
But x1 and z9 x5 are BPSK =
plxexs =b/a).p(ry =a)= % . %
m But z; obviously not mutually independent, 1 < k <4

In particular, Cum{zy, x9, 3,24} =1 #0

I3s
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Statistical tools

Mutual vs Pairwise independence (3)

Darmois’s Theorem (1953)
Let two random variables be defined as linear combinations of

independent random variables x;:
N

N
21:Zaixi, ZQZZbixi
i=1

i=1
Then, if Z; and Z; are independent, those x; for which a;b; # 0 are

Gaussian.
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Statistical tools

Mutual vs Pairwise independence (4)

Corollary

If z = C's, where s; are independent r.v., with at most one of

them being Gaussian, then the following properties are equivalent:
1. Components z; are pairwise independent
2. Components z; are mutually independent

3. C = A P, with A diagonal and P permutation

I3s
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Statistical tools

Characteristic functions

First

m Real Scalar: ®,(t) & Efe’™} = [ e/ dF,(u)

m Real Multivariate: ®u(t) dof E{eJtTﬂ”} = fu eIt dF(u)
Second

m U(t) Y log @(¢)

m Properties:

e Always exists in the neighborhood of 0

e Uniquely defined as long as ®(t) # 0

I3Ss
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Statistical tools

Cumulants (1)

m Moments:
def . . O0'O(t
i Bty = (g T )
=0
m Cumulants:
def o O0V()
C . Cum{z,...,x} = (—y) |, (5)

r times

m Needs the existence of the expansion. Counter example: Cauchy

1
pa(u) = m

m Relationship between Moments and Cumulants obtained by

expanding both sides in Taylor series:

LOg CDT(t) = qu(t)

I3s
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Statistical tools

Cumulants (2)

First Cumulants

[ C(2> is the variance:
m For zero-mean r.v.: C(g) = iz, and C(4) = fyy — 3#?2)

m Warning: it is not true that C(T) is the moment of a variable

xr — x4, £y Gaussian

m Standardized cumulants:

x—
IC(,) = CHIH(T) { (1)}
VHE©)

e.g. Skewness KC3, and Kurtosis ICy.
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Statistical tools

Examples of Cumulants (1)

Example 5: Zero-mean Gaussian

m Moments

Har) = M) 1o
In particular: Mgy = S,ué)7 I = 15u?2).

m All Cumulants of order r > 2 are null

I3s
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Statistical tools

Examples of Cumulants (2)

Example 6: Uniform

m uniformly distributed in [—a, 4+a] with probability %1

2k
m Moments: pop = 2‘;—“

S

m 4th order Cumulant: C4 = %4 — 35 =2 ‘f—;

[Sai[=>}

m Kurtosis: Iy = —

1/2a
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Statistical tools

Examples of Cumulants (3)

Example 7: Zero-mean standardized binary

m x takes two values 1 = —a and xo = 1/a with probabilities
_ 1 _a?
Pi=va =15

m Skewness is K, = 1 —a
)

.. 1 9
m Kurtosis is IC(4) =3 +a°—4

m Extreme values

Minimum Kurtosis
for a = 1 (symmetric):

K,,=-2

4)

I3s
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Statistical tools

Multivariate cumulants

m Notation: C;j ¢ o Cum{X;, Xj,.. X/}
m First cumulants:
i = C;
iy = Cij+CiCj
ti = Ciji + [B]CiCji. + CiCiCy
with [n]: Mecullagh’s bracket notation.
m Next, for zero-mean variables:
ijie = Cijke + 3] CijCre
Wijiem = Cijiem + [10]CijCrim

m General formula of Leonov Shiryayev obtained by Taylor

expansion of both sides of W(t) = log ®(¢)...
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Statistical tools

Complex variables

Definition

Let z =ax +jy. Then pdf p, = joint pdf pg

Notation
m Characteristic function:
¢z (w) = E{exp[y(a’u + yTv)]} = E{exp[R(="w)]}
where w % u + v.

m Generates Moments & Cumulants, e.g.:

J
Variance: Var{z};; = CZZ_ »
Higher orders:  Cum{z;,...,2;,25,...,%/} = C, iy
where conjugated r.v. are labeled in superscript.

I3s
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Statistical tools

Cumulant properties

m Multi-linearity (also enjoyed by moments):
Cum{aX,Y,..,Z} = aCum{X,Y,..,Z} (6)
Cum{X; + X», Y,..,Z} = Cum{X,,Y,..,Z} + Cum{X,, Y, .., Z}

m Cancellation: If {X;} can be partitioned into 2 groups of

independent r.v., then
Cum{ Xy, Xo, ... X, } =0 (7)
m Independence: If X and Y are independent, then

Cum{X; + Y1, Xo +Ys, .., X, + Y.} = Cum{Xy, Xy, .., X,}
+ Cum{Yy, Ys,.., Y}

m Inequalities, e.g.:
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Statistical tools

Central Limit Theorem

Let N independent scalar r.v., z(n),1 < n < N each with finite
rth order Cumulant, .)(n).

Define:

N
Ry = 37 2 Ko () and y = == S (o) = ).

n=1

As N — oo, the pdf f, tends to a Gaussian.

Proof:

Cy( = %, Vr > 2, tends to zero.
T

I3s
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Statistical tools

Mutual Information (1)

m According to the definition of page 21, one should measure a

N
=1

m If the Kullback divergence is used:

K(pa, py) & / pz(u) log ZEZ@ du,

then we get the Mutual Information as an independence

divergence:

measure:

I(pz) = /pm(u) log#du. (8)
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Statistical tools
Mutual Information (2)
Properties of the MI
m MI always positive
m Cancels if r.v. are mutually independent
m MI is invariant by scale change
m Example 8: Gaussian case
Vii
Igs) = Lo AL
StV
I3S
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Statistical tools
Decomposition of the MI
m Define the Negentropy as the divergence:
pz(u)
J = 0(py, = u) | du. 9
(pe) = 61 5) = [ pafu) log 22 )
Negentropy is invariant by invertible transforms
m Then MI can be decomposed into:
1(ps) = 1(g2) + J (pa) Z J(ps,)- (10)

{1gi}
> J (i)
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Statistical tools
Sample Measures of Statistical
Independence ©

Independence at order r

m Definition:
Components x; of x are independent at order r if all cross

cumulants of order r are null

m In other words: the Cumulant tensor Cy; ¢ is diagonal.

Example 9: Uncorrelated but not independent
s non Gaussian, s; independent, then @ = @Q s has uncorrelated

components at order 2 if @ unitary — cf. example slide 7.

I3s
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Statistical tools

Edgeworth expansion (1)

Edgeworth expansion of a pdf
The pdf pz(u) of a standardized r.v. @ can be expanded about
the Gaussian density g.(w) of same mean and variance, in terms
of a combination of Hermite polynomials, ordered by decreasing

significance in the sense of the Central Limit Theorem (CLT).

Order

m~V2 | kg

m kg K

W

m3/2 K5 K3K4 :‘ig

m=2 Kg K3Ks :‘ig/@l Hi Iig

MmO | Ky Kake KiKs Kik3 Ky Kaks Kak4

From page 35, rth order Cumulants ~ O(m'~"/?).

I3Ss




ICASSP 2005 41/77 P.COMON

Statistical tools

Edgeworth expansion (2)

Edgeworth expansion of the MI
This yields for standardized random variables x, after lengthy

calculations:
1 ’ 2 2 4 2 L
I(ps) = J(pw)—4—82fl C_+C_ +7C_ —6C_C._+o(m™?).
(11)

i

2
m If 3rd order # 0, then I(pz) = J(ps) — ﬁ o Cm

2
= If 3rd order ~ 0, then I(pg) &~ J(ps) — 15 >,C.
111
I3s
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Contents

Part III: Separation of Independent Sources

m Cumulant matching (direct approach: identification)

m Contrast Criteria (inverse approach: equalization):

m Numerical Algorithms: block/adaptive, joint/deflation
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Cumulant Matching

Identification

Principle

m Estimate the mixture by solving the I/O Multi-linear equations:

Cumulant matching

m Apply a separating filter based on the latter estimate

I3s
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Cumulant Matching

Noiseless mixture of 2 sources

Example 10: 2 x 2 by Cumulant matching (cf. demo p.8)
m After standardization, the mixture takes the form

cosa  —sinael’
T = s (12)
sina e 7% Cos o
m Denote ’yl-’}e = Cum{z;, xj, z}, x; } and K; = Cum{s;, s;, s}, s} }.

Then by Multi-linearity:

7113 = cos’a sin® (K1 + ko)
1 = cos®a sina e’ k) — cos a sin® o e?? Ky
7%% = cosa sin® a e’ K1 — cos® av sin av /¥ K2
22 12
m Compact solution: % = —2 cot 2 e/¥

> demolCA2x2 P> Noiseless demo2C
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Cumulant matching

Noiseless mixture of 2 sources

Example 11: Separation of 2 non Gaussian sources

Source! Sensorl Output1

2 2 2
e @ @ © ogo
o i
p 1 052 9 ! L I
@ o8
e @ @ © 208%00° & &
] 0 o PR 2 [
o o o o 08 %% o g’ o ® 2
1 E o8 goe 2° 1 LN
B W B o o
2 3 -2
2 -l o 1 2 2 1 ] 1 2 2 1 o0 1 2
Source2 Sensor2 Outputz
2 2 signiss L 2 5
(=] (=2
5 5 87%Y 9% s @ @
1 o 1 0 =g O0 ) 1
o o 00 o ©7 o & &
2.06, B joiee? e °
(i =3 o a o0o% 98 oo O i
% s ¢ BTEE T 5 @ B e
1 o 1 2 o0, 90 1 &
@Y o o o -
58 6% g 0d e 9
2 2 2
2 1 0 1 2 I 0 1 E 2 1 0 1 2

Sourcel Source2
|| |G Data Length SNR dB Separate by Com|
| aam i |F Pske 100

Gererats Sources Generats Observations |
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Contrast criteria

Definition of a Contrast

Axiomatic definition

A Contrast optimization criterion T should enjoy 3 properties:

m [nvariance: T should not change under the action of trivial

filters (as defined in p.6)

m Domination: If sources are already separated, any filter should

decrease (or leave unchanged) T

m Discrimination: The maximum achievable value should be

reached only when sources are separated (i.e. maxima are related

by trivial filters)
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Contrast criteria

Mutual Information

T —I(p,) is a contrast

m [nvariant by scale change and permutation

m Always negative

m Null if and only if components are independent

I3Ss
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Contrast criteria

Maximum Likelihood

Given the source pdf’s: ps(u) = [[;ps;(u;), the ML approach

consists of maximizing one of the criteria below

m Noiseless case

£ p(a|H) ps(H 'z)

B 1
| det H

m Noisy case
def
L= plw,s|H) = g(x — H s)ps(s)

m And the Joint MAP-ML criterion for a joint estimation of

sources:

H

]MV)

= Arg M%x p(x,s|H)

(SJ\/IAP7

= ArgMax p(z|s, H) ps(s)
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Contrast criteria

Noiseless Maximum Likelihood (1)

m For an increasing number of independent observations, the
average log-likelihood converges to
1
T logp(xy ... ¢r|H) — /logps(Hlu) pz(w) du + cst

which can be seen to be, by making the change v = H u:

def
Tur = —K(pz,ps) + cst (13)
= pdf matching
I3S
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Contrast criteria

Noiseless Maximum Likelihood (2)

m Yet, since s; are independent, it can be shown that

K(pzvps) = K(pZ7 szi) + Z K(pziapsi)

]D[rl pdf deﬁation
This allows to take into account the source pdf’s, if they are

known

Zi J(p:)

m But ML is not adequate if source pdf’s are unknown

= just use contrast criteria, as MI

I3S
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Contrast criteria

Contrasts of CoM(q,r)

When observations are standardized, and when only unitary
transforms are considered, then the following are contrast functions:

m If at most 1 source has a null skewness:
P

def
Tos = Z(’@:m’)Qa Kiii = C

z iii
p=1

m If at most 1 source has a null kurtosis:
P

_ ii\2 ii def i
Tou= E (ki)™ kg =C

Z
p=1
m If at most 1 source has a null standardized Cumulant of order

r > 2, and for any o > 1:

P
_ a def
Tar = el K =C,
p=1
I3s
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Contrast criteria

Contrast CoM(1,4)

Example 12: Kurtosis-based contrast without

squaring

m [n particular, if all source kurtosis have the same sign, €, one can

avoid the absolute value:

P
— § i
p=1

> Noisy demo2C
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Contrast criteria

Noisy mixture of 2 sources

Example 13: Separation of 2 non Gaussian sources by

contrast maximization

Sourcel Sensorl Output]
2 2 2
1 o i 1
o5 -
a L] =] [t} a
ook
1 o 1 1
2 -2 -2
2 1 a 1 2 2 2 2 A 0 1 2
Sourcez Qutputz
2 2 2
1 o 1 1 @
0 o o 0 i @a o
1 ° 1 1 @0
2 -2 2
2 1 a 1 2 2 1 i 1 2 2 1 [ 1 2

[T [ETEN 20 10
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Contrast criteria

JADE Contrast

Instead of minimizing all extra-diagonal terms:

O-Tow= > [CH(Qz)

ijklAiiii

one minimizes

O — T jode = Z |Czk]€(Q ‘i)|2

ijktiike
which is equivalent to maximize Y juge = >0y |Vik|2.
Interest: o
Tyoae = Y ||diag(Q" M, Q|| (14)
p=1

is satisfied if the matrix set { M, } forms an orthonormal basis.
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Algorithms

Block vs Adaptive

m Increase power of DSP
m Limitations of time-recursive Adaptive Algorithms

e Convergence time of optimization algorithm
e Convergence time of moment estimators

e Local extrema harder to handle

m Coherence time sometimes limited

(e.g. GSM: 900MHz, 190km/h, T, ~ 2ms = 300 symbols)
m Well matched to block transmission (TDMA)

m Better exploitation of data

(uniform weight, resistance to loss in synchro, time reversal)

I3s
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Algorithms

Joint vs Deflation

z

xT fT

Deflation:
m Advantage: reduced complexity at each stage

m Drawbacks: accumulation of regression errors, limitation of

number of extracted sources

I3S
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Algorithms

Deflation by Kurtosis Gradient Ascent

Adaptive Deflation by Kurtosis Maximization
After standardization, it is equivalent to maximize 4th order moment,

E{z*}, which yields:
Af =pVC = pEB{z(f'2))

m After prewhitening, fixed step gradient on angles

(Delfosse-Loubaton’95)

m “Locally optimal step” gradient on filter taps: FastICA
(Hyvérinen'97)

m Globally optimal step gradient ascent (Comon’02)

Convergence: when f and VCZ @ collinear (and not when

gradient is null, because of constraint || f|| = 1).
I3S
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Algorithms

Jacobi Sweeping

Joint Block Algorithm: Sweeping a 3 x 3 x 3 tensor

X zx X xx . T
r T x T X r X
T T T X T X
T T x T Xz T T x
z X x| — T z | — z X x
r T x T x T r T x
T X T x T T X T
T X T x T T Tz
T T . r x X z xz X

X : maximized

2 : minimized p by the last Givens rotation > demolOR

: unchanged
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Algorithms

Influence on Sweeping oder

Example 14: The order does not affect the limit,

despite the presence of local maxima

Contrast of Cama & Gap of Comz

‘Source Kurtoses

Draw Mix + Sep
Permute + Sep

Sweeps Sweeps
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Algorithms

Tensors as Linear Operators

m Linear Operator ) acting on square matrices:

M — Q(M)Z] = ZC%MM
Kkl

admits eigen-matrices N,, 1 < r < P2,
m In the absence of noise, P nonzero eigenvalues

m [n practice, retain P dominant eigen-matrices = (i) reduced

complexity P? and (ii) noise reduction
m A Joint Block Algorithm: JADE

o Maximize T jase = 32, |[A0diag(U" N, U)||?

“Joint Approximate Diagonalization of Eigenmatrices”

e Sweep the pairs — again a quadratic form
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Part IV: Under-Determined Mixtures

What is specific:

m No linear inverse exists (thus no contrast)

m Prior standardization of poor usefulness

Two families of approaches:
m From Cumulant tensor

m From Data tensor

I3s
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UDM from Cumulant tensor

Canonical Decomposition

Cumulant Tensor Matching (example at order 3):
m Model + Multi-linearity yields:

C,on = > H, Hj, Hy, C, o+ it
p

m Canonical Tensor Decomposition (CanD):

rank(T)
T= ) r,hip)oh(p)oh(p)+E (15)

p=1

. L . def
m In practice, often minimize the matching error ¥ = || E||?
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UDM from Cumulant tensor

Tensor Rank (1)

m Generic/Typical rank w of symmetric tensors of order d,

generally larger than dimension K

w/ K|2/3|4]5|6 |78
2

3 41518 (10]12]15
d4361()152‘23042

m CanD often not unique (in red: infinitely many solutions)
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UDM from Cumulant tensor

Tensor rank (2)

m Maximal rank: generally larger than generic rank

Example 15: order 3, dimension 2, but rank 3

blue bullets = 1, red bullets = —1.

m In dimension 2, CanD entirely computable thanks to Sylvester’s

theorem on polynomials

m Very hard in higher dimensions

> demo BinaryTensors
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UDM from Cumulant tensor

CanD of 2-dim tensors

Example 16: Rank obtained for dth order symmetric

tensors of dim 2

Order 3 Feal Tensors ORIGINAL: 002945 026852 0.32955 1 006753 066107
-0.1B251 0063225
RaME 2 RAME 3

RECOMSTRUCTED: 002845 026882 032959 1 006753
0B6107 -016251 00683225

ASVM: 7RT, 203

ESTIMATED TEMSOR RANK = 4
SwM: 518, 481
RECOMSTRUCTION ERROFR = 5.7746e-16
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UDM from Cumulant tensor

Tensor rank (3)

m Real tensors may not have same rank if immersed in complex
field.
Example 17: Complex rank:

-1 0 01
T(:7'71) = ) T('7:72) = ’
01 10

If decomposed in R, it is of rank 3:

03 o3 o3

1 (1 1 1 1
T= +5 —2
2\ 1 2\ 0

whereas it admits a CAND of rank 2 in C:
03 03
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UDM from Cumulant tensor

Source extraction
Example 18: 3 BPSK sources and 2 sensors
B 51, 9, 830 € {—1, 1}, mutually independent
m Actual observations: & = [x1, z]"

m Build virtual observations: z = [x3, x3xy, 2123, 23]

m Then 6-dimensional augmented observation:

S1

£ o H 0 S9

z a B S3
518253

. . def . . .
with one virtual source s; = $1$983, pairwise independent of s;
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UDM form Data tensor

LS Criterion

Data arranged in a order-d tensor (d-way array)

m CanD in the case of d = 3:

T =, a(p)ob(p)oclp) (16)

m Now error W is quadratic in each a(p), if all b(p) and ¢(p) fixed

m Other useful writings:
K3
U => |IT(;: k) — A Diag(C(k,:)) BT[]
k=1

v=|T" ~A(C o B)|} (17)

Minimum of ¥ w.r.t. A can be obtained by SVD.
Idem for B, C.
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UDM form Data tensor

Alternate Least Squares (ALS)

The PARAFAC algorithm computes in turn A, B, and C:
Alternating Least Squares (ALS)
m Very slow convergence

m Need for a sufficient condition of uniqueness:
kE(A)+Ek(B)+k(C) >2w+2

where k(A) denotes Kruskal’s rank of A.

1= [n symmetric case, one needs at least that 2w < 3K — 2

1="Can be extended to order d: 2w < dK —d+1

m Need for diversity: matrix slices must be “sufficiently different”

> demo Parafac
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UDM from Data tensor
Parafac ALS algorithm
Bro’98 and

Example 19: Two accelerated versions:

Rajih-Comon’05

The Average Gap as a function of the Numker of Iterations

ErTEeE -
5 MUSHELSR R R

The Average Gap

L 1
400 450 500

. I S S S NN
a 50 100 150 200 250 300 350
Mumber of lterations

The Error as a function of the Mumber of Rerations

= AL5+L5‘§‘%‘§
—o- ALS+ELS(R, R, R

The Error

2 L I | | | ! |
a 50 100 150 200 250 300 350
Mumber of Iterations

I |
400 450 500
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UDM form Data tensor

Kruskal rank

m Column rank of a matrix
rank(A) = riff there is at least one subset of r lin. independent

columns, and this fails for any subset of r + 1 columns.

m Kruskal rank of a matrix
K — rank(A) = k iff every subset of k columns is lin.
independent, and this fails for at least one subset of k + 1

columns.

m Property: k(A) < rank(A) < dim(A)
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UDM form Data tensor

Data vs Cumulant Tensors

Multi-linear vs Linear Blind Model fitting

m CanD, if diversity among loading vectors allows to build a data

tensor:
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Part V: Beyond this Tutorial

m Some unaddressed problems ‘ )
m Tensor properties y [
m False beliefs
I3S
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Beyond this Tutorial

Some Unaddressed Problems

m Reduction of tensor sizes: HOSVD/Tucker3 model fitting
m Simultaneous Tensor Diagonalization (STD)

m Performance indices

m Nonstationary sources, Discrete sources

m Convolutive mixtures

m Semi-Blind approaches

m Unexpected topological properties of tensor spaces
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Beyond this Tutorial

Unexpected topological properties

m The variety of rank-1 matrices or tensors is closed
m The variety of matrices of rank < k is closed

m The set of tensors of rank < k is not closed; e.g.:

3 sequence T, of rank-3 tensors = rank 4 !
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Beyond this Tutorial

False Beliefs (1)

1. BSS always requires High-Order Statistics (HOS)

— Second-order can (rarely) suffice

2. Sources must be statistically independent
— Correlated sources can be sometimes separated

(e.g. Discrete/CM sources, Pairwise cumulants...)

3. HOS are always required when sources are i.1.d.

— Second-order BSS algorithms exist

4. There should be at least as many sensors as sources: K > P
(sufficient diversity)

— Underdetermined miztures can be identified
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Beyond this Tutorial

False Beliefs (2)

5. Perfect source extraction is impossible if K < P
— Discrete sources can be perfectly extracted from

underdetermined miztures (insufficient diversity)

6. Conditions of application of Parafac are mild
— except when one dimension = 2, the typical rank always

exceeds the Parafac bound for uniqueness

7. Approximate a tensor by another of lower rank is as easy as for
matrices

— beside for rank 1, there is a lack of closeness

8. The Constant Modulus (CM) property is the best way to handle
PSK sources
— The whole alphabet can be taken into account in order
to define a contrast function
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