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Tensorlab User Guide, Release 3.0

Tensorlab provides various tools for tensor computations, (coupled) tensor decompositions and complex opti-
mization. In Tensorlab, datasets are stored as (possibly incomplete, sparse or structured) vectors, matrices and
higher-order tensors, possibly obtained after tensorizing lower-order data. By mixing different types of tensor
decompositions and factor transformations, a vast amount of factorizations can be computed. Users can choose
from a library of preimplemented transformations and structures, including nonnegativity, orthogonality, Toeplitz
and Vandermonde matrices to name a few, or even define their own factor transformations.

Chapter 2 covers the representation of dense, incomplete, sparse and structured datasets in Tensorlab and the
basic operations on such tensors. Tensor decompositions of both real and complex tensors such as the canonical
polyadic decomposition (CPD), the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms, the low multilinear rank
approximation (LMLRA), the multilinear singular value decomposition (MLSVD) and the block term decomposi-
tion (BTD) are discussed in Chapters 3, 4, 5 and 6, respectively. Chapter 7 discusses the topic and framework
of tensorization, in which lower-order datasets can be transformed to higher-order data. A basic introduction
in structured data fusion (SDF) is given in Chapter 8, with which multiple datasets can be jointly factorized
while imposing structure on the factors using factor transformations. Examples of SDF are given in Chapter 9.
Chapter 10 discusses the more advanced concepts within SDF, while Chapters 11 explains the implementation
of a transformation. Chapter 12 gives a full specification of the domain specific language used by SDF. Many
of the algorithms to accomplish the decomposition tasks are based on complex optimization, that is, optimiza-
tion of functions in complex variables. Chapter 13 introduces the necessary concepts and shows how to solve
different types of complex optimization problems. Finally, Chapter 14 treats global optimization of bivariate (and
polyanalytic) polynomials and rational functions, which appears as a subproblem in tensor optimization.

The first version of Tensorlab was released in February 2013, comprising a wide range of algorithms for tensor
decompositions. Tensorlab 2.0 was released in January 2014, introducing the structured data fusion framework.
The current version of Tensorlab, version 3.0, is released in March 2016. Tensorlab 3.0 introduces a tensorization
framework, offers more support for large-scale and structured datasets and enhances the performance and user-
friendliness of the SDF framework.

More specifically in Tensorlab 3.0, different tensorization and detensorization techniques are introduced. Efficient
representations of structured tensors are supported, which improve the speed of many operations and decompo-
sitions. A number of algorithms dealing with large-scale datasets are provided, as well as a family of algorithms
for the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms. The SDF framework has been redesigned to allow
greater flexibility in the model definition and to improve the performance. Further, a tool has been made available
to verify and correct an SDF model, and a method is provided for visual exploration of high-dimensional data of
arbitrary order. More details can be found in the release notes1.

To illustrate the power of the toolbox in an accessible manner, a number of demos2 have been developed accom-
panying this manual. These demos discuss different case studies using tensor decompositions such as multidimen-
sional harmonic retrieval, independent component analysis (ICA) and the prediction of user involvement based on
a GPS dataset.

A PDF version of the user guide can be found here3. This toolbox can be cited as in [24].

1http://www.tensorlab.net/versions.html#3.0
2http://www.tensorlab.net/demos
3http://www.tensorlab.net/userguide3.pdf

1
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CHAPTER

ONE

GETTING STARTED

1.1 Installation

Unzip Tensorlab to any directory, browse to that location in MATLAB or Octave and run

addpath(pwd); % Add the current directory to the MATLAB search path.
savepath; % Save the search path for future sessions.

1.2 Requirements

Tensorlab requires MATLAB 7.9 (R2009b) or higher because of its dependency on the tilde operator ~ . If
necessary, older versions of MATLAB can use Tensorlab by replacing the tilde in [~ and ~, with tmp . To do
so on Linux/OS X, browse to Tensorlab and run

sed -i "" 's/\[~/[tmp/g;s/~,/tmp,/g' *.m

in your system’s terminal. However, most of the functionality in Tensorlab requires at the very minimum MATLAB
7.4 (R2007a) because of its extensive use of bsxfun .

Octave versions lower than 3.8 are only partially supported, mainly because it coerces nested functions into
subfunctions. The latter do not share the workspace of their parent function, which is a feature used by Tensorlab
in certain algorithms. As Octave v3.8 added support for nested subfunctions, Tensorlab is fully functional now.

1.3 Contents.m

If you have installed Tensorlab to the directory tensorlab , run doc tensorlab from the command line
for an overview of the toolboxes functionality (or, if that fails, try help(pwd) ). Both commands display the
file Contents.m , shown below. Although this user guide covers the most important aspects of Tensorlab,
Contents.m shows a short one line description of all exported functions.

% TENSORLAB
% Version 3.0, 2016-03-28
%
% BLOCK TERM DECOMPOSITION
% Algorithms
% btd_core - Computational core for block term decomposition.
% btd_minf - BTD by unconstrained nonlinear optimization.

2
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% btd_nls - BTD by nonlinear least squares.
% Initialization
% btd_rnd - Pseudorandom initialization for BTD.
% Utilities
% btdgen - Generate full tensor given a BTD.
% btdres - Residual of a BTD.
% frobbtdres - Frobenius norm of residual for a BTD.
%
% CANONICAL POLYADIC DECOMPOSITION
% Algorithms
% cpd - Canonical polyadic decomposition.
% cpd_als - CPD by alternating least squares.
% cpd_core - Computational routines for CPD decomposition.
% cpd_minf - CPD by unconstrained nonlinear optimization.
% cpd_nls - CPD by nonlinear least squares.
% cpd_rbs - CPD by randomized block sampling.
% cpd3_sd - CPD by simultaneous diagonalization.
% cpd3_sgsd - CPD by simultaneous generalized Schur decomposition.
% Initialization
% cpd_gevd - CPD by a generalized eigenvalue decomposition.
% cpd_rnd - Pseudorandom initialization for CPD.
% Line and plane search
% cpd_aels - CPD approximate enhanced line search.
% cpd_els - CPD exact line search.
% cpd_eps - CPD exact plane search.
% cpd_lsb - CPD line search by Bro.
% Utilities
% cpd_crb - Diagonal Cramér-Rao bound approximation for CPD.
% cpderr - Errors between factor matrices in a CPD.
% cpdgen - Generate full tensor given a polyadic decomposition.
% cpdres - Residual of a polyadic decomposition.
% frobcpdres - Frobenius norm of residual for polyadic decomposition.
% rankest - Estimate rank.
%
% COUPLED/SYMMETRIC CANONICAL POLYADIC DECOMPOSITION
% Algorithms
% ccpd_core - Computational routines for coupled/symmetric CPD
% decomposition.
% ccpd_minf - Coupled CPD by unconstrained nonlinear optimization.
% ccpd_nls - Coupled/symmetric CPD by nonlinear least squares.
%
% COMPLEX OPTIMIZATION
% Nonlinear least squares
% nls_gncgs - Nonlinear least squares by Gauss-Newton with CG-Steihaug.
% nls_gndl - Nonlinear least squares by Gauss-Newton with dogleg trust
% region.
% nls_lm - Nonlinear least squares by Levenberg-Marquardt.
% nlsb_gndl - Bound-constrained NLS by projected Gauss-Newton dogleg
% trust region.
% Unconstrained nonlinear optimization
% minf_lbfgs - Minimize a function by L-BFGS with line search.

1.3. Contents.m 3
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% minf_lbfgsdl - Minimize a function by L-BFGS with dogleg trust region.
% minf_ncg - Minimize a function by nonlinear conjugate gradient.
% minf_sr1cgs - Minimize a function by SR1 with CG-Steihaug.
% Utilities
% deriv - Approximate gradient and Jacobian.
% ls_mt - Strong Wolfe line search by More-Thuente.
% mpcg - Modified preconditioned conjugate gradients method.
%
% LOW MULTILINEAR RANK APPROXIMATION
% Algorithms
% lmlra - Low multilinear rank approximation.
% lmlra_core - Computational core for low multilinear rank approximation.
% lmlra_hooi - LMLRA by higher-order orthogonal iteration.
% lmlra_minf - LMLRA by unconstrained nonlinear optimization.
% lmlra_nls - LMLRA by nonlinear least squares.
% lmlra3_dgn - LMLRA by a differential-geometric Newton method.
% lmlra3_rtr - LMLRA by a Riemannian trust region method.
% mlsvd - (Truncated) multilinear singular value decomposition.
% mlsvds - Multilinear singular value decomposition for sparse tensors.
% mlsvd_rsi - Sequentially truncated MLSVD using randomized subspace
% iteration.
% Initialization
% lmlra_aca - LMLRA by adaptive cross-approximation.
% lmlra_rnd - Pseudorandom initialization for LMLRA.
% Utilities
% lmlraerr - Errors between factor matrices in a LMLRA.
% lmlragen - Generate full tensor given a core tensor and factor
% matrices.
% lmlrares - Residual of a LMLRA.
% froblmlrares - Frobenius norm of residual of a LMLRA.
% mlrank - Multilinear rank.
% mlrankest - Estimate multilinear rank.
%
% DECOMPOSITION IN MULTILINEAR RANK-(Lr,Lr,1) TERMS
% Algorithms
% ll1 - Decomposition in LL1 terms.
% ll1_core - Computational routines for LL1 decomposition.
% ll1_minf - LL1 decomposition by nonlinear unconstrained
% optimization.
% ll1_nls - LL1 decomposition by nonlinear least squares.
% Initialization
% ll1_gevd - LL1 by generalized eigenvalue decomposition.
% ll1_rnd - Pseudorandom initialization for LL1 decomposition.
% Utilities
% ll1convert - Convert LL1 decomposition between CPD and BTD format.
% ll1gen - Generate full tensor given as a LL1 decomposition.
% ll1res - Residual for a LL1 decomposition.
% frobll1res - Frobenius norm of the residual of a LL1 decomposition.
%
% STRUCTURED DATA FUSION
% Language parser

1.3. Contents.m 4
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% sdf_check - SDF language parser and syntax/consistency checker.
% Algorithms
% ccpd_core - Computational routines for coupled/symmetric CPD
% decomposition.
% ccpd_minf - Coupled CPD by unconstrained nonlinear optimization.
% ccpd_nls - Coupled/symmetric CPD using nonlinear least squares.
% sdf_core - Computational core for structured data fusion.
% sdf_minf - Structured data fusion by unconstrained nonlinear
% optimization.
% sdf_nls - Structured data fusion by nonlinear least squares.
% Structure
% struct_abs - Absolute value.
% struct_band - Band matrix.
% struct_cell2mat - Convert the contents of a cell array into a matrix.
% struct_conj - Complex conjugate.
% struct_cauchy - Cauchy matrix.
% struct_const - Keep parts of z constant.
% struct_ctranspose - Complex conjugate transpose.
% struct_diag - Diagonal matrix.
% struct_exp - Matrix with columns as exponentials.
% struct_fd - Finite differences.
% struct_gram - Gramian matrix.
% struct_hankel - Hankel matrix.
% struct_inv - Matrix inverse.
% struct_invsqrtm - Matrix inverse square root.
% struct_invtransp - Matrix inverse transpose.
% struct_kr - Khatri-Rao-product of two or more matrices.
% struct_kron - Kronecker-product of two or more matrices.
% struct_LL1 - Structure of third factor matrix in a LL1 decomposition.
% struct_log - Natural logarithm.
% struct_matvec - Matrix-vector and matrix-matrix product.
% struct_nonneg - Nonnegative array.
% struct_nop - No operation.
% struct_normalize - Normalize columns to unit norm.
% struct_orth - Rectangular matrix with orthonormal columns.
% struct_plus - Plus.
% struct_poly - Matrix with columns as polynomials.
% struct_power - Array power.
% struct_prod - Hadamard product.
% struct_rational - Matrix with columns as rational functions.
% struct_rbf - Matrix with columns as sums of Gaussian RBF kernels.
% struct_select - Select entry from cell variable z.
% struct_sigmoid - Constrain array elements to an interval.
% struct_sqrt - Square root.
% struct_sum - Sum of elements.
% struct_times - Times.
% struct_toeplitz - Toeplitz matrix.
% struct_transpose - Transpose.
% struct_tridiag - Tridiagonal matrix.
% struct_tril - Lower triangular matrix.
% struct_triu - Upper triangular matrix.

1.3. Contents.m 5
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% struct_vander - Vandermonde matrix.
%
% TENSOR UTILITIES
% Structured tensors
% detectstructure - Detect structure in a tensor.
% getstructure - Determine the type of a tensor.
% isvalidtensor - Check if the representation of a tensor is correct.
% Products
% contract - Mode-n tensor vector contraction.
% inprod - Inner product of two tensors.
% mtkronprod - Matricized tensor Kronecker product.
% mtkrprod - Matricized tensor Khatri-Rao product.
% outprod - Outer vector/matrix/tensor product.
% tmprod - Mode-n tensor-matrix product.
% Utilities
% fmt - Format data set.
% frob - Frobenius norm.
% ful - Convert formatted data set to an array.
% getorder - Order of a tensor.
% getsize - Dimensions of a tensor.
% noisy - Generate a noisy version of a given array.
% ttgen - Generates full tensor from TT format.
%
% TENSORIZATION
% Deterministic tensorization
% decimate - Decimation of vectors, matrices or tensors.
% hankelize - Hankelization of vectors, matrices or tensors.
% loewnerize - Loewnerization of vectors, matrices or tensors.
% mat2tens - Tensorize a matrix.
% segmentize - Segmentation of vectors, matrices or tensors.
% vec2tens - Tensorize a vector.
% Deterministic detensorization
% dedecimate - Recover decimated signal(s).
% dehankelize - Recover the signal(s) from an (approximate) Hankel
% matrix/tensor.
% deloewnerize - Recover the signal(s) from an (approximate) Loewner
% matrix/tensor.
% desegmentize - Recover segmented signal(s).
% tens2mat - Matricize a tensor.
% tens2vec - Vectorize a tensor.
% Tensorization with statistics
% dcov - Covariance matrices along specific dimensions.
% cum3 - Third-order cumulant tensor.
% cum4 - Fourth-order cumulant tensor.
% scov - Shifted covariance matrices.
% stcum4 - Fourth-order spatio-temporal cumulant tensor.
% xcum4 - Fourth-order cross-cumulant tensor.
%
% UTILITIES
% Clustering
% gap - Optimal clustering based on the gap statistic.

1.3. Contents.m 6
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% kmeans - Cluster multivariate data using the k-means++ algorithm.
% Polynomials
% genpolybasis - Polynomial basis.
% polymin - Minimize a polynomial.
% polymin2 - Minimize bivariate and real polyanalytic polynomials.
% polyval2 - Evaluate bivariate and univariate polyanalytic
% polynomials.
% polysol2 - Solve a system of two bivariate polynomials.
% ratmin - Minimize a rational function.
% ratmin2 - Minimize bivariate and real polyanalytic rational
% functions.
% transform_poly - Transform a polynomial.
% Various
% crandn - Complex normally distributed pseudorandom numbers.
% dotk - Dot product in K-fold precision.
% fixedanglevect - Vectors with fixed angle.
% gevd_bal - Generalized eigenvalue decomposition with balancing.
% kr - Khatri-Rao product.
% kron - Kronecker product.
% sumk - Summation in K-fold precision.
% Visualization
% slice3 - Visualize a third-order tensor with slices.
% spy3 - Visualize a third-order tensor's sparsity pattern.
% surf3 - Visualize a third-order tensor with surfaces.
% visualize - Visualize a higher-order tensor.
% voxel3 - Visualize a third-order tensor with voxels.

1.3. Contents.m 7



CHAPTER

TWO

DATASETS: DENSE, INCOMPLETE, SPARSE AND STRUCTURED

A scalar is a tensor of order zero. Vectors and matrices are first- and second-order tensors, respectively. Arrays
with three or more dimensions are called higher-order tensors.

Datasets can be dense, sparse, incomplete or structured. Tensorlab provides different representations for each
of these cases, discussed in Section 2.1. These representations are developed in such a way that a number of
operations can be computed efficiently, which is discussed in Section 2.2. In Section 2.3, different visualization
techniques are illustrated.

2.1 Tensor representations

2.1.1 Dense tensors

A dense (or full) tensor is simply a MATLAB array, e.g., A = randn(10,10) or T = randn(5,5,5) . MATLAB
supports a few basic operations on tensors, for example:

T = randn(10,20,30);
S = randn(10,20,30);
V = T + S; % Elementwise addition
W = T.*S; % Elementwise multiplication

2.1.2 Incomplete tensors

An incomplete tensor is a dataset in which some (or most) of the entries are unknown. An incomplete tensor is
efficiently represented in Tensorlab by a structure that contains the necessary information. The efficient repre-
sentation of an incomplete tensor of which the unknown entries are padded with NaN can be obtained by using
the format command fmt . In the following example, a MATLAB array of size 9 × 9 × 9 with only three known
elements is replaced by its efficient representation:

T = NaN(9,9,9);
T(1,2,3) = -1;
T(4,5,6) = -2;
T(7,8,9) = -3;
T = fmt(T)

T =
matrix: [9x81 double]

size: [9 9 9]

8
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ind: [3x1 int64]
val: [3x1 double]

incomplete: 1
sparse: 0

sub: {[3x1 int32] [3x1 int32] [3x1 int32]}

Note that if there are no entries equal to NaN , then fmt(T) returns T itself. On the other hand, from the
set of known entries, their positions, the tensor’s size and an incomplete flag, the efficient representation can be
constructed directly such as in the following example:

T = struct;
T.val = [-1 -2 -3]; % The known elements
T.sub = [1 2 3; 4 5 6; 7 8 9]; % Their positions
T.size = [9 9 9]; % The size of the tensor
T.incomplete = true; % The incomplete flag

T = fmt(T); % Complete the representation

Note that for obtaining a valid efficient representation, fmt needs to be used such that additional fields needed
for computational purposes are inserted, e.g., T.matrix . Alternatively, the user may supply linear indices with
T.ind instead of subindices with T.sub . To convert linear indices to subindices and vice versa, see the

MATLAB functions ind2sub and sub2ind , respectively.

Given the representation of an incomplete tensor, the MATLAB array with NaN values for the unknown entries
can be obtained using the command ful :

T = struct;
T.val = [1 2 3];
T.ind = [1 5 9];
T.size = [3 3];
T.incomplete = true;
T = fmt(T);
S = ful(T)

S =
1 NaN NaN

NaN 2 NaN
NaN NaN 3

2.1.3 Sparse tensors

A sparse tensor is a dataset in which most of the entries are zero, e.g., a large diagonal matrix. Tensorlab supports
efficient representations of sparse tensors of which at least 95% of the entries are zero. The efficient representation
can be obtained using the format command fmt :

T = zeros(5,5,5);
T(1:31:end) = 1;
T = fmt(T)

T =
matrix: [5x25 double]

size: [5 5 5]
ind: [5x1 int64]

2.1. Tensor representations 9
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val: [5x1 double]
incomplete: 0

sparse: 1
sub: {[5x1 int32] [5x1 int32] [5x1 int32]}

If less than 95% of the entries are zero, then fmt returns T itself. To construct an efficient representation
of a sparse tensor directly, define a structure containing the tensor’s nonzero elements in the same way as for
incomplete tensors and set the sparse flag. Afterwards, fmt should be called to insert additional necessary fields
for computational purposes and to obtain a valid efficient representation:

T.val = [-1 -2 -3]; % The non-zero elements
T.sub = [1 2 3; 4 5 6; 7 8 9]; % Their positions
T.size = [9 9 9]; % The size of the tensor
T.sparse = true; % The sparse flag

T = fmt(T);

The ful command can be used to convert the representation to the corresponding MATLAB array:

T = struct;
T.val = [1 2 3];
T.ind = [1 5 9];
T.size = [3 3];
T.sparse = true;
T = fmt(T);
S = ful(T)

S =
1 0 0
0 2 0
0 0 3

2.1.4 Structured tensors

Tensorlab 3.0 introduces additional support for structured tensors. Two groups of structured tensors can be
handled: structured tensors resulting from the tensorization of data and tensors that are given under the form of
an explicit factorization.

Structured tensors resulting from the tensorization of data

Consider a Hankel matrix, constructed from an arbitrary vector. Such a matrix has a special structure: each anti-
diagonal (or skew-diagonal) is constant. For example, from the generating vector v = [1, 2, . . . , 7], the following
Hankel matrix H can be obtained:

H =

⎡⎢⎢⎣
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

⎤⎥⎥⎦ .

One can exploit the structure of H when storing H and even when performing operations on H. The former is
done in this case by only storing the small generating vector v, instead of the 16 elements of H.

This Hankel-based mapping is a specific example of tensorization and the Hankel matrix is a specific example of
a tensor obtained from a tensorization of some lower-order data. The concept of tensorization is covered in more

2.1. Tensor representations 10
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detail in Chapter 7. Tensorlab supports efficient representations of Hankel matrices and (block-)Hankel tensors of
arbitrary order, as well as Löwner, segmentation-based and decimation-based structures obtained by tensorization.

Each efficient representation is a MATLAB structure array, analogous to the efficient representation for incomplete
and sparse tensors. For example, the following is an efficient representation of the previously mentioned Hankel
matrix H:

H = hankelize(1:7,'full',false);

H =
type: 'hankel'
val: [7x1 double]
dim: 1

order: 2
ind: 4

ispermuted: 0
repermorder: [1 2]

size: [4 4]
subsize: [1x1 struct]

By calling ful on H , the dense matrix is obtained:

H = ful(H)

H =
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

Tensors given under the form of an explicit factorization

Consider a rank-1 tensor 𝒯 ∈ C100×100×100, which can be written as the outer product of three vectors a ∈ C100,
b ∈ C100 and c ∈ C100. Each element of 𝒯 satisfies 𝑡𝑖𝑗𝑘 = 𝑎𝑖𝑏𝑗𝑐𝑘. The 300 elements from a, b and c exactly
determine all of the 1,000,000 elements of 𝒯 . Hence, instead of storing 𝒯 and performing operations on 𝒯 , only
the three vectors could be stored and used for calculations.

Tensorlab supports efficient operations on tensors represented by a factorization in rank-1 terms (CPD, see
Chapter 3), with arbitrary rank, order and size. Tensorlab also supports efficient operations on tensors which are
given under the form of a tensor train (TT) decomposition [23], a low multilinear rank approximation (LMLRA,
see Chapter 5) or a block term decomposition (BTD, see Chapter 6, with as specific case the decomposition in
multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms).

The efficient representations corresponding to each structure are a collection of factor matrices and core tensor(s).
Consider an 𝑁 th-order tensor 𝒯 of size 𝐼1 × 𝐼2 × · · · × 𝐼𝑁 :

• For a CPD, the representation is a cell array containing the factor matrices of sizes 𝐼𝑛 × 𝑅 with 𝑅 the
number of rank-1 terms.

• For an LMLRA, the representation is a cell array containing (1) a cell array with the factor matrices of sizes
𝐼𝑛 × 𝑅𝑛, and (2) a core tensor of size 𝑅1 × 𝑅2 × · · · × 𝑅𝑁 .

• For a BTD, the representation is a cell array with 𝑅 entries, each representing a tensor with multilinear
rank (𝐿𝑟1, 𝐿𝑟2, . . . , 𝐿𝑟𝑁 ). The 𝑟th cell entry has 𝑁 + 1 elements: the first 𝑁 elements represent the factor
matrices of size 𝐼𝑛 ×𝐿𝑟𝑛, while element 𝑁 +1 represents the core tensor of size 𝐿𝑟1 ×𝐿𝑟2 ×· · ·×𝐿𝑟𝑁 . Note
that this is different from the LMLRA format as the factor matrices are not encapsulated in an additional
cell.
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• For a TT, the representation is a cell array with 𝑁 entries. The first and last entry represent two factor
matrices of sizes 𝐼1 × 𝑅1 and 𝑅𝑁−1 × 𝐼𝑁 . The other entries represent the cores of sizes 𝑅𝑛 × 𝐼𝑛+1 × 𝑅𝑛+1
for 𝑛 = 1, . . . , 𝑁 − 2.

While Tensorlab supports the efficient representation of TT decompositions, we refer to other toolboxes for the
computation of such decompositions.

2.1.5 Useful commands for efficient representations

Besides generating the entire dense tensor given an efficient representation of an incomplete, sparse or structured
tensor, the command ful provides an additional feature allowing the user to pass indices for specific elements
of the tensor to be calculated or extracted. Given an efficient representation of the following Hankel matrix H:

H =

⎡⎢⎢⎣
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

⎤⎥⎥⎦ ,

the following returns the diagonal of H using linear indices:

ful(H,[1 6 11 16])

ans =
1 3 5 7

Alternatively, subindexing can be used to extract fibers or slices. For example:

ful(H,2,':')
ful(H,2:3,':')

ans =
2 3 4 5

ans =
2 3 4 5
3 4 5 6

Further, getstructure returns the type of efficient representation. The functions getorder and getsize
return the order and the size of the tensor. Given a dense tensor, the function detectstructure will try
to detect structure present in the dataset. Currently, only symmetry and Hankel structure is detected. If the
detected structure corresponds to a supported efficient representation in Tensorlab, the representation is also
returned. Finally, the function isvalidtensor determines if the given efficient representation is a valid tensor
representation. In the following example, the tensor representation is not valid as the field size is not present:

T = struct;
T.val = [1 2 3];
T.ind = [1 2 3];
T.incomplete = true;
isvalidtensor(T)

2.1. Tensor representations 12
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2.2 Tensor operations

2.2.1 Matricization and tensorization

A dense tensor T can be flattened or unfolded into a matrix with M = tens2mat(T,mode_row,mode_col) .
Let size_tens = size(T) , then the resulting matrix M is of size prod(size_tens(mode_row)) by
prod(size_tens(mode_col)) . For example,

T = randn(3,5,7,9);
M = tens2mat(T,[1 3],[4 2]);
size(M)

outputs [21 45] . In tens2mat , a given column (row) of M is generated by fixing the indices
corresponding to mode_col ( mode_row ) and then looping over the remaining indices in the order
mode_row ( mode_col ). To transform a matricized tensor M back into its original size size_tens , use
mat2tens(M,size_tens,mode_row,mode_col) .

The most common use case is to matricize a tensor by placing its mode-𝑛 vectors as columns in a matrix, also
called a mode-𝑛 matricization. This can be achieved by

T = randn(3,5,7);
n = 2;
M = tens2mat(T,n);

where the optional argument mode_col is implicitly equal to [1:n-1 n+1:ndims(T)] .

The commands tens2mat and mat2tens currently only support dense tensors. For other matricization and
detensorization methods, we refer to Chapter 7.

2.2.2 Tensor-matrix product

In a mode-𝑛 tensor-matrix product, the tensor’s mode-𝑛 fibers are premultiplied by a given matrix. In other
words, U*tens2mat(T,n) is a mode-𝑛 matricization of the mode-𝑛 tensor-matrix product T ·𝑛 U. The function
tmprod(T,U,mode) computes the tensor-matrix product T ·mode(1) U1 ·mode(2) U2 · · ·. For example,

T = randn(3,5,7);
U = {randn(11,3),randn(13,5),randn(15,7)};
S = tmprod(T,U,1:3);
size(S)

outputs [11 13 15] . To compute a single tensor-matrix product, a cell array is not necessary. The following is
an example of a single mode-2 tensor-matrix product:

T = randn(3,5,7);
S = tmprod(T,randn(13,5),2);

Note that tmprod currently only supports dense tensors.

The contract(T,v,n) command computes contractions between the tensor T with the vectors v in the
modes given by n .

2.2. Tensor operations 13
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2.2.3 Kronecker and Khatri–Rao product

Tensorlab includes a fast implementation of the Kronecker product 𝐴 ⊗ 𝐵 with the function kron(A,B) , which
overrides MATLAB’s built-in implementation. Let 𝐴 and 𝐵 be matrices of size 𝐼 × 𝐽 and 𝐾 × 𝐿, respectively,
then the Kronecker product of 𝐴 and 𝐵 is the 𝐼𝐾 × 𝐽𝐿 matrix

𝐴 ⊗ 𝐵 :=

⎡⎢⎣𝑎11𝐵 · · · 𝑎1𝐽𝐵
... . . . ...

𝑎𝐼1𝐵 · · · 𝑎𝐼𝐽𝐵

⎤⎥⎦ .

More generally, kron(A,B,C,...) and kron(U) compute the Kronecker products ((A ⊗ B) ⊗ C) ⊗ · · · and
((U{1} ⊗ U{2}) ⊗ U{3}) ⊗ · · ·, respectively.

The Khatri–Rao product 𝐴 ⊙ 𝐵 can be computed by kr(A,B) . Let 𝐴 and 𝐵 both be matrices with 𝑁 columns,
then the Khatri–Rao product of 𝐴 and 𝐵 is the column-wise Kronecker product

𝐴 ⊙ 𝐵 :=
[︀
a1 ⊗ b1 · · · a𝑁 ⊗ b𝑁

]︀
.

More generally, kr(A,B,C,...) and kr(U) compute the Khatri–Rao products ((A⊙B)⊙C)⊙· · · and ((U{1}⊙
U{2}) ⊙ U{3}) ⊙ · · ·, respectively.

Note that kr and kron currently only support dense tensors.

2.2.4 Matricized-tensor times Kronecker and Khatri–Rao product

Matricized-tensor times Kronecker product

Often, algorithms for tensor decompositions do not explicitly need matricized tensors or Kronecker products, but
rather need the following matricized tensor Kronecker product:

tens2mat(T,n)*conj(kron(U([end:-1:n+1 n-1:-1:1])))

where kron(...) represents the Kronecker product U{end} ⊗ · · · ⊗ U{n+1} ⊗ U{n-1} ⊗ · · · ⊗ U{1} . The
function mtkronprod(T,U,n) computes the result of this operation without explicitly computing either of the
operands and without permuting the elements of the tensor T in memory.

Note that for n=0 , the efficiently implemented product gives the same result as the following:

T(:).'*conj(kron(U(end:-1:1)))

For improved computational performance, it is recommended that the two largest dimensions of T are the first
and last modes of T . The command mtkronprod supports dense, sparse, incomplete and structured tensors.

Matricized-tensor times Khatri–Rao product

Similarly, algorithms for tensor decompositions usually do not explicitly need matricized tensors or Khatri–Rao
products, but rather the following matricized tensor Khatri–Rao product:

tens2mat(T,n)*conj(kron(U([end:-1:n+1 n-1:-1:1])))

The function mtkrprod(T,U,n) computes the result of this operation without explicitly computing either of the
operands and without permuting the elements of the tensor T in memory.

For n=0 , the efficiently implemented product gives the same result as the following:
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T(:).'*conj(kr(U(end:-1:1)))

For improved computational performance, it is recommended that the two largest dimensions of T are the first
and last modes of T . The command mtkrprod supports dense, sparse, incomplete and structured tensors.

2.2.5 Frobenius norm

The Frobenius norm of a tensor is the square root of the sum of square moduli of its (known) elements. Given
a tensor T , its Frobenius norm can be computed with frob(T) . If the tensor is dense, this is equivalent with
norm(T(:)) , i.e., the two-norm of the vectorized tensor. The squared Frobenius norm can be computed with
frob(T,'squared') .

The command supports dense, sparse, incomplete and structured tensors. For structured tensors, the norm is
computed in a very efficient way. Consider a third-order Hankel tensor 𝐻 of size 334×334×334, constructed using
the hankelize method (see Chapter 7). We compare the time needed for the computation of the Frobenius
norm given the dense tensor H with the time needed for the computation given its efficient representation Heff :

[H,Heff] = hankelize(linspace(0,1,1000),'order',3);
tic; disp(frob(H)); toc; % Using the dense tensor H
tic; disp(frob(Heff)); toc; % Using the efficient representation of H

3.2181e+03
Elapsed time is 0.026401 seconds.

3.2181e+03
Elapsed time is 0.000832 seconds.

2.2.6 Inner and outer product

Given two tensors T1 and T2 , the command inprod(T1,T2) computes the inner product T2(:)'*T1(:) .
The result is a scalar. The command supports dense, sparse, incomplete and structured tensors for both T1 and
T2 .

The command outprod(T1,T2) computes the outer product of two tensors T1 and T2 . If T1 has size
𝐼1 × · · · × 𝐼𝑀 and T2 has size 𝐽1 × · · · × 𝐽𝑁 , then the resulting tensor has size 𝐼1 × · · · × 𝐼𝑀 × 𝐽1 × · · · × 𝐽𝑁 . If
T1 , respectively T2 , is a row or column vector, the singleton dimension is discarded. Currently, the command
outprod supports only dense tensors.

2.2.7 Noisy versions of tensors and representations

The noisy command can be used to create a noisy version of dense, incomplete, sparse and structured tensors
given a signal-to-noise ratio. For example,

T = randn(10,10,10);
SNR = 20;
That = noisy(U,SNR);
frob(That-T)/frob(T)
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ans =
0.1000

Note that for efficient representations of incomplete, sparse and structured tensors, noise is added to the variables
of the representation rather than to the full tensor. For example, given the efficient representation Heff of a
3 × 3 Hankel matrix H , a Hankel matrix is returned with constant perturbations along the anti-diagonals:

[H,Heff] = hankelize(1:5);
SNR = 20;
Heffhat = noisy(Heff,SNR);
H
ful(Heffhat)

H =
1 2 3
2 3 4
3 4 5

ans =
1.2691 2.2507 3.3571
2.2507 3.3571 3.5825
3.3571 3.5825 4.9737

The noisy command can be used for cell arrays as well. Noise is then added on every entry of the cell. For
example:

U = {randn(10,2),randn(15,2),randn(20,2)};
SNR = 20;
Uhat = noisy(U,SNR);

creates a cell array U and a noisy version of that cell array called Uhat . This is equivalent to adding noise to
the efficient representation of factorized tensors as discussed in the previous paragraph.

2.3 Visualizing higher-order datasets

Tensorlab offers four methods to visualize higher-order datasets. The methods slice3 , surf3 and voxel3
accept third-order datasets, while the visualize method accepts tensors of any order. The following example
demonstrates the first three methods on the amino acids dataset [16]:

url = 'http://www.models.life.ku.dk/go-engine?filename=amino.mat';
urlwrite(url,'amino.mat'); % Download amino.mat in this directory.
load amino X;
figure(1); voxel3(X);
figure(2); surf3(X);
figure(3); slice3(X);

The resulting plots are shown in Fig. 2.1, Fig. 2.2 and Fig. 2.3, respectively.

visualize is a more advanced method for visual exploration of tensors of arbitrary order. It extracts and plots
slices of order one, two or three. The other dimensions can then be varied to ‘walk through’ the data. The
following example illustrates visualize for a tensor with smooth slices:
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Fig. 2.1: Visualization of a third-order tensor using voxel3 .

Fig. 2.2: Visualization of a third-order tensor using surf3 .
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Fig. 2.3: Visualization of a third-order tensor using slice3 .

R = 4; degree = 3;
sz = [10 15 20 25];
for n = 1:4

% Use struct_poly to generate polynomial factor vectors
U{n} = struct_poly(rand(R,degree+1), [], 1:sz(n));

end
T = cpdgen(U);

visualize(T)

The result is shown in Fig. 2.4. The check boxes can be used to select the dimensions that are plotted. By
checking a single dimension, a mode-𝑛 vector is shown, checking two dimensions results in a surface plot, while
checking three dimensions shows the slice3 plot of the data. In Fig. 2.4 the slice 𝒯 (:, :, 1, 1) is plotted, since
𝑖3 = 𝑖4 = 1. Changing the sliders or the text field for dimensions 𝑖3 or 𝑖4, allows the user to view other slices.
When hovering a check box, label, slider or text field, a tooltip is shown with extra information.

The power of visualize lies in the ability to customize the plots and to view both the data tensor and its
decomposition at the same time, as the following example demonstrates:

% Create dataset
R = 4; degree = 3;
sz = [10 15 20 25];
U = cell(1, 4); % Factor matrices
t = cell(1, 4); % Evaluation points
for n = 1:4

% Use struct_poly to generate polynomial factor vectors in points t{n}

2.3. Visualizing higher-order datasets 18
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Fig. 2.4: Visualization of a fourth-order tensor using visualize .
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t{n} = linspace(-0.5, 0.5, sz(n));
U{n} = struct_poly(rand(R,degree+1), [], t{n});

end
T = noisy(cpdgen(U), 30);

% Decompose tensor
Ures = cpd(T, R);

% Visualization
options = struct;
options.Original = T; % Original data = T
options.Trace = true; % Do not erase previous slices (only first-order)
options.DimensionTransform = t; % Use points t for the axes
options.DimensionLabels = 't_%d'; % Use t_1, t_2 etc to label the dimensions

visualize(Ures, options)

The result after clicking a few sliders is shown in Fig. 2.5. Note that the dimensions have different labels and
have the appropriate range as determined by the evaluation points. Going from a first-order to a second-order
slice erases all traces again. By plotting the result and the data together, it is easier to see where the data is
fitted well and where it is not. For an overview of the different options, see help visualize .

As a final example the support option is illustrated. Suppose we are only interested in the part of the data
inside the cylinder 𝑡2

2 + 𝑡2
4 ≤ 0.52 , then we can prevent everything outside of this sphere to be plotted. To do

this, an additional function indicating the region of interest is created:

function region = support(dim, ind)
% Compute support region for selected dimension and transformed indices
% dim is a logical array with a 1 if that dimension is plotted
% ind is a cell of (possibly transformed) indices
% region is vector or a matrix depending on sum(dim) == 1 or 2, respectively.

[t2,t4] = ndgrid(ind{2},ind{4});
region = t2.^2 + t4.^2 <= 0.5^2;

The following code block generates Fig. 2.6 for the same dataset as before:

options = struct;
options.DimensionTransform = t; % Use points t for the axes
options.DimensionLabels = 't_%d'; % Use t_1, t_2 etc to label the dimensions
options.Support = @support; % Use support region

visualize(Ures, options)
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Fig. 2.5: Visualization of a fourth-order tensor using visualize with original data, tracing and dimension
transforms after changing some sliders.
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Fig. 2.6: Illustration of support regions for visualize .
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CHAPTER

THREE

CANONICAL POLYADIC DECOMPOSITION

𝒯 ≈

c1

a1

b1 + · · · +

c𝑅

a𝑅

b𝑅 =

C

A
B

Fig. 3.1: A canonical polyadic decomposition of a third-order tensor.

The polyadic decomposition (PD) [5, 6, 10, 11, 12, 13] approximates a tensor with a sum of 𝑅 rank-one tensors.
If the number of rank-1 terms 𝑅 is minimal, the decomposition is called canonical (CPD). Let 𝒜 ⊗ ℬ denote the
outer product between an 𝑁 th-order tensor 𝒜 and an 𝑀 th-order tensor ℬ, then 𝒜 ⊗ ℬ is the (𝑁 + 𝑀)th-order
tensor defined by (𝒜 ⊗ ℬ)𝑖1···𝑖𝑁 𝑗1···𝑗𝑀

= 𝑎𝑖1···𝑖𝑁
· 𝑏𝑗1···𝑗𝑀

. For example, let a, b and c be nonzero vectors in R𝑛,
then a ⊗ b ≡ a · bT is a rank-one matrix and a ⊗ b ⊗ c is defined to be a rank-one tensor. Let 𝒯 be a tensor of
dimensions 𝐼1 × 𝐼2 × · · · × 𝐼𝑁 , and let U(𝑛) be matrices of size 𝐼𝑛 × 𝑅 and u(𝑛)

𝑟 the 𝑟th column of U(𝑛), then

𝒯 ≈
𝑅∑︁

𝑟=1
u(1)

𝑟
⊗ u(1)

𝑟
⊗ · · · ⊗ u(𝑁)

𝑟 .

A visual representation of this decomposition in the third-order case is shown in Fig. 3.1.

3.1 Problem and tensor generation

3.1.1 Generating pseudorandom factor matrices

Tensorlab stores the factor matrices U(𝑛) ∈ C𝐼𝑛×𝑅, 𝑛 = 1, . . . , 𝑁 , of an 𝑅-term PD of an 𝑁 th-order tensor as
a cell array of length 𝑁 , i.e., U = {U{1},U{2},...,U{N}} . To generate pseudorandom factor matrices U(𝑛),
cpd_rnd can be used:

size_tens = [7 8 9]; R = 4;
U = cpd_rnd(size_tens,R);

By default, cpd_rnd generates each factor U{n} as randn(size_tens(n),R) . Options can be given as a
structure or as key-value pairs, e.g.:
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% using a structure
options = struct;
options.Real = @rand;
options.Imag = @rand;
U = cpd_rnd(size_tens,R,options);

% using key-value pairs
U = cpd_rnd(size_tens, R, 'Real', @rand, 'Imag', @rand);

Each factor matrix U{n} is then generated as rand(size_tens(n),R) + rand(size_tens(n),R)*1i .

3.1.2 Generating the associated full tensor

Given a cell array of factor matrices U = {U{1},U{2},...} , its associated full tensor T can be computed with

T = cpdgen(U);

This is equivalent to

M = U{1}*kr(U(end:-1:2)).';
size_tens = cellfun('size',U,1);
T = mat2tens(M,size_tens,1);

The ful command can be used as well to generate the full tensor. Both ful and cpdgen also allow one to
generate subtensors:

U = cpd_rnd([10 11 12], 5);
T = cpdgen(U);

t1 = cpdgen(U, [1 2 3 2 3]); % using linear indices
frob(t1 - T([1 2 3 2 3])) % is zero

t2 = ful(U, ':', 2, ':'); % using subscripts (':' is a string!)
frob(t2 - T(:,2,:)) % is zero

3.2 Computing the CPD

A number of algorithms are available to compute the CPD of a tensor 𝒯 of arbitrary order 𝑁 . A deterministic
algorithm using the generalized eigenvalue decomposition is implemented in cpd_gevd [14]. The cpd_als ,
cpd_minf and cpd_nls algorithms are optimization-based algorithms and use alternating least squares, non-

linear unconstrained optimization and nonlinear least squares, respectively. Finally, a high-level algorithm is
implemented in cpd . This method automatically computes an initialization and uses this as a starting point for
one or more optimization steps using an optimization-based algorithm. Because cpd is a higher-level algorithm,
it is often the recommended method. All optimization-based algorithms accept dense, sparse, incomplete and
structured tensors (see Chapter 2). If structured tensors are used, and a solution accurate up to machine precision
is needed, make sure to read the note at the end of this chapter.
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3.2.1 The principal method

The easiest way to compute the CPD of a dense, sparse, incomplete or structured tensor 𝒯 in 𝑅 rank-one terms,
is to call cpd(T,R) . For example,

% Generate pseudorandom factor matrices U0 and their associated full tensor T.
size_tens = [7 8 9]; R = 4;
U = cpd_rnd(size_tens,R);
T = cpdgen(U);

% Compute the CPD of the full tensor T.
Uhat = cpd(T,R);

generates and decomposes a real rank-4 tensor. Internally, cpd performs a number of steps to provide a good
initialization and to reduce the computational cost of the decomposition. First, cpd compresses the tensor using
a low multilinear rank approximation, e.g., using mlsvd_rsi (see Chapter 5), if it is worthwhile. Then cpd
chooses a method to generate an initialization U0 , e.g., cpd_gevd , after which cpd executes an algorithm
to compute the CPD given the initialization, e.g., cpd_nls . Finally cpd uncompresses the tensor and refines
the solution (if compression was applied). Depending on the kind of input tensor T , additional substeps are
performed. If T is a dense tensor, the command detectstructure is used to detect if there is any structure to
be exploited during the decomposition (see ExploitStructure option). If structure is detected, the dense tensor
is converted to its efficient representation. If T is the efficient representation of a sufficiently small structured
tensor, T is expanded to allow the use of better compression and initialization algorithms (see ExpandLimit
option).

The command cpd(T, R) automatically takes care of the initialization for the chosen optimization algorithm.
Alternatively an initial solution can be provided using

U0 = cpd_rnd([10 11 12], R);
Uhat = cpd(T, U0);

Note that cpd_gevd is a deterministic algorithm, unless slices are combined randomly (see Slices option).
Hence, if this algorithm is used for initialization in cpd , the result Uhat is always the same for multiple runs for
the same tensor 𝒯 , rank 𝑅 and options. Changing the initialization method to, e.g., cpd_rnd , is useful when
different initializations are needed. The following example uses the cpd_gevd algorithm as initialization method
for the first run, and uses a random initialization for the other runs:

init = @cpd_gevd;
results = cell(1, 5);
for n = 1:5

results{n} = cpd(T, R, 'Initialization', init);
init = @cpd_rnd;

end

The next subsection explains the different options for the cpd routine.

3.2.2 Setting the options

The different steps in cpd are customizable by using the different options (see help cpd for more information).
Options can be provided using an options structure, or using key-value pairs, e.g.,
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options.Display = true; % Show progress on the command line.
options.Initialization = @cpd_rnd; % Select pseudorandom initialization.
options.Algorithm = @cpd_als; % Select ALS as the main algorithm.
options.AlgorithmOptions.LineSearch = @cpd_els; % Add exact line search.
options.AlgorithmOptions.TolFun = 1e-12; % Set function tolerance stop criterion
options.AlgorithmOptions.TolX = 1e-12; % Set step size tolerance stop criterion
Uhat = cpd(T,R,options);

The structures InitializationOptions , AlgorithmOptions and RefinementOptions
are passed as option structures to the algorithms corresponding to initialization, algo-
rithm and refinement steps, respectively. In the example above cpd calls cpd_als as
cpd_als(T,options.Initialization(T,R),options.AlgorithmOptions) .

Since Tensorlab 3.0 some frequently used options are automatically. For example cpd(T, R, 'Display', 10)
sets Display = true for cpd and automatically passes the Display = 10 option to AlgorithmOptions
and RefinementOptions . Similarly, the MaxIter , TolX , TolFun and CGMaxIter options are passed
automatically.

A full overview of the possible options is given in help cpd . The following options are worthwhile to be
highlighted:

• Complex : If set to 'auto' , a complex initialization is computed if the tensor T is complex, and a real
initialization is computed otherwise. Set Complex to true if a complex solution is required, whether T
is real or not.

• ExpandLimit : Allow a structured tensor T to be expanded for the compression and/or initialization
steps if prod(getsize(T)) <= ExpandLimit . Set ExpandLimit = 1 to make sure tensors are never
expanded.

• ExploitStructure : If 'auto' (the default) cpd tries to detect structure within the given dense tensor
and uses its efficient representation for the decomposition of the uncompressed tensor if structure is found.
Currently, only Hankel structure is detected. Set to false to disable structure detection. Set to true if
structure detection should also be enabled for the compressed tensor.

• UseCPDI : If set to true specialized computational routines are used if cpd_nls is used to compute the
CPD of an incomplete tensor. This option is useful if many entries are missing or the pattern of missing
entries is not random [15].

3.2.3 Viewing the algorithm output

Each step may also output additional information specific to that step. For instance, most CPD algorithms such
as cpd_als keep track of the number of iterations and objective function value. To obtain this information,
capture the second output:

[Uhat,output] = cpd(T,R,options);

and inspect its fields, for example by plotting the objective function value:

semilogy(0:output.Algorithm.iterations,sqrt(2*output.Algorithm.fval));
xlabel('iteration');
ylabel('frob(cpdres(T,U))');
grid on;
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Setting the Display option to true or to a number greater than zero, prints additional information to the
command window. For example:

U = cpd_rnd([10 11 12], 5);
T = cpdgen(U);
Tn = noisy(T, 20);
[Uhat, output] = cpd(Tn, 5, 'Display', 1);

Step 1: Compression is mlsvd_rsi (compression ratio 0.094697 < 0.5)...
relative error = 0.0906931.

Step 2: Initialization is cpd_gevd (sum(R <= size(T)) >= 2)...
relative error = 0.031175.

Step 3: Algorithm is cpd_nls on the compressed tensor... iterations = 6,
relative error = 0.0207.

Step 4: Refinement is cpd_nls on the uncompressed tensor:
| Step 4a: Detecting structure... no structure detected.
| Step 4b: cpd_nls... iterations = 6, relative error = 0.092980

The four steps discussed in the previous section are clearly indicated. The mlsvd_rsi algorithm is used here
to compress the tensor. Next the cpd_gevd method is used to compute an initialization for the compressed
tensor. This initialization is used as starting point for the optimization method in step 3. Finally, the tensor is
uncompressed again in step 4 and the solution is refined for the uncompressed tensor. In step 4a, cpd tries to
detect structure to exploit in the computations, but no structure is found in this case.

In the next example, a sampled cosine function is Hankelized using the hankelize function (see Chapter 7). It
can be shown that the rank of this real tensor is two in the complex field. A complex solution is computed by
setting the Complex option to true .

T = hankelize(cos(2*pi*linspace(0,1,51)), 'order', 3);
options = struct;
options.Initialization = @cpd_rnd;
options.Algorithm = @cpd_als;
options.Refinement = @cpd_nls;
options.Complex = true;

[Uhat, output] = cpd(T, 2, options, 'Display', 1);

The following output is printed:

Step 1: Compression is mlsvd_rsi (compression ratio 0.00145243 < 0.5)...
relative error = 9.61532e-16.

Step 2: Initialization is cpd_rnd (requested by user)... relative error = 0.983011.
Step 3: Algorithm is cpd_als on the compressed tensor... iterations = 10,

relative error = 2.30489e-05.
Step 4: Refinement is cpd_nls on the uncompressed tensor:
| Step 4a: Detecting structure... detected Hankel structure.
| Step 4b: Converted tensor to efficient representation.
| Step 4c: cpd_nls on efficient representation... iterations = 1,

relative error = 6.47107e-10.
| Step 4d: cpd_nls on the original full tensor to improve accuracy...

iterations = 1, relative error = 2.66907e-16.

The structure detection is shown in step 4 of the printed output. Although a full tensor is given, the algorithm
automatically detected the Hankel structure (step 4a) and converted the tensor to the efficient representation
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(step 4b). The refinement is then executed on this efficient representation (step 4c). This can be done more
efficiently than when using the original full tensor. Finally, some additional refinement steps are applied to the
original tensor to improve the accuracy (step 4d). These substeps are performed in step 3 if no compression is
performed. Note that, for illustration purpose, the cpd_als and cpd_minf algorithms have been used instead
of the default cpd_nls algorithm, as the latter converges too fast in this case. Due to this fast convergence,
the structure detection is then no longer needed.

In the previous example, the tensor T is a full tensor. The next two examples show the behavior for efficient
representations of structured tensors T . First, a rank-2 tensor 𝒯 is created by Hankelizing a sampled cosine
function. To obtain the efficient representation, the hankelize function with the full option set to false
is used. ( getstructure(T) can be used to verify that the efficient Hankel representation is used.) This efficient
representation for the tensor 𝒯 is used by cpd :

T = hankelize(cos(2*pi*linspace(0,1,51)), 'order', 3, 'full', false);
options = struct;
options.Algorithm = @cpd_minf;
options.Complex = true;
[Uhat, output] = cpd(T, 2, options, 'Display', 1);

Step 1: Compression is mlsvd_rsi (compression ratio 0.00145243 < 0.5):
| Step 1a: Structured tensor expanded to full tensor (prod(getsize(T)) <= 1e+06).
| Step 1b: mlsvd_rsi on full tensor... relative error = 1.06122e-15.
Step 2: Initialization is cpd_gevd (sum(R <= size(T)) >= 2)...

relative error = 3.47269e-16.
Step 3: Algorithm is cpd_minf on the compressed tensor... iterations = 1,

relative error = 3.47269e-16.
Step 4: Refinement skipped (relative error = 9.96998e-16 <= 1e-08)

From the printed output, we see that the number of elements in the full tensor is smaller than the
ExpandLimit = 1e6 . Therefore, the representation is expanded to a full tensor such that the mlsvd_rsi

algorithm can be applied for compression. In case no compression is performed, the expansion is performed in
step 2. Next, an initial guess is computed using the compressed tensor in step 2. This initial guess is then
improved using cpd_minf in step 3. Finally, in step 4, a refinement step is performed on the original efficient
representation instead of on the compressed tensor. However, in this example, the relative error is already smaller
than what can be obtained using efficient representations. In case a high accuracy is required, please check the
note at the end of this chapter. Note that the relative error in step 4 is higher than in step 3. This is due to the
fact that the error is computed on the compressed tensor in step 3, while it is computed on the uncompressed
tensor in step 4.

In the second example for structured tensors, we use cpd_rnd for the initialization instead of cpd_gevd . A
different situation occurs: the relative error in the beginning of the refinement step is not smaller than 1e-08
and the refinement step is still performed on the efficient representation. As the tensor has Hankel structure by
construction, no automatic detection is needed.

T = hankelize(cos(2*pi*linspace(0,1,51)), 'order', 3, 'full', false);
options = struct;
options.Algorithm = @cpd_minf;
options.Initialization = @cpd_rnd;
options.Complex = true;
[Uhat, output] = cpd(T, 2, options, 'Display', 1);
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Step 1: Compression is mlsvd_rsi (compression ratio 0.00145243 < 0.5):
| Step 1a: Structured tensor expanded to full tensor (prod(getsize(T)) <= 1e+06).
| Step 1b: mlsvd_rsi on full tensor... relative error = 5.62399e-16.
Step 2: Initialization is cpd_rnd (requested by user)... relative error = 0.999409.
Step 3: Algorithm is cpd_minf on the compressed tensor... iterations = 73,

relative error = 5.1671e-07.
Step 4: Refinement is cpd_minf on the uncompressed tensor:
| Step 4a: Detection of structure skipped (hankel structure already known).
| Step 4b: cpd_minf... iterations = 7, relative error = 1.69504e-08.

3.2.4 Computing the error

The residual between a tensor 𝒯 and its CPD approximation defined by factor matrices Û(𝑛) can be computed
with

U = cpd_rnd([10 11 12], 5);
T = cpdgen(U);
Uhat = cpd(noisy(T, 60), 5);

res = cpdres(T,Uhat);

If the tensor is dense, then the result is equivalent to cpdgen(Uhat)-T . The relative error between the tensor
and its CPD approximation can then be computed as

relerr = frob(cpdres(T,Uhat))/frob(T); % or alternatively by
relerr = frobcpdres(T, Uhat)/frob(T);

The latter method also handles efficiently represented tensors.

One can also consider the relative error between the factor matrices U(𝑛) that generated 𝒯 and their approxima-
tions Û(𝑛) computed by cpd . Due to the permutation and scaling indeterminacies of the CPD, the columns of
Û(𝑛) need to be permuted and scaled to match the columns of U(𝑛) as well as possible. The function cpderr
takes care of these indeterminacies and computes the relative error between the given two sets of factor matrices.
I.e.,

relerr = cpderr(U,Uhat);

returns a vector in which the 𝑛th entry is the relative error between U(𝑛) and Û(𝑛). This method is also applicable
when Û(𝑛) is an under- or overfactoring of the solution, meaning Û(𝑛) comprises fewer or more rank-one terms
than the tensor’s rank, respectively. In the underfactoring case, Û(𝑛) is padded with zero-columns, and in the
overfactoring case only the columns in Û(𝑛) that best match those in U(𝑛) are kept. The command also returns
the permutation matrix, the 𝑁 scaling matrices and the permuted and scaled factor matrices Û(𝑛)

ps :

[relerr,P,D,Uhatps] = cpderr(U,Uhat);

See the help information for more details.

3.3 Choosing the number of rank-one terms 𝑅

Determining the rank 𝑅 of a tensor 𝒯 is often a difficult problem. In many cases domain knowledge or trial-and-
error are used to find the correct rank. A useful lower bound can be found using the multilinear singular values. A
tool which can sometimes help choosing 𝑅 is the rankest method. Running rankest(T) on a dense, sparse,
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incomplete or structured tensor 𝒯 plots an L-curve which represents the balance between the relative error of the
CPD and the number of rank-one terms 𝑅. The following example applies rankest on the amino acids dataset
[16]:

url = 'http://www.models.life.ku.dk/go-engine?filename=amino.mat';
urlwrite(url,'amino.mat'); % Download amino.mat in this directory.
load amino X;
rankest(X);

The resulting figure is shown in Fig. 3.2. The algorithm computes the CPD of the given tensor for various values
of 𝑅, starting at the smallest integer for which the lower bound on the relative error (displayed as a solid blue
line) is smaller than the MaxRelErr option. The lower bound is based on the truncation error of the tensor’s
multilinear singular values [17]. For incomplete and sparse tensors, this lower bound is not available and the first
value to be tried for 𝑅 is 1. The number of rank-one terms is increased until the relative error of the approximation
is less than MinRelErr option. It is recommended to set MaxRelErr higher than the expected noise level and
to set MinRelErr at a value near the noise level and smaller than MaxRelErr . In a sense, the corner of the
resulting L-curve makes an optimal trade-off between accuracy and compression. The rankest tool computes
the number of rank-one terms 𝑅 corresponding to the L-curve corner and marks it on the plot with a square.
This optimal number of rank-one terms is also rankest ‘s first output. By capturing it as R = rankest(X) ,
the L-curve is no longer plotted.

Fig. 3.2: The rankest tool for choosing the number of rank-one terms 𝑅 in a CPD.

3.4 Overview of algorithms

The cpd method uses a variety of algorithms to compute the decomposition using a multi-step initialization
sequence. These algorithms can be called separately as well. Below, an overview of the available algorithms is
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given, as well as an overview of other convenient algorithms.

The following algorithms can be used to compute the canonical polyadic decomposition of dense, sparse, incom-
plete or efficiently represented tensors.

• cpd(T, R) computes the CPD of a tensor T using a multistep approach.

• cpd_nls(T, U) computes the CPD of a tensor T using an nonlinear least squares type algorithm with
initial guess U .

• cpd_minf(T, U) computes the CPD of a tensor T using nonlinear unconstrained optimization with initial
guess U .

• cpd_als(T, U) computes the CPD of a tensor T using alternating least squares with initial guess U .

• cpd_rbs(T, U) computes the CPD of a tensor T using randomized block sampling with initial guess U
and is used for large-scale tensor decompositions [18].

• cpd_gevd(T, R) computes the CPD using the generalized eigenvalue decomposition [14]. cpd_gevd
only accepts full and sparse tensors. For structured tensors cpd_gevd(ful(T), R) can be used.
cpd_gevd often provides a good initialization for optimization-based algorithms.

• cpd3_sd(T, U) computes the CPD of a third-order, dense tensor T using simultaneous diagonalization
with initial guess U [19].

• cpd3_sgsd(T, U) computes the CPD of a third-order, dense tensor T using simultaneous generalized
Schur decomposition with initial guess U [20].

The following line and plane search methods can be used in combination with the optimization routines cpd_nls ,
cpd_minf and cpd_als (see help cpd_xxx for more information):

• cpd_els uses exact line search.

• cpd_aels uses approximated exact line search.

• cpd_lsb uses Bro’s line search method [16].

• cpd_eps uses plane search.

The following routines can be used for problem generation, error analysis and rank estimation.

• cpd_rnd(size_tens, R) generates pseudorandom factors for a CPD.

• cpdgen(U) generates the full tensor from a given CPD U .

• cpderr(U0, Uest) computes the relative error for each factor matrix in U0 and Uest after resolving
the scaling and permutation indeterminacies.

• cpdres(T, U) computes the residual cpdgen(U) - T .

• frobcpdres(T, U) computes the Frobenius norm of the residual cpdgen(U) - T.

• crb_cpd(U, variance) computes the Cramér-Rao bound for a CPD U and a given noise variance
[21, 22, 18].

• rankest(T) tries to estimate the rank of a tensor T .
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Note: When using efficient representations of structured tensors, the expected numerical precision is only
half the machine precision. This is due to the mathematical formulation implemented to exploit the structure.
In most cases, this is not a problem as the maximal attainable precision is already limited due to noise and
model errors. The effect of this reduced accuracy is only visible in the very specific case when a solution
accurate up to machine precision can be found and is required. (This requires TolFun and TolX to be
eps^2 and eps , respectively.) An automatic solution has not been implemented yet. For now, a solution

is to use the structured tensor T to compute a solution Ures accurate up to half the machine precision,
and then refine this solution using cpd_nls(ful(T), Ures, 'TolFun', eps^2,'TolX', eps) for a few
iterations. (It can be useful to set MaxIter to 2 or 3 .) This technique requires only very few expensive
iterations involving the full tensor.

3.5 Further reading

The algorithms outlined in this chapter can be used to compute an unconstrained CPD. In the structured data
fusion (SDF) framework constraints can be imposed and coupled decompositions can be defined. See Chapter 8
for more details.

A number of demos illustrating the CPD are available. In the demo “Basic Use of Tensorlab”1 a beginner’s
introduction to Tensorlab and CPD is given. The demos “Multidimensional Harmonic Retrieval”2, “Using Basic
Tensorlab Features for ICA”3 and “Using Advanced Tensorlab Features for ICA”4 show more practical examples
of the use of a CPD in a signal processing context.

1http://www.tensorlab.net/demos/basic.html
2http://www.tensorlab.net/demos/harmonic-retrieval.html
3http://www.tensorlab.net/demos/ica.html
4http://www.tensorlab.net/demos/sobi.html
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CHAPTER

FOUR

DECOMPOSITION IN MULTILINEAR RANK-(𝐿𝑅, 𝐿𝑅, 1) TERMS

𝒯 ≈

c1

A1
B1

+ · · · +

c𝑅

A𝑅

B𝑅

Fig. 4.1: A decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms of a third-order tensor.

The decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms writes a third-order tensor as a sum of 𝑅 low multilinear
rank terms [25, 26, 27, 28, 6]. Each of these low multilinear rank terms can be written as the outer product,
denoted by ⊗, of a rank-𝐿𝑟 matrix and a vector. For a third-order tensor 𝒯 , the decomposition is given by

𝒯 =
𝑅∑︁

𝑟=1
(A𝑟BT

𝑟) ⊗ c𝑟. (4.1)

The matrices A𝑟 and B𝑟 have 𝐿𝑟 columns and have full rank. A visual representation of this decomposition is
shown in Fig. 4.1. The decomposition in (4.1) is a special case of the polyadic decomposition (PD, see Chapter 3)
and the block term decomposition (BTD, see Chapter 6). Indeed, (4.1) can be seen as a CPD by writing it as a
sum of

∑︀
𝑟 𝐿𝑟 rank-1 terms

𝒯 =
𝑅∑︁

𝑟=1

𝐿𝑟∑︁
𝑙=1

A𝑟(:, 𝑙) ⊗ B𝑟(:, 𝑙) ⊗ c𝑟.

Alternatively, (4.1) can be formulated as a BTD by writing it as the sum of 𝑅 block terms. The 𝑟th term is
formed by the tensor-matrix products of a core tensor 𝒮𝑟 of size 𝐿𝑟 × 𝐿𝑟 × 1 and matrices A𝑟, B𝑟 and vector c𝑟:

𝒯 =
𝑅∑︁

𝑟=1
𝒮𝑟 ·1 A𝑟 ·2 B𝑟 ·3 c𝑟,

in which ·𝑛 denotes the tensor-matrix product in mode 𝑛.

Both formats are supported in Tensorlab, and all methods starting with ll1 allow both the CPD format and the
BTD format.

4.1 Problem and tensor generation

We first show how pseudorandom factors for the decomposition in rank-(𝐿𝑟, 𝐿𝑟, 1) terms can be generated in
the two formats using ll1_rnd and conclude with the generation of the full tensors from both formats using
ll1gen and ful .
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Two different formats for the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms can be used: the CPD and the
BTD formulation. The BTD formulation is the default format for most algorithms, and is represented by a cell
with 𝑅 entries, each of which contains a cell with exactly four entries: the matrices A𝑟 and B𝑟, the vector c𝑟

and a core tensor 𝒮𝑟. All algorithms starting with ll1 normalize this core tensor to the identity matrix. The
command ll1_rnd generates pseudorandom factors for a decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1). For
example, consider a tensor of size 10 × 11 × 12 that can be written as a sum of three terms with multilinear ranks
(2, 2, 1), (3, 3, 1) and (4, 4, 1), hence L = [2 3 4] :

size_tens = [10 11 12];
L = [2 3 4];
U = ll1_rnd(size_tens, L);
U
U{1}
U{1}{4}

U =
{1x4 cell} {1x4 cell} {1x4 cell}

ans =
[10x2 double] [11x2 double] [12x1 double] [2x2 double]

ans =
1 0
0 1

The CPD format can be requested using the 'OutputFormat' option:

options = struct;
options.OutputFormat = 'CPD';
U = ll1_rnd(size_tens, L, options);

% alternatively, using the new options syntax
U = ll1_rnd(size_tens, L, 'OutputFormat', 'CPD');

U

U =
[10x9 double] [11x9 double] [12x3 double]

The result U is a cell of length 𝑅 = 3 with
∑︀

𝑟 𝐿𝑟 columns in the first two factor matrices and 𝑅 columns in
the third factor matrix. When using the CPD format, the parameter L is required for all algorithms, as this
parameter provides the necessary information on how the columns are grouped.

As for the corresponding CPD, BTD and LMLRA methods, additional options can be provided using the old
syntax with an options structure, or as key-value pairs:

size_tens = [10 11 12];
L = [2 3 4];

% Use rand to generate factors
U = ll1_rnd(size_tens, L, 'Real', @rand);
% Create complex factors
U = ll1_rnd(size_tens, L, 'Imag', @randn);
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Instead of size_tens , a full, sparse, incomplete or efficient representation of a structured tensor T can be
given as input, i.e., ll1_rnd(T,L) . size_tens is then determined using getsize(T) . If the tensor T (or
ful(T) ) contains complex entries, complex factors are generated for the factors U , otherwise real factors are

generated.

It is possible to convert a decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms from the BTD format to the CPD
format and vice versa using the ll1convert command:

size_tens = [10 11 12];
L = [2 3 4];
Ubtd = ll1_rnd(size_tens, L, 'OutputFormat', 'btd');
Ucpd = ll1convert(Ubtd); % result in CPD format
Ubtd2 = ll1convert(Ucpd, L); % result again in BTD format (do not forget L)
Ucpd2 = ll1convert(Ucpd, L, 'OutputFormat', 'cpd') % explicitly request CPD format

To expand the factorized representation U of the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms to a full
tensor, ll1gen can be used:

size_tens = [10 11 12];
L = [2 3 4];
Ubtd = ll1_rnd(size_tens, L, 'OutputFormat', 'btd');
T = ll1gen(Ubtd);
T = ll1gen(Ubtd, L); % L is optional for BTD format

Ucpd = ll1_rnd(size_tens, L, 'OutputFormat', 'cpd');
T = ll1gen(U,L); % L is required for CPD format

The ful command can also be used, but it only accepts the BTD format. For example, to generate a vector
from the resulting tensor, the following command can be used:

size_tens = [10 11 12];
L = [2 3 4];
Ubtd = ll1_rnd(size_tens, L);

T = ful(Ubtd); % generate full tensor
t = ful(Ubtd, 1, ':', 1); % generate first row vector

norm(t - T(1,:,1)); % is zero up to machine precision

If the factors U are in the CPD format, the factors have to be converted to the BTD format first:

Ucpd = ll1_rnd(size_tens, L, 'OutputFormat', 'cpd');
T = ful(ll1convert(Ucpd, L));

4.2 Computing the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms

To compute a decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms a number of algorithms are available: a deter-
ministic algorithm based on the generalized eigenvalue decomposition ll1_gevd , optimization-based algorithms
ll1_minf and ll1_nls , and the ll1 method. This last method is the principal method which automatically

handles the compression, expansion, initialization, optimization and refinement, in a similar way as the cpd
method. The ll1 method is a good algorithm choice for many problems. The optimization-based algorithms
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ll1_minf , ll1_nls and ll1 accept dense, sparse, incomplete and efficient representations of structured
tensors. If efficient representations are used, and a solution accurate up to machine precision is needed, make
sure to read the note at the end of this chapter.

4.2.1 The principal method

The easiest way to compute a decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms of a dense, sparse, incomplete
or structured tensor 𝒯 with 𝐿 = [𝐿1, 𝐿2, . . . , 𝐿𝑅] is to use the ll1 method:

size_tens = [10 11 12];
L = [2 3 4];
U = ll1_rnd(size_tens, L);
T = ll1gen(U);

Uhat = ll1(T, L);

Internally, ll1 performs a number of steps to provide a good initialization to reduce the computational cost of
the decomposition. First, the tensor is compressed using a low multilinear rank approximation (see Chapter 5)
if it is worthwhile. Then an initialization U0 is generated, e.g., using ll1_gevd . Next ll1 executes an
algorithm to compute the CPD given the initialization, e.g., ll1_nls . Finally the tensor is uncompressed
and the solution is refined (if compression was applied). Depending on the kind of input tensor T , additional
substeps are performed. If T is a dense tensor, the command detectstructure is used to detect if there is any
structure to be exploited during the decomposition (see ExploitStructure option). If structure is detected,
the dense tensor is converted to its efficient representation. If T is the efficient representation of a sufficiently
small structured tensor, T is expanded to allow the use of better compression and initialization algorithms (see
ExpandLimit option).

Instead of letting ll1(T,L) compute an initialization, the initialization can also be provided:

L = [2 3];
Ucpd = ll1_rnd([10 11 12], L, 'OutputFormat', 'cpd');
Ubtd = ll1_rnd([10 11 12], L, 'OutputFormat', 'btd');

Uhat = ll1(T, Ucpd, L);
Uhat = ll1(T, Ubtd, L);
Uhat = ll1(T, Ubtd); % hence L is optional for the BTD format

Note that ll1_gevd is a deterministic algorithm, unless slices are mixed randomly (see help ll1_gevd ).
Hence, if this algorithm is used for initialization in ll1 , the result is always the same for multiple runs for the
same 𝒯 and 𝐿, and for the same options. Changing the initialization method to, for instance, ll1_rnd , is useful
when different initializations are needed. The following example uses the ll1_gevd algorithm as initialization
method for the first run, and uses a random initialization ( ll1_rnd ) for the other runs:

init = @ll1_gevd;
results = cell(1, 5);
for n = 1:5

results{n} = ll1(T, L, 'Initialization', init);
init = @ll1_rnd;

end

The next subsection explains different options of the ll1 routine.
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4.2.2 Setting the options

The different steps in ll1 are customizable by supplying the method with an options structure (see help ll1
for more information). Options can be provided using an options structure, or using key-value pairs, e.g.,

% Using options struct
options = struct;
options.Display = true; % Show progress on the command line
options.Initialization = @ll1_rnd; % Take ll1_rnd as initialization method
options.Complex = true; % Use complex initialization even for real tensor
ll1(T, L, options);

% Using key-value pairs
ll1(T, L, 'Display', 10, 'Initialization', @ll1_rnd, 'complex', true);

When key-value pairs are used, the options are case insensitive. The options InitializationOptions ,
AlgorithmOptions and RefinementOptions can be used to pass options (as a structure) to the different

algorithms. To set the maximum number of iterations for the refinement step, for example, we can use

refinementOptions = struct;
refinementOptions.MaxIter = 100;
Uhat = ll1(T, L, 'Refinement', @ll1_minf, 'RefinementOptions', refinementOptions);

These structures are passed to the algorithms corresponding to the initialization, algorithm or refinement step.
For example, ll1 calls ll1_minf in the example above as ll1_minf(T, options.Initialization(T,L),
L,options.RefinementOptions) in which options.Initialization is the default initialization method.

Since Tensorlab 3.0 some frequently used options can be passed automatically. For example
ll1(T, L, 'Display', 10) automatically passes the Display = 10 option to AlgorithmOptions and
RefinementOptions , unless these option structures define the Display option. Similarly, the MaxIter ,
TolX , TolFun and CGMaxIter options are passed automatically.

4.2.3 Viewing the algorithm output

Each step may also output additional information specific to that step. For instance, most algorithms to decompose
a tensor into multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms such as ll1_nls keep track of the number of iterations and
objective function value. To obtain this information, capture the second output argument of ll1 :

L = [2 3];
U = ll1_rnd([10 11 12], L);
T = ll1gen(U);
[Uhat,output] = ll1(T,L);

and inspect its fields, for example by plotting the objective function value:

semilogy(0:output.Algorithm.iterations,sqrt(2*output.Algorithm.fval));
xlabel('iteration');
ylabel('frob(ll1res(T,U))');
grid on;

The output structure has at least four fields: Compression , Initialization , Algorithm and
Refinement . Each field can be inspected to see which algorithm is called, e.g., in the example above,
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output.Compression.Name is mlsvd_rsi , or what the result is, e.g., in the example above the compres-
sion ratio is output.Compression.ratio = 0.0379 .

If the Display option is set to true or to a number greater than zero, a number of messages are printed,
depending on the steps taken to provide the result. As an example, consider the following code:

U = ll1_rnd([10 11 12], [3 2]);
T = noisy(ll1gen(U), 40);
Uhat = ll1(T, [3 2], 'Display', 1);

prints the following messages

Step 1: Compression is mlsvd_rsi (compression ratio 0.0378788 < 0.5)...
relative error = 0.00955528.

Step 2: Initialization is ll1_gevd (sum(sum(L) <= size(T)) >= 2)...
relative error = 0.00160962.

Step 3: Algorithm is ll1_nls on the compressed tensor... iterations = 3,
relative error = 0.000923906.

Step 4: Refinement is ll1_nls on the uncompressed tensor:
| Step 4a: Detecting structure... no structure detected.
| Step 4b: ll1_nls... iterations = 2, relative error = 0.00959971.

The output shows that the tensor is first compressed using mlsvd_rsi . The compression causes an approximation
error. The ll1_gevd then computes a first factorization of the compressed tensor using the GEVD method.
This result is used as initial solution for the ll1_nls optimization routine. As can be seen, the relative error is
decreased in three iterations. In the refinement step, the original, uncompressed tensor T is decomposed, starting
from the result of step 3. The refinement step consists of several substeps. In step 4a, the algorithm tries to
detect if structure is present in the tensor. If structure is detected, this is exploited in the refinement algorithm.
In this case, no structure is detected and the original tensor is used. Refinement is only performed if compression
is used in step 1. If no compression is performed, the structure detection takes place in step 3.

If the efficient representation of a structured tensor is used, additional substeps can be performed. For example:

U = ll1_rnd([10 11 12], [3 2]);
Uhat = ll1(U, [3 2], 'Display', 1); % use U as structured tensor

Step 1: Compression is mlsvd_rsi (compression ratio 0.0378788 < 0.5):
| Step 1a: Structured tensor expanded to full tensor

(prod(getsize(T)) <= 1e+06).
| Step 1b: mlsvd_rsi on full tensor... relative error = 8.65928e-16.
Step 2: Initialization is ll1_gevd (sum(sum(L) <= size(T)) >= 2)...

relative error = 1.96691e-15.
Step 3: Algorithm is ll1_nls on the compressed tensor... iterations = 1,

relative error = 1.73667e-16.
Step 4: Refinement skipped. (relative error <= 1e-08)

As can be seen from the output, an additional preprocessing step (step 1a) is introduced. If a structured tensor
is small enough, i.e., if its number of elements is smaller than ExpandLimit (default: 106), the efficient
representation is expanded to a full tensor for the compression and/or initialization steps as this allows the use of
better algorithms. If the number of entries in the tensor is larger than ExpandLimit , expanding the tensor is
too expensive, and other algorithms are selected.
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4.2.4 Computing the error

The residual between a tensor T and its decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms given by Uhat can
be computed with

res = ll1res(T, Uhat); % Uhat in BTD format
res = ll1res(T, Uhat, L); % Uhat in CPD or BTD format

If the tensor is dense, then the result is equivalent to ll1gen(Uhat)-T or ll1gen(Uhat,L)-T . The relative
error between the tensor and its CPD approximation can then be computed as

relerr = frob(ll1res(T,Uhat))/frob(T); % Uhat in BTD format
relerr = frob(ll1res(T,Uhat,L))/frob(T); % Uhat in CPD or BTD format

In this approach, efficient representations of structured tensors are expanded to full tensors using ful(T) .
The methods frobll1res(T,Ubtd) and frobll1res(T,Ucpd,L) compute the Frobenius norm of the resid-
ual without expanding representations of large structured tensors (if prod(getsize(T)) > ExpandLimit , see
help frobll1res for more information). Note that a loss of accuracy can occur if the expanded tensor
That = ll1gen(Uhat,L) is almost equal to T in relative sense (see note at the end of this chapter).

4.3 Overview of algorithms

The ll1 method uses a variety of algorithms to compute the decomposition in a multi-step initialization sequence.
These algorithms can be called separately as well. Below an overview of the different available algorithms is given,
as well as an overview of other convenient algorithms.

The following algorithms can be used to compute the decomposition in rank-(𝐿𝑟, 𝐿𝑟, 1) terms of a full, sparse,
incomplete or structured tensor.

• ll1(T, L) computes the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms of a tensor T using a
multistep approach.

• ll1_nls(T, Ubtd) and ll1_nls(T, Ucpd, L) compute the decomposition in multilinear rank-
(𝐿𝑟, 𝐿𝑟, 1) terms of a tensor T using an NLS type algorithm with an initial guess in the BTD or CPD
format.

• ll1_minf(T, Ubtd) and ll1_minf(T, Ucpd, L) compute the decomposition in multilinear rank-
(𝐿𝑟, 𝐿𝑟, 1) terms of a tensor T using a nonlinear unconstrained optimization type algorithm with an
initial guess in the BTD or CPD format.

• ll1_gevd(T, L) computes the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms using the generalized
eigenvalue decomposition [27]. ll1_gevd only accepts full and sparse tensors. For efficient representations
of structured tensors ll1_gevd(ful(T),L) can be used. ll1_gevd often provides a good initialization
for the optimization-based algorithms.

The following routines can be used to generate random tensors with structure, to generate full tensors and to
compute (Frobenius norms of) residuals.

• ll1_rnd(size_tens, L) generates random factors Ubtd or Ucpd for a decomposition in multilinear
rank-(𝐿𝑟, 𝐿𝑟, 1) terms.

• ll1convert(U) and ll1convert(U, L) convert BTD format to CPD format and vice versa.
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• ll1gen(U) and ll1gen(U,L) generate the full tensor from the decomposition in multilinear rank-
(𝐿𝑟, 𝐿𝑟, 1) terms given in the BTD or CPD format.

• ll1res(T, U) and ll1res(T, U, L) compute the residual ll1gen(U) - T .

• frobll1res(T, U) and frobll1res(T, U, L) compute the Frobenius norm of the residual
ll1gen(U) - T .

All algorithms that have factors U as an output argument, have an option OutputFormat which can be set to
btd or cpd to get the desired output format.

Note: When using structured tensors, the expected numerical precision is only half the machine precision.
This is due to the mathematical formulation implemented to exploit the structure. In most cases, this is
not a problem as the maximal attainable precision is already limited due to noise and model errors. Only in
the very specific case when a solution accurate up to machine precision can be found and is required, this
can be an issue. (This requires TolFun and TolX to be eps^2 and eps , respectively.) A solution is to
use the structured tensor T to compute a solution Ures accurate up to half the machine precision, and
then refine this solution using ll1_nls(ful(T), Ures, 'TolFun', eps^2, 'TolX', eps) for a few
iterations. (It can be useful to set MaxIter to 2 or 3 .) This technique requires only very few expensive
iterations involving the full tensor.

4.4 Further reading

The algorithms outlined in this chapter can be used to compute unconstrained decompositions in multilinear
rank-(𝐿𝑟, 𝐿𝑟, 1) terms. In the structured data fusion (SDF) framework, constraints can be imposed as well, and
coupled decompositions can be defined. See Chapter 8 for more details.
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CHAPTER

FIVE

MULTILINEAR SINGULAR VALUE DECOMPOSITION AND LOW
MULTILINEAR RANK APPROXIMATION

𝒯 ≈

W

U
V𝒮

Fig. 5.1: A (truncated) multilinear singular value decomposition or a low multilinear rank approximation of a
third-order tensor.

In both the multilinear singular value decomposition (MLSVD) [17] and the low multilinear rank approximation
(LMLRA) [4, 5, 6] a tensor 𝒯 of size 𝐼1 × 𝐼2 × · · · × 𝐼𝑁 is written as the multilinear tensor-matrix product of a
core tensor 𝒮 of size 𝑅1 × 𝑅2 × · · · × 𝑅𝑁 with 𝑁 factors U(𝑛) of size 𝐼𝑛 × 𝑅𝑛:

𝒯 ≈ 𝒮 ·1 U(1) ·2 U(2) ·3 · · · ·𝑁 U(𝑁),

in which ·𝑛 is the tensor-matrix product in mode 𝑛 (see Section 2.2). For all 𝑛, 𝑅𝑛 ≤ 𝐼𝑛. A visual representation
of these decompositions in the third-order case is shown in Fig. 5.1. The relations between the two decompositions
are explained in the demo on “Multilinear Singular Value Decomposition and Low Multilinear Rank Approxima-
tion”1. The differences between the MLSVD and the LMLRA lie in the computation and the optimality of the
decomposition. As the decompositions are closely related and have the same format, both are discussed together
here.

5.1 Problem and tensor generation

5.1.1 Generating pseudorandom factor matrices and core tensor

Tensorlab stores the core tensor 𝒮 ∈ C𝑅1×𝑅2×···×𝑅𝑁 and the factor matrices U(𝑛) ∈ C𝐼𝑛×𝑅𝑛 , 𝑛 = 1, . . . , 𝑁

corresponding to an MLSVD or LMLRA of a tensor of dimensions 𝐼1 × 𝐼2 × · · · × 𝐼𝑁 as a Matlab array S and
a cell array U = {U{1}, U{2}, ..., U{N}} . The lmlra_rnd method can be used to generate a pseu-
dorandom core tensor 𝒮 and pseudorandom factor matrices U(𝑛) corresponding to an MLSVD or LMLRA.
For example, to construct a tensor of dimensions size_tens = [I1, I2, ..., IN] and with core size
size_core = [R1, R2, ..., RN] we can use:

1http://www.tensorlab.net/demos/mlsvd.html
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size_tens = [17 19 21];
size_core = [3 5 7];
[U,S] = lmlra_rnd(size_tens,size_core);

By default, lmlra_rnd generates U{n} and S using randn , after which the result is normalized such that
the factors U(𝑛) have orthonormal columns and such that 𝒮 is all-orthogonal and has ordered multilinear singular
values. Other generators can also be specified by providing option as a structure or as key-value pairs, e.g.:

% using a structure
options = struct;
options.Real = @rand;
options.Imag = @rand;
[U,S] = lmlra_rnd(size_tens,size_core,options);

% using key-value pairs
[U,S] = lmlra_rnd(size_tens, size_core, 'Real', @rand, 'Imag', @rand);

The core tensor S is generated as rand(size_core) + rand(size_core)*1i , and is then normalized. Before
the normalization, the factor matrices U{n} are generated as

rand(size_tens(n),size_core(n)) + rand(size_tens(n),size_core(n))*1i{}`{}`.

The normalization of the factors matrices and the core tensor can be disabled by setting the Unitary and
Normalize options to false .

5.1.2 Generating the associated full tensor

Given a cell array of factor matrices U = {U{1},U{2},...} and core tensor S , its associated full tensor T
can be computed with

T = lmlragen(U,S); % or
T = ful({U,S});

Note that additional braces {} are necessary for the ful command. The tensor T = lmlragen(U,S) can be
computed using elementary tensor operations as

T = tmprod(S,U,1:length(U));

Both the ful and the lmlragen method also allow the generation of subtensors:

[U, S] = lmlra_rnd([10 11 12], [3 4 2]);
T = lmlragen(U,S);

t1 = lmlragen(U, S, [1 1 2 3 5 8]); % using linear indices
frob(t1 - T([1 1 2 3 5 8])) % is zero up to machine precision

t2 = ful({U,S}, ':', ':', 9); % using subscripts (':' is a string!)
frob(t2 - T(:,:,9)) % is zero up to machine precision
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5.2 Computing an MLSVD

To compute an MLSVD of a tensor 𝒯 , three algorithms are available: mlsvd can be used for dense tensors,
mlsvds can be used for sparse tensors and mlsvd_rsi can be used for large tensors, which can be both

dense and sparse. Currently, there exist no MLSVD algorithms for incomplete or efficiently represented tensors in
Tensorlab. In the latter case ful(T) can be used, in the former case LMLRA algorithms can be used.

For a dense tensor 𝒯 , the full MLSVD and the multilinear singular values can be computed using

[U, S] = lmlra_rnd([10 11 12], [3 4 5]);
T = lmlragen(U,S);
Tn = noisy(T, 40); % add Gaussian noise with an SNR of 40dB
[U, S, sv] = mlsvd(T);

It is often useful to inspect the multilinear singular values sv as they provide useful information on the multilinear
rank of the tensor. As an example, the singular values can be plotted using:

for n = 1:3
subplot(1,3,n);
semilogy(sv{n});

end

For a sparse tensor 𝒯 , the core size needs to be provided; hence, to compute the full MLSVD the following
command can be used:

% Create sparse tensor with 4% non-zeros
T = randn(10, 11, 12);
T(randperm(numel(T), ceil(0.96*numel(T)))) = 0;
T = fmt(T);
% Compute mlsvd
[U, S, sv] = mlsvds(T, [10 11 12]);

Often, the MLSVD is truncated, i.e., the size of the core is smaller than the size of the tensor. An MLSVD can
be truncated manually: for the tensor above, we can use

new_core = [5 4 7];
Ut = arrayfun(@(n) U(:,1:new_core(n)), U, new_core, 'UniformOutput', false);
St = S(1:new_core(1),1:new_core(2),1:new_core(3));

Alternatively, the core size can be passed to the mlsvd and mlsvds algorithms as an additional parameter. For
example, the following code can be used to generate a multilinear rank-(2, 3, 4) approximation:

Tfull = randn(10, 11, 12);
[Ufull, Sfull] = mlsvd(Tfull, [2 3 4]);

Tsparse = randn(10, 11, 12);
Tsparse(randperm(numel(Tsparse), ceil(0.96*numel(Tsparse)))) = 0;
Tsparse = fmt(Tsparse);
[Usparse, Ssparse] = mlsvds(Tsparse, [2 3 4]);

The sizes of the core tensor and the factor matrices are now
Ufull
size(Sfull)
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Ufull =
[10x2 double] [11x3 double] [12x4 double]

ans =
2 3 4

T = randn(10, 11, 12);
[U, S] = mlsvd(T, [2 2 5], [], 'FullSVD', true); % perms = [] uses default

The MLSVD relies on singular value decompositions (SVD) of matrix representations of the given tensor. These
SVDs can be expensive for larger tensors. The mlsvd_rsi routine uses randomized SVDs to improve the
computation speed for dense and sparse tensors:

size_core = [5 6 7];
[U, S] = lmlra_rnd([30,40,50], size_core);
T = lmlragen(U,S);

tic, [U1, S1] = mlsvd(T, size_core); toc
tic, [U2, S2] = mlsvd_rsi(T, size_core); toc

Elapsed time is 0.073221 seconds.
Elapsed time is 0.027600 seconds.

Major improvements can be obtained for larger tensors. The accuracy of the results computed by mlsvd_rsi is
most often similar to the accuracy of the results computed by mlsvd or mlsvds :

froblmlrares(T, U1, S1)/frob(T)
froblmlrares(T, U2, S2)/frob(T)

ans =
2.4422e-15

ans =
1.4491e-15

5.3 Computing an LMLRA

Several algorithms are available to compute the LMLRA of a dense, sparse, incomplete or structured tensor 𝒯 with
a (fixed) core size 𝑅1 × 𝑅2 × · · · × 𝑅𝑁 . The commands lmlra_nls and lmlra_minf are optimization-based
algorithms using nonlinear unconstrained optimization and nonlinear least squares, respectively. lmlra_aca uses
adaptive cross approximation. This method often provides a good initialization. Finally, the principal method is
lmlra , which automatically computes an initialization and refines this initial guess using one of the optimization-

based methods. All optimization-based algorithms accept dense, sparse, incomplete and efficient representations
of structured tensors (see Chapter 2). If efficient representations are used, and a solution accurate up to machine
precision is needed, make sure to read the note at the end of this chapter.

5.3.1 The principal method

The lmlra method is the easiest way to compute an LMLRA of a tensor 𝒯 . For example

% Generate pseudorandom LMLRA (U,S) and associated full tensor T.
size_tens = [17 19 21];
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size_core = [3 5 7];
[U,S] = lmlra_rnd(size_tens,size_core);
T = lmlragen(U,S);

% Compute an LMLRA of a noisy version of T with 20dB SNR.
[Uhat,Shat] = lmlra(noisy(T,20), size_core);

generates a real rank-(3,5,7) tensor and computes its low multilinear rank approximation. Internally, lmlra
chooses a method to generate an initialization U0 and S0 , e.g., mlsvd_rsi or lmlra_aca . Next it executes
an algorithm to compute the LMLRA given the initialization, e.g., lmlra_nls .

The command lmlra(T, size_core) computes an initial solution with the desired multilinear rank. Alterna-
tively an initial solution can be provided using

[Uinit, Sinit] = lmlra_rnd([10 11 12], size_core);
[Uhat, Shat] = lmlra(T, Uinit, Sinit);

The default initialization methods mlsvd_rsi or lmlra_aca return nearly the same initialization for every run.
Therefore, if multiple runs are performed for a specific tensor 𝒯 and a specific multilinear rank (𝑅1, 𝑅2, . . . , 𝑅𝑁 )
(for the same options), the initialization method should be changed, e.g., to lmlra_rnd . The following exam-
ple uses the mlsvd_rsi algorithm as initialization method for the first run, and uses a random initialization
( lmlra_rnd ) for the other runs:

init = @mlsvd_rsi;
resultU = cell(1, 5);
resultS = cell(1, 5);
for n = 1:5

[resultU{n}, resultS{n}]= lmlra(T, size_core, 'Initialization', init);
init = @lmlra_rnd;

end

The next subsection explains different options for the lmlra routine.

5.3.2 Setting the options

Different options can be used to customize the two steps in lmlra (see help lmlra for more information).
Options can be provided using an options structure, or using key-value pairs, e.g.,

options.Display = true; % Show progress on the command line.
options.Initialization = @lmlra_rnd; % Select pseudorandom initialization.
options.Algorithm = @lmlra_minf; % Select NLS as the main algorithm.
options.AlgorithmOptions.TolFun = 1e-12; % Set stop criteria.
options.AlgorithmOptions.TolX = 1e-12;
[Uhat,Shat] = lmlra(T,size_core,options);

The structures InitializationOptions and AlgorithmOptions are passed as options structures to the
algorithms corresponding to the initialization and algorithm steps, respectively.

See help lmlra for a full overview of the possible options. The following is worthwhile to be highlighted:

• ExpandLimit : allows a structured tensor T to be expanded for the compression and/or initialization
steps if prod(getsize(T)) <= ExpandLimit . Set ExpandLimit = 1 to make sure tensors are never
expanded. The default is 106.
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5.3.3 Viewing the algorithm output

Each step may output additional information specific to that step. For instance, most LMLRA algorithms such
as lmlra_hooi will keep track of the number of iterations and the difference in subspace angle of every two
successive iterates sangle . To obtain this information, capture the third output:

[Uhat,Shat,output] = lmlra(T,size_core,options);

and inspect its fields, for example by plotting the objective function value:

semilogy(0:output.Algorithm.iterations,sqrt(2*output.Algorithm.fval));
xlabel('iteration');
ylabel('frob(lmlrares(T,U))');
grid on;

Setting the Display option to true or to a number greater than zero, prints additional information to the
command window. For example:

size_core = [5 6 3];
[U,S] = lmlra_rnd([10 11 12], size_core);
T = lmlragen(U,S);
Tn = noisy(T, 20);
[Uhat, Shat, output] = lmlra(Tn, size_core, 'Display', 1);

Step 1: Initialization is mlsvd_rsi...relative error = 0.0930664.
Step 2: Algorithm is lmlra_nls... iterations = 5,

relative error = 0.0930472.

Two steps are performed by lmlra . In step 1, the mlsvd_rsi algorithm is used to compute an initial guess,
which is refined in step 2 using the lmlra_nls algorithm.

In the case the tensor T is given as the efficient representation of a structured tensor, step 1 can also contain an
expansion step:

% Create a tensor with CPD structure
T = cpd_rnd([10 11 12], 5);
T{1} = bsxfun(@times, T{1}, [1000 100 10 1 0.01]);

options = struct;
options.Algorithm = @lmlra_minf; % use minf algorithm

[Uhat, Shat, output] = lmlra(T, [4 4 4], 'Display', 1, options);

Step 1: Initialization is mlsvd_rsi:
| Step 1a: Structured tensor expanded to full tensor (prod(getsize(T) <= 1e+06)
| Step 1b: mlsvd_rsi on full tensor... relative error = 5.32044e-06.
Step 2: Algorithm is lmlra_minf... iterations = 1, relative error = 5.32044e-06.

In step 1a, the tensor is expanded such that the mlsvd_rsi algorithm can be used as initialization. Without
expansion, lmlra_aca is the default initialization algorithm for structured tensors.

Note that structure is not yet detected automatically in the lmlra command.
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5.3.4 Computing the error

The residual between a tensor 𝒯 and its computed LMLRA defined by the core tensor 𝒮 and factor matrices Û(𝑛)

can be computed with

res = lmlrares(T,Uhat,Shat);

If the tensor is dense, then the result is equivalent to lmlragen(Uhat,Shat)-T . The relative error between the
tensor and its LMLRA can then be computed as

relerr = frob(lmlrares(T,Uhat,Shat))/frob(T);

If the original factor matrices U(𝑛) that generated 𝒯 are known, the subspace angle between each of them and
their corresponding approximations Û(𝑛) from lmlra can also be used as a measure of the approximation error.
The function lmlraerr computes the subspace angle between the given two sets of factor matrices. In other
words,

sangle = lmlraerr(U,Uhat);

returns a vector in which the 𝑛th entry is subspace(U{n},Uhat{n}) .

5.4 Choosing the size of the core tensor

For dense tensors, one can use the mlrankest tool to help determine the size of the core tensor size_core .
Running mlrankest(T) plots an L-curve which represents the balance between an upper bound [17] on the
relative error of an LMLRA of T for different core tensor sizes, and the LMLRA’s compression ratio. The
following example applies mlrankest on the amino acids dataset [16]:

url = 'http://www.models.life.ku.dk/go-engine?filename=amino.mat';
urlwrite(url,'amino.mat'); % Download amino.mat in this directory.
load amino X;
mlrankest(X);

The resulting figure is shown in Fig. 5.2. The corner of this L-curve is often a good estimate of the opti-
mal trade-off between accuracy and compression. The core tensor size size_core corresponding to the L-
curve corner is marked on the plot with a square and is also mlrankest ‘s first output. By capturing it as in
size_core = mlrankest(X) , the L-curve is no longer plotted. All together, an LMLRA of the amino acids

dataset can be computed in only a few lines:

url = 'http://www.models.life.ku.dk/go-engine?filename=amino.mat';
urlwrite(url,'amino.mat'); % Download amino.mat in this directory.
load amino X;
size_core = mlrankest(X); % Optimal core tensor size at L-curve corner.
[U,S] = lmlra(X,size_core);

Additionally, the compression and relative error of other choices of size_core can be viewed by using the figure’s
Data Cursor tool.
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Fig. 5.2: The mlrankest tool for choosing the core tensor size size_core in an LMLRA.

5.5 Overview of algorithms

The mlsvd and lmlra methods are the principal methods for the MLSVD and the LMLRA. Below we give an
overview of the available algorithms for the computation of the MLSVD and the LMLRA, as well as an overview
of other convenient routines.

The following algorithms can be used to compute the low multilinear rank approximation or the multilinear singular
value decomposition of a dense, sparse, incomplete or efficiently represented tensor, unless otherwise specified.

• lmlra(T, size_core) computes the LMLRA of a tensor T using a multistep approach [29].

• lmlra_nls(T, U, S) computes the LMRLA of a tensor T using an NLS type algorithm with as initial
guess U for the factor matrices and S for the core tensor [29].

• lmlra_minf(T, U, S) computes the LMLRA of a tensor T using nonlinear unconstrained optimization
with as initial guess U for the factor matrices and S for the core tensor [29].

• lmlra_aca(T,size_core) computes the LMLRA of a tensor T using adaptive cross approximation [30].

• mlsvd(T) computes the full MLSVD of a dense tensor T , including the multilinear singular values.
mlsvd(T, size_core) truncates the MLSVD to the given core size and mlsvd(T, tol) truncates the

MLSVD if the multilinear singular values are below a given tolerance tol [17, 31].

• mlsvds(T,size_core) computes the truncated MLSVD of a sparse tensor T . The same options as for
mlsvd apply.

• mlsvd_rsi(T, size_core) computes the truncated MLSVD of a full or sparse tensor T using a ran-
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domized SVD in combination with randomized subspace iteration. This algorithm is useful for larger tensors
that have a low multilinear rank [32].

• lmlra_hooi(T, U) uses higher-order orthogonal iteration to compute the LMLRA of a dense tensor T
[33].

• lmlra3_dgn(T, U) uses a differential-geometric Newton method to compute the LMLRA of a dense
third-order tensor T [34].

• lmlra3_rtr(T, U) uses a Riemannian trust region method to compute the LMLRA of a dense third-order
tensor T [35].

The following routines can be used for problem generation, error analysis and rank estimation.

• lmlra_rnd(size_tens, size_core) generates pseudorandom factors for an LMLRA.

• lmlragen(U, S) generates the full tensor from given factors U and core tensor S .

• lmlrares(T, U, S) computes the residual lmlragen(U,S) - T .

• froblmlrares(T, U) computes the Frobenius norm of the residual lmlragen(U,S) - T . This also
works for structured tensors T .

• lmlraerr(U, Uhat) computes the angle between the subspaces of the original tensor and the approxi-
mation. The subspaces are given as the factor matrices U of the original tensor and the factor matrices
Uhat of the approximation.

• mlrank(T,tol) computes the multilinear rank of a tensor T using a given tolerance tol .

• mlrankest(T) estimates the multilinear rank of a tensor T from an L-curve.

Note: When using structured tensors, the expected numerical precision is only half the machine precision.
This is due to the mathematical formulation implemented to exploit the structure. In most cases, this is not
a problem as the maximal attainable precision is already limited due to noise and model errors. Only in the
very specific case when a solution accurate up to machine precision can be found and is required, this can be
an issue. (This requires TolFun and TolX to be eps^2 and eps , respectively.) A solution is to use the
structured tensor T to compute a solution Ures , Sres accurate up to half the machine precision, and
then refine this solution using lmlra_nls(ful(T), Ures, Sres, 'TolFun', eps^2, 'TolX', eps)
for a few iterations. (It can be useful to set MaxIter to 2 or 3 .) This technique requires only very few
expensive iterations involving the full tensor.

5.6 Further reading

The algorithms outlined in this chapter can be used to compute an unconstrained MLSVD or LMLRA. In the
structured data fusion (SDF) framework constraints can be imposed as well, and coupled decompositions can be
defined. See Chapter 8 for more details.

The demo on “Multilinear Singular Value Decomposition and Low Multilinear Rank Approximation”2 gives some
intuition behind the MLSVD and the LMLRA.

2http://www.tensorlab.net/demos/mlsvd.html
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CHAPTER

SIX

BLOCK TERM DECOMPOSITION

𝒯 ≈

W1

U1

V1𝒮1
+ · · · +

W𝑅

U𝑅

V𝑅𝒮𝑅

Fig. 6.1: A block term decomposition of a third-order tensor.

A block term decomposition (BTD) [4, 5, 6] approximates a tensor by a sum of low multilinear rank terms.
Let 𝒯 be a tensor of dimensions 𝐼1 × 𝐼2 × · · · × 𝐼𝑁 . For 𝑛 = 1, . . . , 𝑁 and 𝑟 = 1, . . . , 𝑅, let U(𝑟,𝑛) of size
𝐼𝑛 × 𝐽

(𝑛)
𝑟 represent the 𝑛th factor in the 𝑟th term in the BTD and 𝒮(𝑟) the core tensor in the 𝑟th term having

𝐽
(1)
𝑟 × 𝐽

(1)
𝑟 × · · · × 𝐽

(𝑁)
𝑟 as dimension. The BTD is then given as

𝒯 ≈
𝑅∑︁

𝑟=1
𝒮(𝑟) ·1 U(𝑟,1) ·2 U(𝑟,2) ·3 · · · ·𝑁 U(𝑟,𝑁).

A visual representation of this decomposition for the third-order case is shown in Fig. 6.1.

6.1 Problem and tensor generation

6.1.1 Generating pseudorandom factor matrices and core tensor

In Tensorlab, a BTD with factor matrices U(𝑟,𝑛) and core tensors 𝒮(𝑟) is stored as a cell of cells U . The 𝑟th
entry U{r} contains the 𝑟th term in the BTD. Each term is a cell containing the 𝑁 factor matrices and the core
tensor for the 𝑟th term. This means U{r}{n} is the factor matrix U(𝑟,𝑛) of size 𝐼𝑛 × 𝐽

(𝑛)
𝑟 for 𝑛 = 1, . . . , 𝑁 ,

and U{r}{N+1} is the core tensor 𝒮(𝑟) of size 𝐽
(1)
𝑟 × 𝐽

(2)
𝑟 × · · · × 𝐽

(𝑁)
𝑟 . Hence, U = {U{1},U{2},...,U{R}}

is a cell with 𝑅 cells, each having 𝑁 + 1 entries.

To generate pseudorandom factor matrices and core tensors corresponding to a BTD, btd_rnd can be used.
The size of the tensor is given by size_tens , and the size of the 𝑅 core tensors is given by the cell size_core ,
i.e., size_core{r} is the size of the 𝑟th core tensor. For example:

size_tens = [17 19 21];
size_core = {[3 5 7],[6 3 5],[4 3 4]};
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U = btd_rnd(size_tens,size_core);

By default btd_rnd generates U{r}{n} using randn , after which the factor matrices U{r}{1:N} are or-
thogonalized. Other generators can also be provided with options given as a structure or as key-value pairs,
e.g.:

% using a structure
options.Real = @rand;
options.Imag = @rand;
[U,S] = btd_rnd(size_tens,size_core,options);

% using key-value pairs
[U,S] = btd_rnd(size_tens, size_core, 'Real', @rand, 'Imag', @rand);

Each term is normalized such that the factors U(𝑟,𝑛) have orthonormal columns and such that 𝒮(𝑟) is all-orthogonal
and has ordered multilinear singular values. The normalization can be disabled by setting the Unitary and
Normalize options to false .

6.1.2 Generating the associated full tensor

Given a cell array of block terms U = {U{1},U{2},...} , its associated full tensor T can be computed with

T = btdgen(U);

Using basic tensor operations, the tensor T can also be computed as

R = length(U);
N = length(U{1})-1;
size_tens = cellfun('size',U{1}(1:N),1);
T = zeros(size_tens);
for r = 1:R

T = T + tmprod(U{r}{N+1},U{r}(1:N),1:N);
end

The ful method can also be used to generate the full tensor. Both the ful and the btdgen method allow
the generation of subtensors:

U = btd_rnd([10 11 12], {[3 4 2], [2,2,1]});
T = btdgen(U); % or, equivalently
T = ful(U);

t1 = btdgen(U, [1 1 3 2 1 5 8]); % using linear indices
frob(t1 - T([1 1 3 2 1 5 8])) % is zero up to machine precision

t2 = ful(U, ':', 9, 3); % using subscripts (':' is a string!)
frob(t2 - T(:,9,3)) % is zero up to machine precision
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6.2 Computing a BTD

6.2.1 With a specific algorithm

In contrast to the CPD, the LMLRA and the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms, no specialized
high-level algorithm is available for a general BTD. This means that the user has to generate his or her own
initialization and select a specific (family of) algorithm(s) such as btd_nls or btd_minf to compute the BTD
given the initialization.

To compute a BTD of a dense, sparse, incomplete or structured tensor T given an initialization U0 , the command
btd_nls(T,U0) can be used. For example,

% Generate pseudorandom U and associated full tensor T.
size_tens = [17 19 21];
size_core = {[2 2 2],[2 2 2],[2 2 2]};
U = btd_rnd(size_tens,size_core);
T = btdgen(U);

% Generate an initialization Uinit and compute the BTD with nonlinear least squares.
U0 = noisy(U,20);
Uhat = btd_nls(T,U0);

generates a tensor T as the sum of three real rank-(2, 2, 2) tensors and then computes its BTD.

The decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms is a special case of a BTD for third-order tensors, in
which each term 𝑟 has multilinear rank (𝐿𝑟, 𝐿𝑟, 1). For this kind of BTD, there exist efficient algorithms which
are preferred over the generic BTD algorithms. See Chapter 4 for more information.

6.2.2 Setting the options

The selected algorithm may be customizable by supplying the method with additional options (see the relevant
help for more information). These options can be given using an options structure, or using key-value pairs,

e.g.,

options.Display = 5; % Show convergence progress every 5 iterations.
options.MaxIter = 200; % Set stop criteria.
options.TolFun = 1e-12;
options.TolX = 1e-12;
Uhat = btd_nls(T,U0,options);

6.2.3 Viewing the algorithm output

The selected method also returns output specific to the algorithm, such as the number of iterations and the
algorithm’s objective function value. To obtain this information, capture the second output:

[Uhat,output] = btd_nls(T,U0,options);

and inspect its fields, for example by plotting the objective function value:

semilogy(0:output.iterations,sqrt(2*output.fval));
xlabel('iteration');
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ylabel('frob(btdres(T,U))');
grid on;

6.2.4 Computing the error

The residual between a tensor 𝒯 and its BTD defined by the factors Û(𝑟,𝑛) and the core tensors 𝒮(𝑟) (stored in
Uhat ) can be computed with

res = btdres(T,Uhat);

If the tensor is dense, then the result is equivalent to btdgen(Uhat)-T . The relative error between the tensor
and its BTD can be computed as

relerr = frob(btdres(T,Uhat))/frob(T); % or
relerr = frobbtdres(T,Uhat)/frob(T); % also works for structured tensors

6.3 Overview of algorithms

Below we give an overview of the available algorithms for the computation of a BTD, as well as an overview of
other convenient algorithms.

The following algorithms can be used to compute the BTD of a dense, sparse, incomplete or efficiently represented
tensor:

• btd_nls(T, U) computes the BTD of a tensor T using nonlinear least squares algorithm with initial
guess U .

• btd_minf(T, U) computes the BTD of a tensor T using nonlinear unconstrained optimization with initial
guess U .

The following routines can be used for problem generation and error analysis.

• btd_rnd(size_tens, size_core) generates pseudorandom factors for a BTD.

• btdgen(U) generates the full tensor from given factors U .

• btdres(T, U) computes the residual btdgen(U,S) - T .

• frobbtdres(T, U) computes the Frobenius norm of the residual btdgen(U,S) - T .

Note: When using structured tensors, the expected numerical precision is only half the machine precision.
This is due to the mathematical formulation implemented to exploit the structure. In most cases, this is
not a problem as the maximal attainable precision is already limited due to noise and model errors. Only in
the very specific case when a solution accurate up to machine precision can be found and is required, this
can be an issue. (This requires TolFun and TolX to be eps^2 and eps , respectively.) A solution is to
use the structured tensor T to compute a solution Ures accurate up to half the machine precision, and
then refine this solution using btd_nls(ful(T), Ures, 'TolFun', eps^2, 'TolX', eps) for a few
iterations. (It can be useful to set MaxIter to 2 or 3 .) This technique requires only very few expensive
iterations involving the full tensor.
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6.4 Further reading

Chapter 4 handles a specific type of BTD in which each term has multilinear rank (𝐿𝑟, 𝐿𝑟, 1). The algorithms
outlined in this chapter can be used to compute an unconstrained BTD. In the structured data fusion (SDF)
framework constraints can be added as well, and coupled decompositions can be defined. See Chapter 8 for more
details.
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SEVEN

TENSORIZATION TECHNIQUES

Tensorization is defined as the transformation or mapping of lower-order data to higher-order data. For example,
the low-order data can be a vector, and the tensorized result is a matrix, a third-order tensor or a higher-order
tensor. The ‘low-order’ data can also be a matrix or a third-order tensor, for example. In the latter case,
tensorization can take place along one or multiple modes.

Example: A vector v can be reshaped into a matrix V, or a tensor 𝒱 of arbitrary order 𝐾 as illustrated in
Fig. 7.1.

Example: A matrix M can be reshaped into a higher-order tensor 𝒯 by reshaping each row or column of
M to a tensor of order 𝐾 and stacking the results along dimension 𝐾 +1. This is also illustrated in Fig. 7.1.

In the preceding examples, the transformation or mapping consisted of a reshape, but other mappings can be
considered as well. Tensorlab provides a variety of mappings and corresponding tensorization techniques. This
chapter gives an overview of these techniques, which can be subdivided into deterministic techniques (Hanke-
lization, Löwnerization, segmentation and decimation) and techniques based on statistics (lagged second-order
statistics and higher-order statistics). A survey of these techniques is given in [40].

Given tensorized data, the original low-order data can be retrieved with a detensorization step. For example, one
can fold the tensor 𝒱 back to the vector v. The result is unambiguous if the corresponding mapping is bijective.
Tensorlab provides a detensorization routine for each deterministic tensorization method.

v

𝒱
M

ℳ

Fig. 7.1: Third-order tensorization of a vector v to a tensor 𝒱 (left), and second-order tensorization of a matrix
M to a tensor ℳ (right). In the latter case, every column of M is mapped to a matrix, and the matrices are
stacked along the third mode of ℳ.

In this chapter, we discuss the following tensorization and corresponding detensorization techniques:

• Hankelization makes use of a Hankel matrix/tensor mapping. Corresponding Tensorlab commands are
hankelize and dehankelize (explained in Section 7.1).

• Löwnerization makes use of a Löwner matrix/tensor mapping. Corresponding Tensorlab commands are
loewnerize and deloewnerize (explained in Section 7.2).
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• Segmentation makes use of reshaping/folding. An advanced variant allows segments to overlap. Corre-
sponding Tensorlab commands are segmentize and desegmentize (explained in Section 7.3).

• Decimation is similar to segmentation and uses a reshaping/folding mapping as well, but from the point
of subsampling. Corresponding Tensorlab commands are decimate and dedecimate (explained in Sec-
tion 7.4).

• The computation of second-order statistics with scov and dcov (explained in Section 7.5)

• The computation of higher-order statistics with cum3 , cum4 , xcum4 and stcum4 (explained in Sec-
tion 7.6).

The first four tensorization techniques are deterministic, while the last two groups of techniques make use of
statistics. The different commands for the deterministic techniques operate in a similar way. We explain the
procedure in detail for the commands corresponding to Hankelization. For the other commands, we limit ourselves
to the differences with the Hankelization commands.

7.1 Hankelization

7.1.1 Definition

Second-order Hankelization transforms a vector v ∈ C𝑁 into a Hankel matrix H ∈ C𝐼×𝐽 with 𝑁 = 𝐼 + 𝐽 − 1,
defined by:

(H)𝑖,𝑗 = v𝑖+𝑗−1, ∀𝑖 = 1, . . . , 𝐼; 𝑗 = 1, . . . , 𝐽.

Hence, each anti-diagonal (or skew-diagonal) of the matrix H is constant, as illustrated in the following example.

Example: Using 𝑁 = 5 and 𝐼 = 𝐽 = 3, a vector v ∈ C5 = [1, 2, 3, 4, 5]T is mapped to a matrix H ∈ C3×3:

H =

⎡⎣1 2 3
2 3 4
3 4 5

⎤⎦ .

In general, 𝐾th-order Hankelization transforms a vector v ∈ C𝑁 into a higher-order Hankel tensor H ∈ C𝐼1×···×𝐼𝐾

with 𝑁 = 𝐼1 + · · · + 𝐼𝐾 − 𝐾 + 1, defined by:

(ℋ)𝑖1,...,𝑖𝐾
= v𝑖1+···+𝑖𝐾 −𝐾+1, ∀𝑘 = 1, . . . , 𝐾 : 𝑖𝑘 = 1, . . . , 𝐼𝐾 .

A Hankel tensor has constant anti-hyperplanes.

Example: Using 𝑁 = 7 and sizes 𝐼1 = 4, 𝐼2 = 3 and 𝐼3 = 2, a vector v ∈ C7 = [1, 2, 3, 4, 5, 6, 7]T can be
mapped to a Hankel tensor ℋ ∈ C4×3×2 with slices

H::1 =

⎡⎢⎢⎣
1 2 3
2 3 4
3 4 5
4 5 6

⎤⎥⎥⎦ , H::2 =

⎡⎢⎢⎣
2 3 4
3 4 5
4 5 6
5 6 7

⎤⎥⎥⎦ . (7.1)

From the previous example, it is clear that the original vector v appears in the Hankel tensor as follows. The
vector v is divided into 𝐾 segments, of which consecutive segments overlap with one entry. The first segment
appears as the first fiber along the first mode of the Hankel tensor, and the other segments appear as the last
fibers along the other modes.
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7.1.2 Hankelization in Tensorlab

Hankelization can be carried out with hankelize . We discuss some of its features. The Order , Dim , Full ,
FullLimit and PermToFirst options are used by the other tensorization commands as well. The Sizes

and Ind options are only used by hankelize .

1. First, the user can specify the order of the Hankelization with the Order option. For a Hankelization of
order 𝐾, a vector is tensorized to a Hankel tensor of order 𝐾. By default, a second-order Hankelization is
carried out.

Example: If Order = 2 , then a vector v ∈ C𝑁 is mapped to a matrix V ∈ C𝐼×𝐽 :

V = hankelize(v); % By default, 'Order' is 2

If Order = 4 , then a vector v ∈ C𝑁 is mapped to a fourth-order tensor 𝒱 ∈ C𝐼1×𝐼2×𝐼3×𝐼4 :

V = hankelize(v,'Order',4);

2. The Sizes option can be used to set the values 𝐼1, . . . , 𝐼𝐾−1. The size 𝐼𝐾 is chosen as 𝐼𝐾 = 𝑁 − (𝐼1 +
· · · + 𝐼𝐾−1) + 𝐾 − 1. By default, 𝐼1, . . . , 𝐼𝐾 are chosen as close to each other as possible.

Instead of Sizes , the Ind option can be used as well. The vector v is partitioned into 𝐾 segments
v1:𝑑1 , v𝑑1:𝑑2 , . . . , v𝑑𝐾−1:𝑁 indicating the first fiber along the first mode of the Hankel tensor and the
last fibers along the other modes. The Ind option determines the indices 𝑑1, . . . , 𝑑𝐾−1. The Ind
and Sizes options are related by Ind = cumsum(Sizes)-(0:Order-1) .

Example: The third-order Hankel tensor ℋ ∈ C4×3×2 from (7.1) can be obtained from a
vector v ∈ C7 with

H = hankelize(v,'Sizes',[4 3]);

Equivalently, it can be obtained with

H = hankelize(v,'Ind',[4 6]);

as v1:4 is used for the first fiber along the first mode, and v4:6 and v6:7 are used for the last
fibers along the second and third modes, respectively.

3. When matrices or tensors are Hankelized, the user can specify along which mode the tensorization is
carried out with the Dim option. All fibers along this mode are Hankelized. Consider an 𝑀 th-order tensor
𝒯 ∈ C𝑁1×···×𝑁𝑀 . If 𝒯 is tensorized along mode 𝑛 with tensorization order 𝐾, hankelize returns a
tensor ℋ of size 𝑁1 × · · · × 𝑁𝑛−1 × 𝐼1 × · · · × 𝐼𝐾 × 𝑁𝑛+1 × · · · × 𝑁𝑀 . By default, a tensorization is carried
out along the first mode. Let us illustrate with some examples.

Example: Let

M =

⎡⎢⎢⎢⎢⎣
1 6
2 7
3 8
4 9
5 10

⎤⎥⎥⎥⎥⎦ .

If Dim = 1 and Order = 2 , each column of M ∈ C5×2 is Hankelized. The different Hankel
matrices are stacked along the third mode of a tensor 𝒵 ∈ C3×3×2:

Z = hankelize(M); % By default, 'Dim' is 1 and 'Order' is 2
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𝒵 has slices

Z::1 =

⎡⎣ 1 2 3
2 3 4
3 4 5

⎤⎦ , Z::2 =

⎡⎣ 6 7 8
7 8 9
8 9 10

⎤⎦ .

Example: Consider a matrix M ∈ C21×3. If the tensorization order is 4, hankelize returns
a fifth-order tensor 𝒵 ∈ C6×6×6×6×3 containing Hankel tensors of size 6 × 6 × 6 × 6:

M = randn(21,3);
Z = hankelize(M,'Order',4);
size(Z)

ans =
[6 6 6 6 3]

Example: Consider a tensor 𝒯 ∈ C10×20×10 which is Hankelized along the second mode
( Dim = 2 ) using third-order Hankelization ( Order = 3 ). The hankelize command returns
a fifth-order tensor 𝒵 ∈ C10×7×8×7×10:

T = randn(10,20,10);
Z = hankelize(T,'Dim',2,'Order',3);
size(Z)

ans =
[10 7 8 7 10]

In this example, each mode-2 vector of length 20 is tensorized to a Hankel tensor of size 7×8×7.

4. The Hankelized data can become very large due to the curse of dimensionality. Instead of working with
the full Hankelized tensor, an efficient representation can be used for calculations by exploiting the Hankel
structure. This efficient representation can be obtained from the second output argument of hankelize .
Alternatively, it can be retrieved from the first output argument if the Full option is set to false .
Note that the latter avoids the construction and storage of the full Hankelized tensor alltogether. The CPD
and decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms are computed much faster when using efficient
representations of Hankelized datasets than when using the full tensors.

Example: The third-order Hankel tensor of a vector v of size 1000×1 has size 334×334×334
by default. Using double precision, this is a dataset of approximately 284 MB. Using

[~,H] = hankelize(v,'Order',3)
% or
H = hankelize(v,'Order',3,'full',false)

returns the following efficient representation of ℋ, which only requires 9.8 MB:
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H =
type: 'hankel'
val: [1000x1 double]
dim: 1

order: 3
ind: [334 667]

ispermuted: 0
repermorder: [1 2 3]

size: [334 334 334]
subsize: [1x1 struct]

Note that hankelize automatically detects if the full tensor would become too large. When the
storage limit FullLimit is exceeded, the full tensor is not constructed, but the efficient representa-
tion is returned. The FullLimit option is set to 1 (expressed in GB) by default, but can be adjusted
by the user.

The full tensor can be obtained from the efficient representation with the ful command.

5. The PermToFirst option can be used to indicate whether the output modes of the tensorization should be
the first modes of the resulting tensor. Consider an 𝑀 th-order tensor 𝒯 ∈ C𝑁1×···×𝑁𝑀 which is tensorized
along the 𝑛th mode with tensorization order 𝐾. By default, PermToFirst is false , and hankelize
returns a tensor of size 𝑁1 × · · · × 𝑁𝑛−1 × 𝐼1 × · · · × 𝐼𝐾 × 𝑁𝑛+1 × · · · × 𝑁𝑀 . If PermToFirst is set to
true , hankelize returns a tensor of size 𝐼1 × · · · × 𝐼𝐾 × 𝑁1 × · · · × 𝑁𝑛−1 × 𝑁𝑛+1 × · · · × 𝑁𝑀 .

Example: Consider a tensor 𝒯 ∈ C10×20×10, which is Hankelized along the second
mode ( Dim = 2 ) using third-order tensorization ( Order = 3 ). By default, a tensor 𝒵 ∈
C10×7×8×7×10 is obtained. However, when setting PermToFirst = true , hankelize re-
turns a tensor 𝒵 ∈ C7×8×7×10×10:

Z = hankelize(T,'Dim',2,'Order',3,'PermToFirst',1);

This option can be useful for decompositions such as the decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1)
terms, where 𝐿𝑟 may correspond to the rank of a Hankel representation.

7.1.3 Dehankelization in Tensorlab

The original data can be extracted from a Hankel matrix or Hankel tensor with the dehankelize command,
which provides a number of options:

1. The Order option indicates the order of the dehankelization. By default, Order = 2 , and each second-
order slice in the first two modes is dehankelized. This is consistent with the default use of second-order
tensorization in hankelize . If a vector should be extracted from a 𝐾th-order Hankel tensor, Order
should be set to 𝐾.

Example: Consider a Hankel tensor ℋ ∈ C10×10×10. Dehankelization of ℋ with

M = dehankelize(H);

returns a matrix M of size 19 × 10, while setting Order = 3 returns a vector of length 28:

v = dehankelize(H,'Order',3);

2. The Dims option can be used to indicate along which modes the dehankelization is carried out.
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Example: Consider a tensor ℋ ∈ C5×10×5×10×5. The command

T = dehankelize(H,'Dims',[1 3 5]);

returns a tensor 𝒯 of size 13 × 10 × 10.

3. Instead of using the Dims option, a combination of the Dim options and Order can be used for
consecutive modes along which the detensorization should take place. The result with Dim = d and
Order = K is the same as with Dims = d:d+K-1 .

4. The user can indicate how the data is extracted using the Method option. We discuss some possibilities:

• The first column and the last row of a Hankel matrix are retained if Method is set to fibers .
Considering a 𝐾th-order Hankel tensor, the first fiber in the first mode, and the last fibers along
the other modes are retained.

• The data can also be estimated by averaging along the anti-diagonals if Method is set to the
string mean or the function handle @mean . This can be useful if the data is noisy and/or if the
data does not exactly have Hankel structure. For tensors, the average along the anti-hyperplanes
is computed.

Example: Let

H =

⎡⎢⎢⎣
1 2.1 3.1

1.9 3 4.1
2.9 4 5.1
3.9 4.9 6

⎤⎥⎥⎦ .

The command
v = dehankelize(H,'Method','fibers');

returns the concatenated first column and last row, v = [1, 1.9, 2.9, 3.9, 4.9, 6]T, while

v = dehankelize(H,'Method','mean'); % or @mean

returns the averaged anti-diagonals v = [1, 2, 3, 4, 5, 6]T.

• The user can provide an alternative for the averaging along the anti-diagonals or anti-hyperplanes
by passing a function handle to Method , such as @median :

v = dehankelize(H,'Method',@median);

By default, Method is set to @mean as the result is more robust than with the fibers method.
Note that @median is computationally more demanding.

The dehankelize command works very efficiently on a polyadic representation of a Hankel tensor. Internally,
it avoids the construction of the possibly large full tensor. Hence, while the results are the same,

v = dehankelize({U1,U2,U3});

is more time- and memory-efficient if the factor matrices are large than

T = cpdgen({U1,U2,U3});
v = dehankelize(T);

It is possible to dehankelize several polyadic representations at the same time by concatenating the factor matrices
(provided that the dimensions agree) and indicating how the rank-1 terms are grouped with the L option.
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Example: Consider two factor matrices U(1) ∈ C10×3 and U(2) ∈ C10×3 for a first representation in rank-1
terms and two factor matrices V(1) ∈ C10×2 and V(2) ∈ C10×2 for a second representation in rank-1 terms.
The matrices W(1) and W(2) are the restuls of the concatenation of U(1) and V(1), and U(2) and V(2),
respectively. Given W(1) and W(2), dehankelize returns a vector v ∈ C19 by default:

W = cpd_rnd([10 10],5); % Concatenated U and V
v = dehankelize(W);
size(v)

ans =
[19 1]

If L is set to [3 2] , the matrices U(1)U(2)T and V(1)V(2)T are dehankelized separately, and the computed
vectors are stacked in a matrix M ∈ C19×2:

W = cpd_rnd([10 10],5); % Concatenated U and V
M = dehankelize(W,'L',[3 2]);
size(M)

ans =
[19 2]

7.1.4 Application example

We consider blind signal separation for a mixture of exponentials to illustrate the use of Hankelization and
dehankelization. Four exponential functions, sampled in 101 points t = [0, 0.01, 0.02, . . . , 1], are mixed such that
three observed signals are obtained. The goal is to determine the mixing coefficients and the exponentials using
only the observed signals.

This can be achieved by Hankelizing the observed signals along the mode of the observations. The resulting tensor
with Hankel slices is decomposed using a CPD. Estimates of the source signals can be obtained by dehankelizing
the estimated source Hankel matrices. Note that, since there are more source signals than observed signals, the
source signals cannot be estimated by inverting the estimated mixing matrix. More information on this application
can for instance be found in [28].

% Signal construction
t = linspace(0,1,101).';
S = exp(t*[1 2 3 4]);
M = randn(4,3);
X = S*M;
% Separation
H = hankelize(X,'Dim',1);
U = cpd(H,4);
Sest = dehankelize(U(1:2),'L',[1 1 1 1]);
% Error calculation
cpderr(S,Sest)

ans =
5.3055e-12
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7.2 Löwnerization

7.2.1 Definition

Consider a vector f ∈ C𝑁 and a vector of evaluation points t ∈ C𝑁 . Let us partition [1, 2, . . . , 𝑁 ] in two vectors
x ∈ C𝐼 and y ∈ C𝐽 with 𝑁 = 𝐼 + 𝐽 . For example, an interleaved partitioning (x = [1, 3, . . .] and y = [2, 4, . . .])
or block partitioning (x = [1, 2, . . . , 𝐼] and y = [𝐼 + 1, . . . , 𝑁 ]) can be used. The corresponding Löwner matrix
L ∈ C𝐼×𝐽 is defined as follows:

(L)𝑖,𝑗 =
𝑓𝑥(𝑖) − 𝑓𝑦(𝑗)

𝑡𝑥(𝑖) − 𝑡𝑦(𝑗)
, ∀𝑖 ∈ {1, . . . , 𝐼}; 𝑗 ∈ {1, . . . , 𝐽}.

Example: Consider a vector f = [6, 7, 8, 9] and evaluation points t = [1, 2, 3, 4]. The Löwner matrix using
interleaved partitioning is given by

L =
[︂ 6−7

1−2
6−9
1−4

8−7
3−2

8−9
3−4

]︂
=

[︂
1 1
1 1

]︂
. (7.2)

Löwner matrices can be useful for dealing with rational functions, as there is a close relationship between the
degree of the rational function and the rank of the Löwner matrix [41]. We do not discuss higher-order Löwner
tensors in this section.

7.2.2 Löwnerization in Tensorlab

Löwnerization can be carried out with the loewnerize command. It can be applied using similar options as in
hankelize :

1. The Order option indicates the order of the Löwnerization and is set to two by default. For example,
L = loewnerize(f,'Order',3) .

2. The Dim option indicates the mode along which the Löwnerization needs to be carried out. By default,
Dim = 1 . For example, L = loewnerize(f,'Dim',2) .

3. Setting the Full option to false avoids the construction of the full Löwner matrix or tensor. If the
partitioned evaluation points in x and y are equidistant, time- and memory-efficient calculations can be
performed using the efficient representation. The full Löwnerized tensor can be obtained from the efficient
representation with the ful command.

4. The PermToFirst option can be used to indicate whether the output modes of the tensorization should
be the first modes of the result. For example, L = loewnerize(f,'Dim',2,'PermToFirst',true)
can be used to make the Löwner matrices appear in the first and second mode. By default,
PermToFirst = false .

Two additional options are provided. These are illustrated in the examples below.

5. The T option can be used to set the evaluation points. By default, T = 1:N .

6. The Ind option can be used to set the partitioning. It is assumed to be a cell array with 𝐾 − 1 distinct
sets for 𝐾th-order Löwnerization. The 𝐾th set consists of the remaining indices. By default, an interleaved
partitioning is used. If the cell contains only a single array, the cell brackets can be omitted.

Example: The Löwner matrix in (7.2) can be constructed as
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f = [6 7 8 9];
% By default, 'Order' is 2, 'T' is [1 2 3 4] and 'Ind' is [1,3].
L = loewnerize(f)

L =

1 1
1 1

Example: Consider a vector f = [1, 4, 9, 16] and evaluation points t = [2, 4, 6, 8]. The Löwner matrix with
block partitioning (x = [1, 2] and y = [3, 4]) can be computed as follows:

f = [1 4 9 16];
L = loewnerize(f,'T',[2 4 6 8],'Ind',[1 2])

L =

2 2.5
2.5 3

7.2.3 Delöwnerization in Tensorlab

Delöwnerization extracts the original data from a Löwner matrix or tensor. This can be done with deloewnerize
which solves a linear system [41]. The command works in a similar way as dehankelize . The user can set the
Dims option to indicate the modes along which the detensorization should be carried out ( Dims = [1 2] by

default). Alternatively, a combination of Dim and Order can be used for consecutive modes. In the case of
delöwnerization, the T option can be used to specify the evaluation points, and the Ind option can be used to
specify the partitioning (interleaved by default).

The deloewnerize command also works on polyadic representations using factor matrices. The L option can
be used to indicate separate delöwnerizations, similar to dehankelize .

The result of the delöwnerization of a Löwner matrix is determined up to a constant offset. The deloewnerize
command fixes this indeterminacy by returning a vector with zero mean.

7.2.4 Application example

We consider blind signal separation for a mixture of rational functions to illustrate the use of Löwnerization and
delöwnerization. Four rational functions, sampled in 101 points t = [0, 0.01, 0.02, . . . , 1], are mixed such that
three observed signals are obtained. The goal is to determine the mixing coefficients and the rational functions
using only the observed signals.

This can be achieved by Löwnerizing the observed signals along the mode of the observations. The resulting tensor
with Löwner slices is decomposed using a CPD. Estimates of the source signals can be obtained by delöwnerizing
the estimated source Löwner matrices. Note that, since there are more source signals than observed signals, the
source signals cannot be estimated by inverting the estimated mixing matrix. More information on this application
can for instance be found in [41].

% Signal construction
t = linspace(0,1,100).';
% Each column of S consists of a rational function of the form 1/(t-p)
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S = 1./bsxfun(@minus,t,[0.2 0.4 0.6 0.8]);
M = randn(4,3);
X = S*M;
% Separation
H = loewnerize(X,'Dim',1,'T',t);
U = cpd(H,4);
Sest = deloewnerize(U(1:2),'L',[1 1 1 1]);
% Error calculation: compare Sest to S with zero-mean columns
cpderr(bsxfun(@minus,S,mean(S,1)),Sest)

ans =
3.1050e-15

7.3 Segmentation

7.3.1 Definition

Given a vector v ∈ C𝑁 , second-order segmentation without overlapping segments consists in reshaping v into a
matrix S ∈ C𝐼×𝐽 with 𝑁 = 𝐼𝐽 . Each column of S is then called a segment of v of length 𝐼. For example, the
segmentation of a vector v = [1, 2, . . . , 6] with 𝐼 = 3 and 𝐽 = 2 results in a matrix S of size 3 × 2:

S =

⎡⎣1 4
2 5
3 6

⎤⎦ .

When the order of the segmentation is increased, each segment is segmented again, resulting in a tensor 𝒮 ∈
C𝐼1×𝐼2×···×𝐼𝐾 for a 𝐾th-order segmentation of a vector v ∈ C𝑁 with 𝑁 = 𝐼1𝐼2 · · · 𝐼𝐾 .

Tensorlab also provides the possibility of using overlapping segments, as discussed below.

7.3.2 Segmentation in Tensorlab

Segmentation can be obtained with the segmentize command. Similar to hankelize and loewnerize ,
the Order option can be used to define the order of the segmentation and the Dim option can be used to
indicate the mode along which the tensorization is carried out. Setting the Full option to false avoids the
construction of the full tensor, while the PermToFirst option allows the user to indicate whether the output
modes of the tensorization should be the first modes modes of the resulting tensor.

A number of additional options are available for segmentize :

1. The segment length can be set to 𝐼 for second-order segmentation with the Segsize option. The number
of segments 𝐽 is automatically chosen as 𝐽 = ⌊𝑁/𝐼⌋.

In general, for 𝐾th-order segmentation, the Segsize option can be used to set the values
𝐼1, 𝐼2, . . . , 𝐼𝐾−1. The value 𝐼𝐾 is automatically chosen as 𝐼𝐾 = ⌊𝑁/(𝐼1𝐼2 · · · 𝐼𝐾−1)⌋.

Example: Consider a matrix M ∈ C60×6 which is tensorized by third-order segmentation along
the first mode. If 𝐼1 = 3 and 𝐼2 = 4, then the resulting tensor 𝒮 has size 3 × 4 × 5 × 6:
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M = randn(60,6);
S = segmentize(M,'Segsize',[3 4]);
size(S)

ans =
[3 4 5 6]

2. Equivalently, for second-order segmentation, the Nsegments option can be used to set the number of
segments 𝐽 . The segment length 𝐼 is then chosen as 𝐼 = ⌊𝑁/𝐽⌋.

In general, for 𝐾th-order segmentation, Nsegments can be used to set the values 𝐼2, 𝐼3, . . . , 𝐼𝐾 .
The value 𝐼1 is automatically chosen as 𝐼1 = ⌊𝑁/(𝐼2𝐼3 · · · 𝐼𝐾)⌋.

Example: The tensor 𝒮 from the previous example can also be constructed as follows:

M = randn(60,6);
S = segmentize(M,'Nsegments',[4 5]);
size(S)

ans =
[3 4 5 6]

3. The UseAllSamples option can be set to true if an error needs to be thrown if not all entries of the
data are used (i.e., if 𝑁 ̸= 𝐼1𝐼2 · · · 𝐼𝐾 for 𝐾th-order segmentation). By default, UseAllSamples is set to
false and no error is thrown.

4. The user can specify the shift between consecutive segments with the advanced Shift option. If the shift
is smaller than the segment length for second-order segmentation, consecutive segments overlap. If the
shift is larger than the segment length, some data entries are discarded. By default, Shift is equal to
the segment length for second-order segmentation so that there is no overlap. The number of segments is
chosen such that as many data values are used as possible.

Example: Consider the segmentization of the vector v = [1, 2, . . . , 9] with a shift of 2 :

v = 1:9;
S = segmentize(v,'Shift',2)

S =
1 3 5 7
2 4 6 8
3 5 7 9

For general 𝐾th-order segmentation, Shift is a vector with 𝐾 − 1 entries. Recall the process
of 𝐾th-order segmentation with recursive segmentation and without overlap: segments of length
𝐼1𝐼2 · · · 𝐼𝐾−𝑟 are constructed in the 𝑟th segmentation step which are then further segmented in the
next step. The shift in step 𝑟 is indicated by the 𝑢th entry of the Shift vector with 𝑢 = 𝐾 − 𝑟.
Note that the segment length in segmentation step 𝑟 depends not only on 𝐼1, 𝐼2, . . . , 𝐼𝐾−𝑟 but on
the first 𝐾 − 𝑟 shifts as well. By default, Shift is equal to the cumulative product of the values
𝐼1, 𝐼2, . . . , 𝐼𝐾−1 so that there is no overlap.

Example: Consider the vector v = [1, 2, . . . , 18]. By default, using 𝐼1 = 𝐼2 = 3 and 𝐼3 = 2,
the vector v is first segmented into a matrix of size 9 × 2. Each column is then segmented to a
3 × 3 matrix. This results in a third-order tensor 𝒮(1) ∈ C3×3×2:
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v = 1:18;
S1 = segmentize(v,'Segsize',[3 3]);

The tensor 𝒮(1) has slices

S(1)
::1 =

⎡⎣ 1 4 7
2 5 8
3 6 9

⎤⎦ , S(1)
::2 =

⎡⎣ 10 13 16
11 14 17
12 15 18

⎤⎦ .

In this case, the Shift option is set by default to Shift = [3 9] . When setting Shift
to [3 8] , the segments of length 9 with starting indices 1 and 9 (v1:9 and v9:17) are created
first. This results in a matrix of size 9 × 2. Each column is segmented again into segments of
length 3 without overlap as the first element of Shift is 3. segmentize returns a tensor
𝒮(2) ∈ C3×3×2:

v = 1:18;
S2 = segmentize(v,'Segsize',[3 3],'Shift',[3 8])

S2(:,:,1) =

1 4 7
2 5 8
3 6 9

S2(:,:,2) =

9 12 15
10 13 16
11 14 17

Note that there is an overlapping element with value 9 along the third mode. Alternatively, with
Segsize = [3 3] and Shift = [2 7] , one obtains a tensor 𝒮(3) with slices

S(3)
::1 =

⎡⎣ 1 3 5
2 4 6
3 5 7

⎤⎦ , S(3)
::2 =

⎡⎣ 8 10 12
9 11 13
10 12 14

⎤⎦ .

Note that there are overlapping elements along the second mode, but no overlap along the third
mode. In this process, v is first segmented into consecutive segments of length 7 to obtain a
matrix of size 7 × 2. Each column is then segmented again in segments of length 3 with an
overlap of 1 as the first shift element is 2.

If Segsize = [3 3] and Shift = [2 5] , segments of length 7 are constructed first with
an overlap of 2. Three such segments can be constructed from v to obtain a matrix of size
7 × 3. Each column is then segmented again to segments of length 3 with an overlap of 1, to
obtain a tensor 𝒮(4) of size 3 × 3 × 3:

v = 1:18;
S4 = segmentize(v,'Segsize',[3 3],'Shift',[2 5]);
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𝒮(4) has slices

S(4)
::1 =

⎡⎣ 1 3 5
2 4 6
3 5 7

⎤⎦ , S(4)
::2 =

⎡⎣ 6 8 10
7 9 11
8 10 12

⎤⎦ , S(4)
::3 =

⎡⎣ 11 13 15
12 14 16
13 15 17

⎤⎦ .

When setting Shift = [1,...,1] with 𝐾 − 1 entries, the segments constructed in each segmentation step
overlap almost entirely. The result is the same as that of 𝐾th-order Hankelization.

Example: Consider the vector v = [1, 2, . . . , 6] which is segmentized with 𝐼1 = 𝐼2 = 3 and with
Shift = [1 1] :

v = 1:6;
S = segmentize(v,'Segsize',[3 3],'Shift',[1 1])

S(:,:,1) =

1 2 3
2 3 4
3 4 5

S(:,:,2) =

2 3 4
3 4 5
4 5 6

The same result can be obtained with the hankelize command:

v = 1:6;
H = hankelize(v,'sizes',[3 3]);

Hence, Hankelization with hankelize is a special case of segmentation with segmentize .

Note that if the Full option in segmentize is set to false , an efficient representation of the segmented
tensor is returned. This can be useful to avoid the redundancy due to overlapping segments. Tensorlab does not
yet exploit this structure in tensor computations and decompositions, however. The full tensor can be obtained
from the efficient representation with the ful command.

7.3.3 Desegmentation in Tensorlab

Desegmentation extracts the original data from the segmentized results. The desegmentize command works in
a similar way as dehankelize . The user is able to indicate the modes along which the detensorization is carried
out (with Dims , or with a combination of Dim and Order ), and to set the Shift option. The Method
option indicates the method to be used for the extraction of the data, such as single fibers, means, medians, ...

Example: Consider the vector v = [1, 2, . . . , 7] which is segmentized with overlapping segments along
different modes to a tensor 𝒮. 𝒮 is then desegmentized again. We verify that v is recovered correctly.

v = 1:7;
S = segmentize(v,'Segsize',[3 3],'Shift',[1 2])
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S(:,:,1) =

1 2 3
2 3 4
3 4 5

S(:,:,2) =

3 4 5
4 5 6
5 6 7

vest = desegmentize(S,'Shift',[1 2])

vest =
1
2
3
4
5
6
7

7.4 Decimation

7.4.1 Definition

Decimation is a tensorization technique similar to segmentation. Second-order decimation consists of the reshaping
of a vector v ∈ C𝑁 into a matrix D ∈ C𝐼×𝐽 such that each column of D is a subsampled version of v with a
subsampling factor 𝐽 .

Example: A vector v = [1, 2, . . . , 6] can be decimated using a subsampling factor 𝐽 = 2 in the following
matrix D ∈ C3×2.

D =

⎡⎣1 2
3 4
5 6

⎤⎦ .

Higher-order decimation consists in further reshaping the obtained vectors, resulting in a tensor 𝒟 ∈ C𝐼1×𝐼2×···×𝐼𝐾

for the 𝐾th-order decimation of a vector v ∈ C𝑁 with 𝑁 = 𝐼1𝐼2 · · · 𝐼𝐾 .

7.4.2 Decimation in Tensorlab

Decimation can be obtained with the decimate command. The command works in a similar way as
segmentize . The subsampling factor 𝐽 in second-order segmentation can be set with the subsample option,

while the Nsamples option can be used to set the number of samples 𝐼.

Example: The matrix D(1) ∈ C6×2 is obtained from the vector v = [1, 2, . . . , 12] when decimating v with
a subsampling factor of 2:
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D1 = decimate(1:12,'subsample',2)

D1 =
1 2
3 4
5 6
7 8
9 10

11 12

while the matrix D(2) ∈ C3×4 is obtained when decimating v with a subsampling factor of 4:

D2 = decimate(1:12,'subsample',4)

D2 =
1 2 3 4
5 6 7 8
9 10 11 12

For 𝐾th-order decimation, the values 𝐼2, . . . , 𝐼𝐾 are set with Subsample while the values 𝐼1, . . . , 𝐼𝐾−1 are set
with Nsamples .

The decimate command supports the other options of segmentize such as Shift , Full and
PermToFirst as well. We refer the interested reader to Section 7.3.

7.4.3 Dedecimation in Tensorlab

The original data can be extracted from the decimated version with the dedecimate command. The command
works in a similar way as desegmentize , supporting options such as Dims , Dim , Order , Shift and
Method . We refer the interested reader to the discussion of desegmentation in Section 7.3.

7.5 Computing second-order statistics

7.5.1 Computing covariance matrices along different modes

The Matlab command cov calculates the variance of a data vector or the covariance matrix of a data matrix, by
assuming that each row represents an observation and each column represents a variable. This procedure maps a
matrix X ∈ C𝑁×𝑅 to a covariance matrix C ∈ C𝑅×𝑅.

The dcov command generalizes the functionality of cov to tensor data by allowing the user to indicate the
modes along which the tensorization is carried out. The Dims option is an array with two elements, of which
the first entry indicates the mode of the observations and of which the second entry indicates the mode of the
variables.

When applying dcov on a data tensor 𝒳 ∈ C𝑁×𝐼×𝐽 with Dims = [1 2] , a tensor 𝒞 ∈ C𝐼×𝐼×𝐽 is returned.
𝒞 contains covariance matrices along the third mode. When applying dcov on a data tensor 𝒳 ∈ C𝐼×𝐽×𝑁×𝑅

with Dims = [3 4] , a tensor 𝒞 ∈ C𝐼×𝐽×𝑅×𝑅 is returned.
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7.5.2 Computing lagged covariance matrices

Lagged (or shifted) covariance matrices can be computed with scov . The first argument is the data matrix,
and the second argument contains the lags. By definition, the lags should be positive. A third input argument
indicates whether the data is prewhitened first. The lagged covariance matrices are stacked along the third mode
of the resulting tensor.

Example: Given a data matrix X ∈ C1000×10 and using the lags [0, 1, 2], scov returns a tensor 𝒞 ∈
C10×10×3:

X = randn(1000,10);
C = scov(X,[0 1 2]); % No prewhitening by default

7.6 Computing higher-order statistics

7.6.1 Computing third- and fourth-order cumulants

The cum3 and cum4 commands can be used to compute third-order and fourth-order cumulants, respectively.
These commands also return the third-order and fourth-order moments as the second output arguments. The
first input argument is the data matrix, in which each row represents an observation and in which each column
represents a variable.

Example: Given a data matrix X ∈ C1000×10, the third-order cumulant 𝒞(3) has size 10 × 10 × 10 and the
fourth-order cumulant 𝒞(4) has size 10 × 10 × 10 × 10:

X = randn(1000,10);
C3 = cum3(X);
size(C3)

ans =
[10 10 10]

C4 = cum4(X);
size(C4)

ans =
[10 10 10 10]

A second input argument can be used to indicate whether the data is prewhitened first:

C4 = cum4(X,'prewhitening');

7.6.2 Computing fourth-order cross- and spatio-temporal cumulant

Given four data matrices, the xcum4 command computes the fourth-order cross-cumulant. For matrices A ∈
C𝑁×𝐼 , B ∈ C𝑁×𝐽 , C ∈ C𝑁×𝐾 and D ∈ C𝑁×𝐿, the obtained cumulant has size 𝐼 × 𝐽 × 𝐾 × 𝐿.

The stcum4 command computes the fourth-order spatio-temporal cumulant. Consider a data matrix X ∈ C𝑁×𝐼

and lag parameter 𝐿. stcum4 returns a seventh-order tensor of size 𝐼 ×𝐼 ×𝐼 ×𝐼 ×𝐾 ×𝐾 ×𝐾 with 𝐾 = 2𝐿+1.

For a discussion of higher-order statistics, we refer to [42].
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Fig. 8.1: Schematic of structured data fusion. The vector 𝑧1, upper triangular matrix 𝑧2 and full matrix 𝑧3 are
transformed into a Toeplitz, orthogonal and nonnegative matrix, respectively. The resulting factors are then used
to jointly factorize two coupled data sets.

Structured data fusion or SDF [36] comprises a modeling language, a syntax checker and a number of solvers to
jointly factorize one or more datasets, impose symmetry in the factorization, and optionally apply structure on
the different factors. Each data set — stored as a dense, sparse, incomplete or structured tensor, cf. Section
Chapter 2 — in a data fusion problem can be factorized with a different tensor decomposition. Currently, the
user has the choice of the CPD, LL1, LMLRA and BTD models, as well as L0, L1 and L2 regularization terms.
Structure can be imposed on the factors in a modular way and the user can choose from a library of predefined
structures such as nonnegativity, orthogonality, Hankel, Toeplitz, Vandermonde, matrix inverse, and many more.
See Contents.m for a complete list. By selecting the right structures you can even compute classical matrix
decompositions such as the QR factorization, eigenvalue decomposition and singular value decomposition.

This section gives a basic introduction to SDF by explaining how it works and how different models can be
constructed. In Chapter 9 specific examples are given. After that more advanced concepts are introduced in
Chapter 10 which enable the creation of more dynamical models. Chapter 11 explains how a new transformation
can be defined to impose a new kind of structure on a factor. Finally, a more technical specification of the
modeling language is given in Chapter 12.

In this section the following topics are handled:

• Introducing SDF: elements of a data fusion model (Section 8.1)

• Using sdf_check to check the syntax (Section 8.2)

• Using different solvers (Section 8.2)

• Coupling datasets and setting weights (Section 8.3)

• Imposing symmetry (Section 8.3)

• Imposing structure on factors (Section 8.4)
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• Using constant factors and subfactors (Section 8.4)

• The different factorization and regularization types (Section 8.5)

• The accepted data types including full, sparse, incomplete and structured tensors (Section 8.5)

8.1 Elements of an SDF model

The structured data fusion framework uses a domain specific language allowing one to express the coupling
between datasets and the structure of different factors easily. Fig. 8.1 illustrates the rationale behind the language
by showing how an SDF model is built. Structure can be imposed on factors by transforming variables 𝑧 into
factors 𝑥. The resulting factors can then be used in factorizations of different datasets. Coupling between the
datasets is expressed by using one or more common factors in the different factorizations. Similarly, symmetry
can be imposed by using a factor multiple times in the same factorization.

Hence, there are three important elements in an SDF model: variables , factors and factorizations .
To compute a rank-𝑅 CPD of a third-order tensor 𝒯 for example, the following code can be used:

R = 5;
T = ful(cpd_rnd([10 11 12], R));
model = struct;
model.variables.a = randn(size(T,1), R);
model.variables.b = randn(size(T,2), R);
model.variables.c = randn(size(T,3), R);
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = 'c';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

It is advised to write model = struct; before a model is constructed in order to be sure that no elements from
a previous model are used. In this model, the value provided to a variable is the initial guess for that particular
variable. The line model.factors.A simply states that a factor with the name A is created, and it is equal to
the variable a . The 'a' is called a (named) reference. Similarly, a (named) factorization tensor is created,
which factors the tensor T in the data field as a cpd with factors A , B and C . A factorization can
only use references to factors (unless implicit factors are enabled, see Chapter 10). Apart from the CPD, other
factorizations can be used as well, e.g., btd , ll1 , lmlra , regL0 , regL1 and regL2 (see Section 8.5).

Fig. 8.1 shows a typical case of structured data fusion. Two datasets 𝒯 (1) and 𝒯 (2) are jointly factorized. Both
datasets share the factor matrices 𝑥2 and 𝑥3. Each factor matrix has a different structure. Factor matrix 𝑥1 has
a Toeplitz structure, 𝑥2 has orthonormal columns and 𝑥3 is nonnegative. In the SDF model, every structure is
achieved by transforming some variables into factors. The first factor 𝑥1 is created by transforming a vector 𝑧1
into the Toeplitz matrix. A (vectorized) upper triangular matrix with the parameters for Householder reflectors
𝑧2 can be transformed into factor 𝑥2. Finally, squaring the variables in 𝑧3 results in a nonnegative factor 𝑥3.

For an overview of the different transformations or structures that can be applied, we refer to help Contents.m .
All functions starting with struct_ are transformations.

8.2 Checking and solving a model

Starting from Tensorlab 3.0 an overview of the factors and factorizations in an SDF model can be printed, after
interpretation by the language parser. This way, the different transformations can be inspected, and the user can
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see if the model is interpreted as he or she intended. The language parser, or syntax and consistency checker,
is called sdf_check . This method interprets the model and converts it to the internal format. If a syntax
error is found, e.g., because no variables are defined, or because a reference to a non-existing factor is made, an
informative error is thrown. For example:

R = 5;
T = ful(cpd_rnd([10 11 12], R));
model = struct;
model.variables.a = randn(size(T,1), R);
model.variables.b = randn(size(T,2), R);
model.variables.c = randn(size(T,3), R);
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = 'c';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'D'};

sdf_check(model);

Error in line model.factorizations.tensor.cpd:

Factorization tensor (id = 1) depends on the unknown factor D

In many cases, some parts of the error message are underlined, indicating that this is clickable (only available in
the Matlab Command Window). For example, clicking on model.factorizations.tensor.cpd indeed gives
the content of the line containing the error:

ans =
'A' 'B' 'D'

If a consistency error is found, an error is thrown (using sdf_check(model) ), or a message is printed in the
model overview if the 'print' option is provided ( sdf_check(model, 'print') ). Examples of consistency
errors are that the number of columns in the factor matrices is not the same in the case of a CPD, or that the
size of the tensor generated by the factors does not match the size of the data. Consider the following model:

R = 5;
T = ful(cpd_rnd([10 11 12], R));
model = struct;
model.variables.a = randn(11, R);
model.variables.b = randn(10, R);
model.variables.c = randn(12, R);
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = 'c';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

sdf_check(model,'print');

Factor Size Comment
------------------------------------------------------------------------
A [11x5]
B [10x5]
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C [12x5]

Factorization Type Factors Comments
------------------------------------------------------------------------
tensor (id = 1) cpd A,B,C Dimension mismatch

The comment for the factorization states Dimension mismatch . In the Matlab Command Window, this is a
link and when clicked, the following error is shown:

Error in line model.factorizations.tensor.cpd:

Factorization tensor (id = 1): the size of the tensor generated by the
factors [11x10x12] should match the size of the data [10x11x12]

This is indeed the problem. For more complicated models, this often helps locating possible errors. If
sdf_check(model, 'print') does not give an error, the available solvers in Tensorlab should run without

problems. If there is a syntax or consistency error, the solvers will not run, as the model is invalid ( sdf_check
is called internally as well).

When a model is valid, i.e., no syntax or consistency errors are found, it can be computed using one of the
following solvers:

• sdf_minf or sdf_nls : a general purpose solver for SDF models.

• ccpd_minf or ccpd_nls : a specialized solver for symmetric and/or coupled CPDs only, in which no
structure, constants or concatenations are allowed. These solvers are recommended when they can be used.

The solvers can be called as follows:
R = 5;
T = ful(cpd_rnd([10 11 12], R));
model = struct;
model.variables.a = randn(size(T,1), R);
model.variables.b = randn(size(T,2), R);
model.variables.c = randn(size(T,3), R);
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = 'c';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

sdf_check(model, 'print'); % recommended

sol = sdf_nls(model);

The solution is a struct containing a variables field and a factors field with the results:

sol.variables

ans =
a: [10x5 double]
b: [11x5 double]
c: [12x5 double]

sol.factors
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ans =
A: [10x5 double]
B: [11x5 double]
C: [12x5 double]

The ccpd_minf and ccpd_nls solvers use a different output format for the solution. As there are no trans-
formations on the variables, only the factors are given as output as a cell, e.g., for the model above:

Ures = ccpd_nls(model)

Ures =
[10x5 double] [11x5 double] [12x5 double]

Similar to the other optimization routines, extra options can be provided, and extra information on the convergence
of the algorithm can be inspected using:

% Using key-value pairs
[sol, output] = sdf_nls(model, 'Display', 10, 'MaxIter', 200);

% Using an options structure
options = struct;
options.Display = 10;
options.MaxIter = 200;
[sol, output] = sdf_nls(model, options);

The output contains convergence information, how many iterations are carried out, etc. The
output also contains the absolute and relative errors for each factorization in output.abserr

and output.relerr . The errors are computed as the Frobenius norm of the difference be-
tween the input data and the tensor generated by the model, e.g., for the example above it is
output.abserr = frob(T - cpdgen(sol.factors.A, sol.factors.B, sol.factors.C)) .

8.3 Imposing coupling and symmetry

The data fusion part in Structured Data Fusion means that different datasets can be factorized or decomposed
together while sharing factors or underlying variables. In this section a basic coupling between datasets is dis-
cussed, followed by a discussion on how different weights (or hyperparameters) can be set. Finally, symmetric
decompositions are discussed.

Note: The following examples are meant to explain the different modeling techniques. Actually solving
the models may not yield a good solution, as the examples do not necessarily reflect good numerical choices
and the initialization strategies are not discussed.

8.3.1 Coupling datasets

Consider the following coupled tensor matrix factorization problem

min
A,B,C

1
2 ||𝒯 − ℳCPD(A, B, C)||2F + 1

2 ||M − ℳCPD(C, D)||2F

Note that ℳCPD(C, D) = CDT. This can be modeled easily using SDF by defining two factorizations that have
a factor in common:
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T = randn(10,11,12);
M = randn(12,13);
R = 4;
model = struct;
model.variables.a = randn(size(T,1),R);
model.variables.b = randn(size(T,2),R);
model.variables.c = randn(size(T,3),R);
model.variables.d = randn(size(M,2),R);
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = 'c';
model.factors.D = 'd';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};
model.factorizations.matrix.data = M
model.factorizations.matrix.cpd = {'C', 'D'};

sdf_check(model, 'print');

As can be seen below, the two factorizations indeed share the common factor matrix C:
Factor Size Comment
------------------------------------------------------------------------
A [10x4]
B [11x4]
C [12x4]
D [13x4]

Factorization Type Factors Comments
------------------------------------------------------------------------
tensor (id = 1) cpd A,B,C
matrix (id = 2) cpd C,D

8.3.2 Absolute and relative weights

Often different weights are needed for the different factorization terms, i.e., the problem

min
A,B,C

𝜆1

2 ||𝒯 − ℳCPD(A, B, C)||2F + 𝜆2

2 ||M − ℳCPD(C, D)||2F

is solved instead. Using SDF the weights 𝜆1 and 𝜆2 can be given as absolute weights and as relative weights.
Absolute weights can be provided using the weight field:

% variables and factors omitted
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};
model.factorizations.tensor.weight = lambda1;
model.factorizations.matrix.data = M
model.factorizations.matrix.cpd = {'C', 'D'};
model.factorizations.matrix.weight = lambda2;

Note that the factor 1
2 in the objective function is present for implementation purposes. Therefore lambda1 is

equal to 𝜆1 and not 𝜆1
2 . To get a term ||𝒯 − ℳCPD(A, B, C)||2F, 𝜆1 should be set to 2.
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Often, it is easier to use relative weights. The relative weights 𝜌1 and 𝜌2 can be given as

% variables and factors omitted
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};
model.factorizations.tensor.relweight = rho1;
model.factorizations.matrix.data = M
model.factorizations.matrix.cpd = {'C', 'D'};
model.factorizations.matrix.relweight = rho2;

Relative weights 𝜌𝑖 are automatically translated to absolute weights using the following expression:

𝜆𝑖 = 2 𝜌𝑖∑︀
𝑗 𝜌𝑗

1
𝑁𝑖

in which 𝑁𝑖 is the number of known entries in tensor Ti , i.e., Ni = prod(getsize(Ti)) unless Ti is
incomplete, then Ni = length(Ti.val) . For regularization terms 𝑁𝑖 =

∑︀
𝑓 𝑁

(𝑓)
𝑖 in which 𝑁

(𝑓)
𝑖 is the number

of entries in factor 𝑓 after expansion. For example:

model = struct;
model.variables.a = rand(10, 5);
model.variables.b = rand(1, 5);
model.factors.A = 'a';
model.factors.B = {'b', @struct_diag};
model.factorizations.reg.regL1 = {'A', 'B'};

Factors A and B are regularized. Factor A has size 10 × 5. Therefore, 𝑁
(𝐴)
1 = 50. After expansion, factor B

has size 5 × 5 (see sdf_check(model, 'print') ). Hence, 𝑁
(𝐵)
1 = 25. Together we have 𝑁1 = 75.

Absolute and relative weights cannot be mixed, i.e., either all factorizations define a weight field (or no field),
or all factorizations define a relweight field (or no field). Omitted (relative) weights are assumed to be 1. If
absolute nor relative weights are given, relative weights equal to 1 are assumed.

8.3.3 Imposing symmetry

Finally, some special attention is given to decompositions involving symmetry. Symmetry can easily be imposed
by using the same factor multiple times in a factorization. For example, consider a fourth-order tensor 𝒯 that is
symmetric in the first two modes and in the last two modes:

min
A,B

1
2 ||𝒯 − ℳCPD(A, A, B, B)||2F

This can be implemented as:

R = 5;
% create symmetric tensor
U0 = cpd_rnd([10 11], R);
U0 = U0([1 1 2 2]);
T = cpdgen(U0);
% Create model
model = struct;
model.variables.a = randn(size(T,1), R);
model.variables.b = randn(size(T,3), R);
model.factors.A = 'a';
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model.factors.B = 'b';
model.factorizations.symm.data = T;
model.factorizations.symm.cpd = {'A', 'A', 'B', 'B'};

Often when imposing symmetry, especially symmetry in all modes, it is useful to give each rank-1 term a weight
𝛼𝑟:

𝒯 ≈
𝑅∑︁

𝑟=1
𝛼𝑟u(1)

𝑟
⊗ u(1)

𝑟
⊗ · · · ⊗ u(𝑁)

𝑟 .

This weight 𝛼𝑟 allows some extra freedom. For example, in the case of a fourth-order tensor and a factorization
ℳCPD(A, A, A, A), the diagonal entries of the result are always nonnegative, while it is perfectly possible to
have a fully symmetric tensor with negative diagonal entries. Another example imposes orthogonality structure
( struct_orth ) on all factors A in ℳCPD(A, A, A). As struct_orth normalizes each column to have norm
one, each rank-1 term also has norm one, which can result in a bad fit. In these two examples, adding the weight
𝛼𝑟 is important to obtain a meaningful fit. Adding the weights 𝛼𝑟 can easily be done in Tensorlab by creating an
additional factor matrix of size 1 × 𝑅, i.e., a row vector:

R = 5;
% create symmetric tensor
U0 = cpd_rnd([10 11], R);
U0 = U0([1 1 2 2]);
T = cpdgen(U0);
% Create model
model = struct;
model.variables.a = randn(size(T,1), R);
model.variables.b = randn(size(T,3), R);
model.variables.c = randn(1, R);
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = 'c';
model.factorizations.symm.data = T;
model.factorizations.symm.cpd = {'A', 'A', 'B', 'B', 'C'};

This is a valid model, as can be verified using sdf_check(model, 'print') . The reason is that 𝒯 can be
seen as a tensor of size 10 × 10 × 11 × 11 × 1.

8.4 Imposing structure on factors

8.4.1 Structure by transformation of variables

Using the SDF language, it is easy to create structured factors. The way to do so, is by transforming a variable
into a factor using some transformation. Some examples:

• Nonnegativity can be imposed on a factor by squaring underlying variables ( struct_nonneg ) [37].

• A factor matrix in which each column is a polynomial evaluated in some points can be modeled by the
coefficients of these polynomials. These coefficients are the variables ( struct_poly ).

• Orthogonality can be imposed using Householder reflectors as underlying variables ( struct_orth ).

See help Contents.m to get an overview of all implemented transformations. All functions starting with
struct_ are transformations. New transformations can be defined as well (see Chapter 11).
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In Tensorlab, structure can be imposed on factors as follows. For example, to impose nonnegativity on factors A
and B the following model can be used:

M = rand(10,10);
model = struct;
model.variables.a = randn(10,3);
model.variables.b = randn(10,3);
model.factors.A = {'a', @struct_nonneg};
model.factors.B = {'b', @struct_nonneg};
model.factorizations.matrix.data = M;
model.factorizations.matrix.cpd = {'A', 'B'};

sdf_check(model, 'print');

Factor Size Comment
------------------------------------------------------------------------
A [10x3]
B [10x3]

Factorization Type Factors Comments
------------------------------------------------------------------------
matrix (id = 1) cpd A,B

In the Matlab Command Window, A and B can be clicked to get the different transformations applied to the
factors, e.g. for A :

Expansion of factor A (id = 1) (view):
(1,1) a [10x3] struct_nonneg Factor [10x3]

When clicking a and Factor we see indeed that every number in a is squared:
ans =
0.1383 0.9000 -0.6235

-0.3784 -1.5312 -1.3501
0.1431 0.5046 -1.1622
1.6050 -0.8642 -0.9443
1.3491 -0.3766 -0.6712

-0.4484 0.7880 0.5767
0.1684 0.2982 -2.0858

-1.1205 -0.1637 0.2360
0.4007 0.6067 -0.7784
0.7391 1.6345 1.0996

ans =
0.0191 0.8101 0.3887
0.1432 2.3446 1.8228
0.0205 0.2546 1.3508
2.5761 0.7469 0.8917
1.8201 0.1418 0.4505
0.2011 0.6210 0.3326
0.0284 0.0889 4.3504
1.2555 0.0268 0.0557
0.1606 0.3681 0.6059
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0.5462 2.6716 1.2090

For some transformations extra parameters are required. For example, to model a factor matrix in which each
column is a polynomial, struct_poly can be used. struct_poly needs the evaluation points 𝑡𝑖 for these
polynomials as extra parameter. In the example below, each column of factor A is a polynomial of maximal
degree 𝑑:

M = rand(11,10);
t = 0:0.1:1; % evaluation points
d = 4; % degree
R = 3; % rank
model = struct;
model.variables.c = randn(R,d+1); % note that c has R rows!
model.variables.b = randn(10,R);
model.factors.A = {'c', @(z,task) struct_poly(z,task,t)};
model.factors.B = {'b', @struct_nonneg};
model.factorizations.matrix.data = M;
model.factorizations.matrix.cpd = {'A', 'B'};

sdf_check(model, 'print');

Factor Size Comment
------------------------------------------------------------------------
A [11x3]
B [10x3]

Factorization Type Factors Comments
------------------------------------------------------------------------
matrix (id = 1) cpd A,B

As can be seen, A is an 11 × 3 matrix. If A is clicked, the effect of the transformation can be seen:

Expansion of factor A (id = 1) (view):
(1,1) c [3x5] struct_poly Factor [11x3]

Factor can be clicked again to get the resulting factor. Note that when a link, e.g, Factor or view , is
clicked, the result becomes available as ans . Hence, the resulting factor A can be plotted using

A = ans;
plot(t, A);

Finally, different transformations can be chained. For example:

M = rand(11,10);
t = 0:0.1:1; % evaluation points
d = 4; % degree
R = 3; % rank
model = struct;
model.variables.c = randn(R,d+1); % note that c has R rows!
model.variables.b = randn(10,R);
model.factors.A = {'c', @(z,task) struct_poly(z,task,t), @struct_nonneg};
model.factors.B = {'b', @struct_nonneg};
model.factorizations.matrix.data = M;
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model.factorizations.matrix.cpd = {'A', 'B'};

sdf_check(model, 'print');

Clicking A again, allows us to view the individual transformations:

Expansion of factor A (id = 1) (view):
(1,1) c [3x5] struct_poly temp [11x3]

temp [11x3] struct_nonneg Factor [11x3]

Any number of transformations can be chained, as long as the final result is a valid factor:

M = rand(11,10);
t = 0:0.1:1; % evaluation points
d = 4; % degree
R = 5; % rank

diagonal = @struct_diag;
poly = @(z,task) struct_poly(z,task,t);
nonneg = @struct_nonneg;
negate = @(z,task) struct_matvec(z, task, [], -eye(R));

model = struct;
model.variables.c = randn(1,d+1); % note that c has R rows!
model.variables.b = randn(10,R);
model.factors.A = {'c', diagonal, poly, nonneg, negate};
model.factors.B = {'b', nonneg};
model.factorizations.matrix.data = M;
model.factorizations.matrix.cpd = {'A', 'B'};

sdf_check(model, 'print');

This example creates a factor A in which each column 𝑟 is negative polynomial of the form −(𝑡𝑟−1)2. For
readability the shorter names for the transformations have been created first.

8.4.2 Constant factors

Constant factors can be defined as follows. Consider the following CPD in which the second factor matrix is kept
constant:

T = randn(10, 11, 12);
R = 5;
model = struct;
model.variables.a = randn(size(T,1), R);
model.variables.c = randn(size(T,3), R);
model.factors.A = 'a';
model.factors.B = rand(size(T,2), R);
model.factors.C = 'c';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

sdf_check(model, 'print');
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Factor Size Comment
------------------------------------------------------------------------
A [10x5]
B [11x5] Constant
C [12x5]

Factorization Type Factors Comments
------------------------------------------------------------------------
tensor (id = 1) cpd A,B,C

The factor B is indeed recognized as constant. Constants follow the same rules as variables. This means that
constants can be cells or numerical arrays of arbitrary dimensions (except a scalar, see Chapter 12), and that
constants can be transformed.

Subsection 8.4.3 explains how partially constant factors can be constructed. Here, we only consider a special case
in which specific entries are constant. As an example, let the strictly upper triangular part of one factor matrix,
say A , be fixed to zero. The following initial value is created:

A = randn(10,5);
[i,j] = ndgrid(1:10,1:5);
A(j > i) = 0

A =
2.0684 0 0 0 0
0.1294 -0.1904 0 0 0
0.5001 -0.1355 -0.3705 0 0
1.9050 0.8140 -0.3259 -0.5112 0
0.5555 1.0007 1.6666 -0.4472 -1.8578

-0.4579 0.2320 1.2689 -1.6985 -0.7134
-0.1454 -0.0285 -1.0390 -0.8552 0.7025
-0.2466 -0.9286 -0.8979 1.6053 -0.0543
-0.3119 -1.6001 0.7471 1.5946 -0.2169
1.0205 -0.7063 -1.3862 1.1280 -1.6644

To keep the strictly upper triangular part constant, the transformation struct_const can be used using the
additional mask argument (see help struct_const ). This mask is true except for the entries in the strictly
upper triangular part:

mask = true(size(A));
mask(i > j) = false;

The model can now be created as:
T = randn(10, 11, 12);
model = struct;
model.variables.a = A;
model.variables.b = randn(11, 5);
model.variables.c = randn(12, 5);
model.factors.A = {'a', @(z,task) struct_const(z,task,mask)};
model.factors.B = 'b';
model.factors.C = 'c';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};
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The tensor decomposition is now computed in the same way as in the unconstrained case, with the exception that
the derivatives of the entries in the strictly upper triangular part of A are explicitly set to zero. The entries in
the strictly upper triangular part therefore stay the same as in the initial value.

8.4.3 Subfactors

In the previous examples, we have assumed that every factor consists of a single subfactor. Factors may however
consist of an arbitrary number of subfactors. Consider the following example in which one factor has a block-
diagonal structure:

model = struct;
model.variables.a11 = randn(5,2);
model.variables.a22 = randn(5,3);
model.variables.b = randn(11,5);
model.variables.c = randn(12,5);
model.factors.A = {'a11', zeros(5,3); zeros(5,2), 'a22'};
model.factors.B = 'b';
model.factors.C = 'c';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

sdf_check(model, 'print');

Factor Size Comment
------------------------------------------------------------------------
A [10x5] Partially constant
B [11x5]
C [12x5]

Factorization Type Factors Comments
------------------------------------------------------------------------
tensor (id = 1) cpd A,B,C

The factor A is partially constant as the off-diagonal blocks do not depend on any variable. When clicking on
A in the Matlab Command Window, an overview for this factor matrix is printed:

Expansion of factor A (id = 1) with structure [2x2] (view):
(1,1) a11 [5x2]
(2,1) (Constant) [5x2]
(1,2) (Constant) [5x3]
(2,2) a22 [5x3]

This overview correctly states that A consists of 2x2 subfactors. Each entry in this 2 × 2 structure can be
accessed individually as before. It is also possible to impose structure on a subfactor, e.g., nonnegativity can be
imposed on block a11 as follows:

model.factors.A = { {'a11', @struct_nonneg}, zeros(5,3);
zeros(5,2), 'a22' };

Running sdf_check(model, 'print') again, and clicking on A gives the expected output:
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Expansion of factor A (id = 1) with structure [2x2] (view):
(1,1) a11 [5x2] struct_nonneg Factor [5x2]
(2,1) (Constant) [5x2]
(1,2) (Constant) [5x3]
(2,2) a22 [5x3]

In the previous examples, all factors are actually matrices or vectors. A factor can be a tensor as well, and it is
also possible to concatenate subfactors along modes higher than two, for example:

model = struct;
model.variables.u = randn(10,2);
model.variables.v = randn(11,3);
model.variables.w = randn(12,3);
model.variables.s1 = randn(2,3,2);
model.variables.s2 = randn(2,3,1);
model.factors.U = 'u';
model.factors.V = 'v';
model.factors.W = 'w';
model.factors.S = reshape({'s1', 's2'}, 1, 1, 2);
model.factorizations.tensor.data = T;
model.factorizations.tensor.lmlra = {'U','V','W','S'};

sdf_check(model, 'print');

In the expansion of S (click on S ), we see that the parts s1 and s2 are indeed concatenated in the third
mode (recall that matrix s2 is a 2 × 3 × 1 tensor):

Expansion of factor S (id = 4) with structure [1x1x2] (view):
(1,1,1) s1 [2x3x2]
(1,1,2) s2 [2x3]

8.5 Factorization and regularization types

Currently, the SDF language supports four different factorization types (CPD, BTD, LMLRA and the decompo-
sition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms) and three regularization types (L0, L1 and L2 regularization). The
different models and factorization types are explained in their respective sections: Chapter 3, Chapter 6, Chapter 5
and Chapter 4. In the remaining part of this section we specify the format for the different factorization types:

• CPD: a (canonical) polyadic decomposition of a tensor 𝒯 with factor matrices A, B, C, ... can be computed
using

model.factorizations.mycpd.data = T;
model.factorizations.mycpd.cpd = {'A', 'B', 'C', ...};

In the case 𝒯 is an incomplete tensor, specialized routines can be used if the sdf_nls solver is used. To
activate these specialized routines use

model.factorizations.mycpd.data = T;
model.factorizations.mycpd.cpdi = {'A', 'B', 'C', ...};

• LMLRA: a low multilinear rank approximation of a tensor 𝒯 with factor matrices A, B, C, ... and core
tensor 𝒮 can be computed using
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model.factorizations.mylmlra.data = T;
model.factorizations.mylmlra.lmlra = {'A', 'B', 'C', ..., 'S'};
% or
model.factorizations.mylmlra.lmlra = {{'A', 'B', 'C', ..., 'S'}};

• BTD: an 𝑅-term block term decomposition of a tensor 𝒯 with factor matrices A𝑟, B𝑟, C𝑟, ... and core
tensors 𝒮𝑟 for 𝑟 = 1, . . . , 𝑅 can be computed using

model.factorizations.mybtd.data = T;
model.factorizations.mybtd.btd = {{'A1', 'B1', 'C1', ..., 'S1'}, ...,

{'AR', 'BR', 'CR', ..., 'SR'}};

• LL1: a decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms of a third-order tensor 𝒯 with factor matrices
A, B, C and L = [L1 L2 ... LR] can be computed using

model.factorizations.myll1.data = T;
model.factorizations.myll1.ll1 = {'A', 'B', 'C'};
model.factorizations.myll1.L = L;

Note that the L field is obligatory in this case. Only the CPD format for a decomposition in multilinear
rank-(𝐿𝑟, 𝐿𝑟, 1) terms is accepted, see Chapter 4.

In all cases above, both the data and the field that specifies the factorization type are obligatory.

Three regularization types, namely, L1 and L2 regularization (available since Tensorlab 2.0) and L0 regularization
(available since Tensorlab 3.0), are currently available:

• L1 regularization: a term 1
2 ‖vec (A) ‖1 or 1

2 (‖vec (A) ‖1 + ‖vec (ℬ) ‖1 + ...) is added to factors, which can
be matrices or tensors, using

model.factorizations.myreg.regL1 = 'A';
% or
model.factorizations.myreg.regL1 = {'A', 'B', ...};

All factors mentioned in a single regularization term get the same weight (see Section 8.3.2). If different
factors should have different weights, multiple regularization terms have to be added, e.g.,

% A and B have the same weight
model.factorizations.myreg1.regL1 = {'A', 'B'};
model.factorizations.myreg1.relweight = 1;
% C gets a different weight
model.factorizations.myreg2.regL1 = 'C';
model.factorizations.myreg2.relweight = 10;

By default, a term is regularized towards zero. A term 1
2 (‖0 − vec (A) ‖1 + ‖1 − vec (B) ‖1) can be added

using

model.factorizations.nonzeroreg.data = {zeros(size(A)), ones(size(B))};
model.factorizations.nonzeroreg.regL1 = {'A', 'B'};

• L2 regularization: a term 1
2 ‖A‖2

F or 1
2 (‖A‖2

F + ‖ℬ‖2
F + ...) is added to factors, which can be matrices or

tensors, using

model.factorizations.myreg.regL2 = 'A';
% or
model.factorizations.myreg.regL2 = {'A', 'B', ...};

The same remarks as for L1 regularization hold for L2 regularization as well.
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• L0 regularization: a term ‖vec (A) ‖0 or (‖vec (A) ‖0 + ‖vec (ℬ) ‖0 + ...) is added to factors, which can be
matrices or tensors, using

model.factorizations.myreg.regL0 = 'A';
% or
model.factorizations.myreg.regL0 = {'A', 'B', ...};

For computational reasons, a smoothed variant of the L0 norm is used: ‖vec (A) ‖0 is approximated by∑︀𝐼
𝑖=1 1 − exp(− 𝑎2

𝑖

𝜎2 ) with 𝐼 the number of entries in A. The parameter 𝜎 can be a scalar constant or a
function of the iteration k and the cell of regularized factors x . The value can be set using the sigma
field:

model.factorizations.myreg.regL0 = 'A';
model.factorizations.myreg.sigma = 0.01; % (the default), or
model.factorizations.myreg.sigma = @(k,x) 0.01*frob(x{1}); % x is cell of factors

The same remarks as for L1 regularization hold for L0 regularization as well.

Similar to the other optimization-based decomposition algorithms, the SDF algorithms sdf_minf , sdf_nls ,
ccpd_minf and ccpd_nls accept both full, sparse, incomplete and structured tensors as data in the data

field. Structured tensors can, for example, be given in the LMLRA format, the tensor train format, the Hankel
format or the Loewner format. See Chapter 2 for more information. (Structured tensors are not to be confused
with structure related to factors.) For structured tensors the maximal achievable numerical accuracy is only half
the machine precision due to the way the structure is exploited by the algorithm. This is usually not a problem as
noise, inexact models, regularization or chosen tolerances limit the attainable accuracy. If accuracy up to machine
precision is required, the accuracy of the result sol of the decomposition of the structured tensor(s) can be
improved using an additional refinement step. This refinement step uses sol.variables as initial guess for the
same problem, but all structured tensors are replaced by their expanded form. For example, if T is a structured
tensor, we replace

model.factorization.fac.data = T;

by

model.variables = sol.variables;
model.factorization.fac.data = ful(T);

Then we run the solver again using the updated model. It is often useful to limit the maximum number of
iterations, e.g., by setting MaxIter to 3 or 5 . In case a high accuracy is required, Section 10.4 may be of
interest.

8.6 Further reading

The remaining sections on structured data fusion handle other, more advanced concepts of the SDF language.
More concrete examples and useful tricks can be found in Chapter 9. One section in the advanced chapter
(Chapter 10) is particularly useful: Section 10.1 explains how the indexed notation can be used to simplify
models. This also allows the auto-wrapping feature to be used to its fullest potential, and it makes it easier to
create more dynamical models. (Auto-wrapping basically means that most braces {} are added automatically in
unambiguous cases.)
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CHAPTER

NINE

STRUCTURED DATA FUSION: EXAMPLES

In Chapter 8 the elements in the domain specific language (DSL) used for modeling structured data fusion problems
are explained. The three key ingredients of an SDF model are the definition of (1) the variables, (2) the factors
as transformed variables and (3) the data sets and which factors to use in their factorizations. Here, different
examples illustrate how the SDF framework can be used to model different types of constraints, structures and
couplings between datasets. These examples should quickly give a good idea of how the DSL can be used to
create new models. Reading Chapter 8 remains highly recommended even if a more example based approach is
favored by the user.

9.1 Example 1: nonnegative symmetric CPD

As a first example, the nonnegative symmetric CPD of an incomplete tensor 𝒯 is computed. First, generate the
tensor

% Generate a nonnegative symmetric CPD.
I = 15;
R = 4;
U = rand(I,R);
U = {U,U,U};
T = cpdgen(U);

% Remove 10% of entries.
T(randperm(numel(T),round(0.1*numel(T)))) = NaN;

% Format as incomplete tensor.
T = fmt(T);

Next, create a structure model which defines the variables of the SDF problem. It is recommended to start a
new model with

model = struct;

This clears previous definitions of variables, factors and factorizations. Forgetting to clear a previous model is a
common source of errors.

In this case, there is only one variable and its size is equal to that of the factor U . The variables field defines
the parameters that are optimized, and is also used to initialize the SDF algorithm.

% Define model variables.
model.variables.u = randn(I,R);
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Here, the variable u is defined as a Matlab array. It is also perfectly valid to define variables as (nested) cell
arrays of arrays, if desired. Now we need to define the factors. There is only one factor in this CPD, which we
define as a transformation of the variable u . More specifically, we require the factor to be nonnegative:

% Define model factors as transformed variables.
model.factors.U = {'u',@struct_nonneg};

The factor U is built taking the variable u , and applying the transformation @struct_nonneg . In fact, factors
can be built with a much more complex structure using subfactors, see the following examples for details. Finally,
we define the data set to be factorized and which factors to use:

% Define model factorizations.
model.factorizations.myfac.data = T;
model.factorizations.myfac.cpd = {'U','U','U'};

Each factorization in the SDF problem should be given a new name. In this case there is only one (named)
factorization called myfac and it contains two fields. The first is data and specifies the tensor to be factorized.
The second should be either cpd , cpdi , btd , lmlra or ll1 depending on which model to use, and define
the factors to be used in the decomposition (see Section 8.5).

Note that it is not necessary to use fields to describe the names of the variables and factors. Instead, one may
also create cell arrays of variables and factors and use indices to refer to them. In this format, the model would
be written as

% Equivalent SDF model without using names for variables and factors.
model.variables = { randn(I,R) };
model.factors = { {1,@struct_nonneg} };
model.factorizations.myfac.data = T;
model.factorizations.myfac.cpd = {1,1,1};

Since Tensorlab 3.0, the language parser is a lot more forgiving w.r.t. braces {} . Missing braces are added
automatically if this can be done unambiguously. This is called auto-wrapping. After removing superfluous
braces, the model becomes:

% Equivalent SDF model without using names for variables and factors.
model.variables = randn(I,R); % only if there is a single variable
model.factors = {1,@struct_nonneg};
model.factorizations.myfac.data = T;
model.factorizations.myfac.cpd = ones(1,3); % arrays are also allowed

The resulting model can be checked using the sdf_check(model, 'print') function:

Factor Size Comment
------------------------------------------------------------------------
1 [15x4]

Factorization Type Factors Comments
------------------------------------------------------------------------
myfac (id = 1) cpd 1,1,1

By clicking on the 1 in the Matlab Command Window, it can be seen that nonnegativity has indeed been imposed
(click the 1 and Factor links to investigate this):

Expansion of factor 1 (view):
(1,1) 1 [15x4] struct_nonneg Factor [15x4]
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By clicking 1 or Factor , its value becomes available as ans , which can be useful, for example, if we wish to
plot an intermediate result. For example to check if all entries in the factor are positive, after clicking Factor ,
we can use all(ans(:)) >= 0 .

The model can now be solved with one of the two families of algorithms for SDF problems: sdf_minf and
sdf_nls . Their first output contains the optimized variables and factors in the fields variables and factors ,

respectively:

% Solve the SDF problem.
options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);
sol.variables
sol.factors

If no nonnegativity is required, and hence only symmetry is used, the ccpd_nls and ccpd_minf methods can
be used. For unstructured coupled and/or symmetric problems, these dedicated methods often behave better
numerically:

model = struct;
model.variables = rand(I,R);
model.factors = 1;
model.factorizations.unconst.data = T;
model.factorizations.unconst.cpd = [1 1 1];

Ures = ccpd_nls(model, 'Display', 10);

In case a tensor is symmetric in all modes, it can be useful to introduce an additional dimension to take scaling
and signs of the rank-1 terms into account. This extra dimension is a vector of size 1 × 𝑅. For example a
fourth-order fully symmetric real tensor having negative entries on the diagonal cannot be modeled without the
extra dimension. With the extra dimension, the problem can be modeled as

model = struct;
model.variables.A = randn(I, R);
model.variables.extra = randn(1, R);
model.factors.A = 'A';
model.factors.E = 'extra';
model.factorizations.symm.data = T;
model.factorizations.symm.cpd = {'A', 'A', 'A', 'A', 'E'};

9.2 Example 2: structured coupled matrix factorization

Let X and Y be square matrices of dimension 𝑁 × 𝑁 which we wish to jointly factorize as U · Λ𝑋 · VT and
U · Λ𝑌 · WT, respectively. The factor U is common to both X and Y, and the extent to which the columns are
shared is given by the absolute values of the diagonal matrices Λ𝑋 and Λ𝑌 . Furthermore, we will require the
entries of W to lie in the interval (-3,5) and impose a Vandermonde structure on V, so that

V =

⎡⎢⎣𝑣0
1 𝑣1

1 · · · 𝑣𝑑
1

...
... . . . ...

𝑣0
𝑁 𝑣1

𝑁 · · · 𝑣𝑑
𝑁

⎤⎥⎦
with 𝑑 = 𝑅 − 1 and 𝑅 the number of terms. Note that V depends only on a so-called generator vector
v = [𝑣1 · · · 𝑣𝑁 ]T.
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First, the matrices X and Y are created:

% Generate structured coupled matrices X and Y.
N = 10;
R = 4;
U = randn(N,R);
V = bsxfun(@power,randn(N,1),0:R-1); % Vandermonde factor.
W = rand(N,R)*(5+3)-3; % Entries in (-3,5).
lambdaX = 0:3; % X does not share first column of U.
lambdaY = 3:-1:0; % Y does not share last column of U.
X = U*diag(lambdaX)*V.';
Y = U*diag(lambdaY)*W.';

Then, we define a structure containing the model variables

% Define model variables.
model = struct;
model.variables.u = randn(N,R);
model.variables.v = randn(N,1);
model.variables.w = randn(N,R);
model.variables.lambdaX = randn(1,R);
model.variables.lambdaY = randn(1,R);

Here, the variables are the matrices U and W, the generator vector v for the Vandermonde matrix V and the
diagonals 𝜆𝑋 and 𝜆𝑌 . The model assumes that X and Y share at most 𝑅 = 4 vectors in U. Next, we define
the factors as transformed variables with

% Define the structure for V by creating an anonymous function which stores deg.
deg = [0 R-1]; % Bounds for d: first column is z^0 and last column z^(R-1)
vanderm = @(z,task)struct_vander(z,task,deg);

% Define the structure for W by creating an anonymous function which stores rng.
rng = [-3 5];
sigmoid = @(z,task)struct_sigmoid(z,task,rng);

% Define model factors as transformed variables.
model.factors.U = 'u';
model.factors.V = {'v',vanderm};
model.factors.W = {'w',sigmoid};
model.factors.LX = 'lambdaX';
model.factors.LY = 'lambdaY';

In this example the transformations depend on parameters. To pass along these parameters, we encapsulate them
inside anonymous functions. For example, the sigmoid transformation struct_sigmoid requires the interval
rng to constrain its argument in.

Now we add the two factorizations of X and Y to the model with
% Define the joint factorization of the matrices X and Y.
model.factorizations.xfac.data = X;
model.factorizations.xfac.cpd = {'U','V','LX'};
model.factorizations.yfac.data = Y;
model.factorizations.yfac.cpd = {'U','W','LY'};

Here, we use the CPD to describe the factorizations X = U · Λ𝑋 · VT and Y = U · Λ𝑌 · WT by associating
the factor matrices 𝜆𝑋 and 𝜆𝑌 , which are row vectors, with the third dimension of X and Y. Alternatively, we
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could describe the two factorizations with the BTD model by imposing the core tensor to be a diagonal matrix
with struct_diag , but this is less efficient than using the CPD model.

The SDF problem can now be solved with

% Solve the SDF problem.
options.Display = 10; % View convergence progress every 10 iterations.
options.TolFun = 1e-9; % Stop earlier.
options.CGMaxIter = 500; % Recommended if structure/coupling is imposed
[sol, output] = sdf_nls(model,options);
sol.variables
sol.factors

Although the algorithm converges, it usually does not converge to the solution we used to generate the data.
Nevertheless a good relative error is obtained (see output.relerr ). This may indicate that the solution is not
unique (in contrast to the example in Section 9.1).

9.3 Example 3: an orthogonal factor

We show how to compute a simple CPD in which one of the factors is constrained to have orthonormal colums.
To this end, we will create a variable q that parameterizes a matrix with orthonormal columns Q. The structure
struct_orth can then be used to transform the variable q into the factor Q. First, we construct the data for

the problem:

% Generate CPD, where one factor has orthonormal columns.
I = 15;
R = 4;
U = cpd_rnd([I I I],R);
U{1} = orth(U{1}); % Enforce orthonormal columns.
T = cpdgen(U);

The help information provided by struct_orth tells us that the variable q should be a vector of length 𝐼𝑅 −
0.5𝑅(𝑅 − 1). To transform q into a matrix with orthonormal columns, we need to pass the size of Q to
struct_orth . One way to do this is with an anonymous function, as shown below. Now we are ready to define

and solve the SDF problem:

% Clear previous model
model = struct;

% Define model variables.
model.variables.q = randn(I*R-0.5*R*(R-1),1);
model.variables.b = randn(I,R);
model.variables.c = randn(I,R);

% Define a function that transforms q into Q.
% This anonymous function stores the size of Q as its last argument.
orthq = @(z,task)struct_orth(z,task,[I R]);

% Define model factors.
model.factors.Q = {'q',orthq}; % Create Q as orthq(q).
model.factors.B = 'b';
model.factors.C = 'c';
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% Define model factorizations.
model.factorizations.myfac.data = T;
model.factorizations.myfac.cpd = {'Q','B','C'};

sdf_check(model, 'print');

Factor Size Comment
------------------------------------------------------------------------
Q [15x4]
B [15x4]
C [15x4]

Factorization Type Factors Comments
------------------------------------------------------------------------
myfac (id = 1) cpd Q,B,C

The factor Q is indeed a 15 × 4 matrix. By clicking Q in the Matlab Command Window, and then view , we
can indeed verify the orthogonality of the factors, as it becomes available as ans :

Q = ans;
Q'*Q

ans =
1.0000 0.0000 -0.0000 0.0000
0.0000 1.0000 -0.0000 0.0000

-0.0000 -0.0000 1.0000 -0.0000
0.0000 0.0000 -0.0000 1.0000

The model can now be computed, e.g., using the sdf_nls solver:

% Solve the SDF problem.
sol = sdf_nls(model, 'Display', 10);

% Check that the result Q indeed has orthonormal columns
sol.factors.Q'*sol.factors.Q

9.4 Example 4: decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms

In this example, the decomposition of a tensor 𝒯 into multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms is illustrated. This
decomposition can be seen as a special case of the BTD, i.e., having an identity matrix as core, or as a special
case of the CPD, i.e., some rank-1 terms have an identical vector in the third mode. More concretely, we want
to compute a multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) BTD [25, 26, 27] of a tensor 𝒯 in 𝑅 terms, i.e.,

𝒯 ≈
𝑅∑︁

𝑟=1
(A𝑟BT

𝑟) ⊗ c𝑟

where c𝑟 are vectors and A𝑟 and B𝑟 have 𝐿𝑟 columns. In the unconstrained and uncoupled case, the decompo-
sition into rank-(𝐿𝑟, 𝐿𝑟, 1) terms can be computed using the specialized ll1 routines (see Chapter 4). In this
example, three ways to compute this decomposition are shown:

• using the ll1 factorization type,
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• using the BTD formulation, and

• using the CPD formulation by imposing that some vectors are equal using struct_LL1 .

The ll1 factorization type has been added in Tensorlab 3.0, and is the recommended way to compute a
decomposition in multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms in the constrained and/or coupled case. When no constraints
or coupling are needed, the ll1 method can be used.

9.4.1 Example 4a: using the ll1 factorization type

We use a decomposition into multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms with 𝐿 = [3, 2] in this example. In the CPD
formulation of this decomposition, the different factors A1 and A2 are concatenated along the second mode, i.e.,
in Matlab code we have A = [A1 A2] . The same holds for B and C. Hence, factors A and B have sum(L)
columns, while C has length(L) columns (for more information see Chapter 4). To generate the data the
ll1_rnd routine can be used:

size_tens = [10 11 12];
L = [3 2];
U0 = ll1_rnd(size_tens, L);
T = ll1gen(U0);

For the unconstrained decomposition into multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms, the ll1 , ll1_minf and ll1_nls
routines can be used. Here we illustrate the ll1 factorization type in the SDF framework, as this can be useful
if some factors have structure, or are shared between factorizations. The decomposition can then be modeled as
follows:

L = [3 2];
model = struct;
model.variables.A = randn(size_tens(1), sum(L));
model.variables.B = randn(size_tens(2), sum(L));
model.variables.C = randn(size_tens(3), length(L));
model.factors.A = 'A';
model.factors.B = 'B';
model.factors.C = 'C';
model.factorizations.myll1.data = T;
model.factorizations.myll1.ll1 = {'A', 'B', 'C'};
model.factorizations.myll1.L = L;

The ll1 factorization type only accepts the CPD format for the decomposition into multilinear rank-(𝐿𝑟, 𝐿𝑟, 1)
terms. The L field defines the different terms. The model can again be solved using the sdf_nls and
sdf_minf solvers.

9.4.2 Example 4b: using the btd factorization type

The decomposition into rank-(𝐿𝑟, 𝐿𝑟, 1) terms is a special case of a block term decomposition (BTD), in which
the core tensors 𝒮𝑟 are matrices of size 𝐿𝑟 × 𝐿𝑟 × 1. The decomposition then takes the form:

𝒯 ≈
𝑅∑︁

𝑟=1
𝒮𝑟 ·1 A𝑟 ·2 B𝑟 ·3 c𝑟
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By default, ll1_rnd returns a decomposition into multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms in the BTD format. By
setting the OutputFormat option to 'cpd' the CPD format is obtained. The btd factorization type can be
used as follows:

% Define rank-(Lr,Lr,1) BTD model using the BTD.
model = struct;
model.variables.A1 = randn(size_tens(1),L1);
model.variables.B1 = randn(size_tens(2),L1);
model.variables.c1 = randn(size_tens(3),1);
model.variables.S1 = randn(L1,L1,1);
model.variables.A2 = randn(size_tens(1),L2);
model.variables.B2 = randn(size_tens(2),L2);
model.variables.c2 = randn(size_tens(3),1);
model.variables.S2 = randn(L2,L2,1);
model.factors = { 'A1','B1','c1','S1', 'A2','B2','c2','S2' };
model.factorizations.mybtd.data = T;
model.factorizations.mybtd.btd = {{1,2,3,4},{5,6,7,8}};

where, for the sake of brevity, we have used indexed factors. The model can be shortened even further by making
use of indexed definitions and references (see Chapter 10):

model = struct;

U0 = ll1_rnd(size_tens, L); % Initial guess in BTD format
% Convert {{U{1}{1},U{1}{2},...}, {U{2}{1},...},...}
% to {U{1}{1},U{1}{2},...,U{2}{1},...}
U0 = cat(2, U0{:});
model.variables = U0;
model.factors = 1:8;
model.factorizations.mybtd.data = T;
model.factorizations.mybtd.btd = {1:4, 5:8};

Note that in SDF the BTD is specified in the same format as for other BTD algorithms, e.g., btd_nls and
btd_rnd , i.e., a nested cell of cells is used, but now references to factors are used instead of factor matrices and

tensors. Thanks to auto-wrapping, many of the braces can be omitted, though. The BTD can then be computed
by

% Solve the SDF problem.
options.Display = 10; % View convergence progress every 10 iterations.
sol = sdf_nls(model,options);
sol.variables
sol.factors

9.4.3 Example 4c: using the cpd factorization type

The third way to compute a decomposition into multilinear rank-(𝐿𝑟, 𝐿𝑟, 1) terms uses a CPD. In our example,
the decomposition can be written as:

𝒯 ≈
𝐿1∑︁

𝑗=1
A1(:, 𝑗) ⊗ B1(:, 𝑗) ⊗ c1 +

𝐿2∑︁
𝑗=1

A2(:, 𝑗) ⊗ B2(:, 𝑗) ⊗ c2

Here, the third CPD factor matrix C looks like [repmat(c1,1,L1) repmat(c2,1,L2)] , while the first two
are [A1 A2] and [B1 B2] , respectively. These factor matrices are all built out of subfactor matrices, which
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we can implement in the DSL as follows:

% Define rank-(Lr,Lr,1) BTD model using the CPD.
model = struct;
model.variables.A1 = randn(size_tens(1),L1);
model.variables.B1 = randn(size_tens(2),L1);
model.variables.c1 = randn(size_tens(3),1);
model.variables.A2 = randn(size_tens(1),L2);
model.variables.B2 = randn(size_tens(2),L2);
model.variables.c2 = randn(size_tens(3),1);
% The factors A, B and C are built out of subfactors.
% Structure may also be imposed on subfactors if desired.
model.factors.A = {'A1', 'A2'};
model.factors.B = {'B1', 'B2'};
model.factors.C = {'c1', 'c1', 'c1', 'c2', 'c2'};
model.factorizations.mycpd.data = T;
model.factorizations.mycpd.cpd = {'A','B','C'};

The line model.factors.A = {'A1', 'A2'} states that the factor A is a matrix consisting of two subfactors
that are concatenated horizontally. Internally, the SDF algorithm first builds the subfactors, which are in this
case simply references to the variables A1 and A2 , and then calls cell2mat on the cell array of subfactors to
create the factor A . Besides on factors, structure may also be imposed on subfactors. For instance, we could
have written model.factors.A = {{'A1',@struct_sigmoid},'A2'} to constrain the elements of the first
submatrix in the factor A to the interval (−1, 1) (the elements of the variable A1 itself are not restricted to this
interval however).

The explicit modeling in the previous code block can be avoided using the transformation struct_LL1 :

L = [L1 L2];
LL1 = @(z,task)struct_LL1(z,task,L);

model = struct;
model.variables.A = randn(size_tens(1),L1+L2);
model.variables.B = randn(size_tens(2),L1+L2);
model.variables.c = randn(size_tens(3),2);
model.factors.A = 'A';
model.factors.B = 'B';
model.factors.C = {'c',LL1};
model.factorizations.myll1.data = T;
model.factorizations.myll1.cpd = {'A','B','C'};

9.5 Example 5: constants

To indicate that a factor or subfactor is constant, it suffices to use that constant array in the factor instead of a
reference to a variable.

9.5.1 Example 5a: known factor matrix

The following example computes a CPD in which one factor matrix is known:
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% Generate a CPD.
I = 15;
R = 4;
U = cpd_rnd([I I I],R);
T = cpdgen(U);

% Model the CPD of T, where C = U{3} is known.
model = struct;
model.variables.a = randn(size(U{1}));
model.variables.b = randn(size(U{1}));
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = U{3}; % The third factor is constant.
model.factorizations.myfac.data = T;
model.factorizations.myfac.cpd = {'A','B','C'};

% Solve the SDF model.
options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);
sol.variables
sol.factors

When running the sdf_check(model, 'print') function, C is indeed recognized as a constant factor:

C [15x4] constant

9.5.2 Example 5b: partially known factor matrix

To create a factor of which some of the columns are known, simply define the factor to consist of a number of
subfactors where one of the subfactors is a fixed array. The following example computes a CPD in which part of
one factor matrix is known:

% Generate a CPD.
I = 15;
R = 4;
U = cpd_rnd([I I I],R);
T = cpdgen(U);

% Model the CPD of T, where the last columns of C are known
model = struct;
model.variables.a = randn(size(U{1}));
model.variables.b = randn(size(U{1}));
model.variables.c = randn(size(U{1},1),2);
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = {'c',U{3}(:,1:2)}; % The third factor is partially known.
model.factorizations.myfac.data = T;
model.factorizations.myfac.cpd = {'A','B','C'};

% Solve the SDF model.
options.Display = 5; % View convergence progress every 5 iterations.
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sol = sdf_nls(model,options);
sol.variables
sol.factors

When running the sdf_check(model, 'print') function, C is indeed recognized as a partially constant
factor:

C [15x4] Partially constant

9.6 Example 6: chaining factor structures

Factor structures can be chained so that a variable is transformed by a sequence of functions. In the following
example, we compute a CPD in which a subfactor of the first factor matrix is a nonnegative Toeplitz matrix
and the last factor is known. To create a nonnegative Toeplitz subfactor, we will create a generator vector
for the Toeplitz matrix, transform it with struct_nonneg so that it is nonnegative, and then transform it
with struct_toeplitz to create a nonnegative Toeplitz subfactor. The factor A is defined as a matrix
consisting of two subfactors: the top subfactor transforms the variable atop with struct_nonneg , followed
by struct_toeplitz , and the bottom subfactor is simply an unconstrained matrix abtm .

% Generate CPD, wherein
% - the first factor has a nonnegative Toeplitz subfactor.
% - the last factor is known.
I = 15;
R = 4;
U = cpd_rnd([I I I],R);
U{1}(1:R,1:R) = toeplitz(rand(4,1));
T = cpdgen(U);

% Define model variables.
model = struct;
model.variables.atop = randn(2*R-1,1);
model.variables.abtm = randn(I-R,R);
model.variables.b = randn(I,R);

% Define model factors.
% The first factor vertically concatenates two subfactors.
% The top subfactor is generated as a nonnegative Toeplitz matrix.
model.factors.A = {{'atop',@struct_nonneg,@struct_toeplitz}; ...

{'abtm'}};
model.factors.B = 'b';
% Third factor matrix is known.
model.factors.C = U{3};

% Define model factorizations.
model.factorizations.myfac.data = T;
model.factorizations.myfac.cpd = {'A','B','C'};

sdf_check(model, 'print');

The different steps used to construct factor matrix A can be investigated by clicking A in the Matlab Command
Window:
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Expansion of factor A (id = 1) with structure [2x1] (view):
(1,1) atop [7x1] struct_nonneg temp [7x1]

temp [7x1] struct_toeplitz Factor [4x4]
(2,1) abtm [11x4]

% Solve the SDF problem.
options.Display = 10; % View convergence progress every 10 iterations.
sol = sdf_nls(model,options);

9.7 Example 7: regularization

In addition to the CPD and BTD models, SDF also foresees three models that represent L0, L1 and L2 regular-
ization terms. By including the factorizations

% Use L2-regularization on the factors A and B.
model.factorizations.myreg2.data = {zeros(size(U{1})),zeros(size(U{2}))};
model.factorizations.myreg2.regL2 = {'A','B'};

% Use L1-regularization on C-ones(size(C)).
model.factorizations.myreg1.data = ones(size(U{3}));
model.factorizations.myreg1.regL1 = 'C';

in the previous example, the terms 1
2 ‖

[︀
vec (A)T vec (B)T]︀T − 0‖2

2 = 1
2 (‖A‖2

F + ‖A‖2
F) and 1

2 ‖vec (C) − 1‖1 are
added to the objective function. The data field defaults to all zeros, if omitted. In the case of L0 regularization,
a smoothed variant is used, i.e., ‖x‖0 is computed using

∑︀
𝑖 1 − exp(− 𝑥2

𝑖

𝜎2 ). The parameter 𝜎 can be set using
the sigma field and can be either a scalar constant, or a function in the iteration number k and the factors
x . For example:

% Use L2-regularization on the factors A.
model.factorizations.myreg0.regL0 = 'A';
model.factorizations.myreg0.sigma = 0.01; % (the default) or
model.factorizations.myreg0.sigma = @(k,x) 0.01*frob(x{1}); % x is a cell of factors

When regularization is used, the importance or weight of the regularization is often an important hyperparameter.
Consider the following problem:

min
A,B,C

𝜆1

2 ||𝒯 − ℳCPD(A, B, C)||2F + 𝜆2

2 ||A||2F + 𝜆3

2 (||vec (B)||1 + ||vec (C)||1).

This can be modeled as follows:
model = struct;
% definition of variables and factors omitted
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};
model.factorizations.tensor.weight = lambda1;
model.factorizations.regA.regL2 = 'A';
model.factorizations.regA.weight = lambda2;
model.factorizations.regBC.regL1 = {'B', 'C'};
model.factorizations.regBC.weight = lambda3;

The example above makes use of absolute weights. It is also possible to work with relative weights, by using
relweight instead of weight . For example:
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model = struct;
% definition of variables and factors omitted
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};
model.factorizations.tensor.relweight = 100;
model.factorizations.regA.regL2 = 'A';
model.factorizations.regA.relweight = 1;
model.factorizations.regBC.regL1 = {'B', 'C'};
model.factorizations.regBC.relweight = 2;

This example states that the tensor decomposition is 100 times more important than the L2 regularization term,
and 50 times more important than the L1 regularization term, regardless of how many entries the different terms
involve. Similarly, the L1 regularization term is more important than the L2 regularization term. The precise
relation between the relative weights and the weights 𝜆𝑖 is explained in Chapter 8.

9.8 Example 8: compression based initialization

The cpd and ll1 functions implement a full initialization strategy in order to reduce the computation time.
A similar sdf method does not yet exist. Nevertheless, we show how compression can be used in SDF to
reduce the computational cost. Consider the following nonnegative CPD of a rank-5 tensor 𝒯 with dimensions
150 × 160 × 170:

R = 5;
model = struct;
model.variables.a = rand(150,R);
model.variables.b = rand(160,R);
model.variables.c = rand(170,R);
model.factors.A = {'a', @struct_nonneg};
model.factors.B = {'b', @struct_nonneg};
model.factors.C = {'c', @struct_nonneg};
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

sol = sdf_nls(model);

In order to reduce the computational cost, the tensor 𝒯 can be compressed, e.g., using the mlsvd_rsi method:

[U,S] = mlsvd_rsi(T, [R R R]);

In the unconstrained CPD case, the factor matrices Ucomp{1} , Ucomp{2} , and Ucomp{3} in the CPD of the
compressed tensor 𝒮 can be computed and expanded to the factors of the full tensor 𝒯 . This can be done by
multiplying the factor matrices Ucomp{1} , Ucomp{2} , and Ucomp{3} with the compression matrices U{1} ,
U{2} , and U{3} , respectively.

Ucomp = cpd(S, R);
Uinit = cellfun(@(u,v) u*v, U, Ucomp, 'UniformOutput', false);
Ures = cpd_nls(T, Uinit); % refinement

The last refinement step improves the accuracy in case information was lost in the compression.

In the constrained case, this strategy can no longer be used, as the compressed tensor 𝒮 is not nonnegative.
Tensorlab 3.0 foresees a different strategy, which can be followed in the constrained case as well. The idea is
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to use the results of the compression for a compact representation as a structured tensor, and use the latter to
efficiently obtain a first estimate of the desired factors.

R = 5;
model = struct;
model.variables.a = randn(150,R);
model.variables.b = randn(160,R);
model.variables.c = randn(170,R);
model.factors.A = {'a', @struct_nonneg};
model.factors.B = {'b', @struct_nonneg};
model.factors.C = {'c', @struct_nonneg};
model.factorizations.tensor.data = {U,S};
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

sol = sdf_nls(model);

The results in sol are next used in a refinement step:

R = 5;
model = struct;
model.variables.a = sol.variables.a; % initialization for refinement step
model.variables.b = sol.variables.b;
model.variables.c = sol.variables.c;
model.factors.A = {'a', @struct_nonneg};
model.factors.B = {'b', @struct_nonneg};
model.factors.C = {'c', @struct_nonneg};
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

sol = sdf_nls(model);

It can be useful to limit the number of iterations in the refinement step by setting the MaxIter option to avoid
unneeded work:

sol = sdf_nls(model, 'MaxIter', 10);

9.9 Example 9: advanced coupling

The previous examples only considered coupled datasets in which the coupling took the form of a shared factor
matrix. In this section, we consider joint tensor-matrix and joint tensor-tensor decompositions with a more complex
relation between the datasets. Consider the following three datasets: a tensor 𝒯 = ℳCPD(A, B, C), a tensor
𝒮 = ℳCPD(D, E, F) and a matrix M = ℳCPD(D, E) = DET. Exact coupling, e.g., A = D, has already been
discussed in Section 9.2. Here, the following relations are considered:

• 𝒯 and M partially share a factor matrix, i.e., A = D(:, 1 : 𝑅1), in which 𝒯 has rank 𝑅1 and M has rank
𝑅2 > 𝑅1.

• 𝒯 and 𝒮 are approximately coupled using D = A + N, where N is small compared to A.

• 𝒯 and M are coupled using D = XAY, i.e., D is a linear transformation of A with known matrices X
and Y.

• 𝒯 and 𝒮 share an underlying variable 𝑧, i.e., A = 𝑓(𝑧) and D = 𝑔(𝑧).
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9.9.1 Example 9a: partial coupling

In this example, we investigate the case in which only a part of a factor matrix is shared. Consider a tensor 𝒯
and a matrix M. The first 𝑅1 = rank(𝒯 ) columns of D are shared. Let D = [D1, D2] then D1 = A. The two
datasets are modeled as follows:

% Tensor T
U1 = cpd_rnd([10, 11, 12], 3); % factors A, B, C
T = cpdgen(U1);
% matrix M
U2 = cpd_rnd([10, 13], 5); % factors D, E
U2{1}(:,1:3) = U1{1}; % D(:,1:3) = A
M = cpdgen(U2);

In the SDF language, the partial coupling can be expressed using subfactors, i.e., factor D is the horizontal
concatenation of variables a and d2 : D = {'a', 'd2'} . The full model is given by

model = struct;
model.variables.a = randn(10,3);
model.variables.b = randn(11,3);
model.variables.c = randn(12,3);
model.variables.d2 = randn(10,2); % remaining two vectors
model.variables.e = randn(13,5);
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = 'c';
model.factors.D = {'a', 'd2'};
model.factors.E = 'e';
model.factorizations.T.data = T;
model.factorizations.T.cpd = {'A', 'B', 'C'};
model.factorizations.M.data = M;
model.factorizations.M.cpd = {'D', 'E'};

[sol,output] = sdf_nls(model, 'Display', 10, 'MaxIter', 200, 'CGMaxIter', 500);

Some extra options are provided to the sdf_nls solver. The Display option prints an update every 10
iterations. The MaxIter option decreases the maximum number of iterations to limit the computation time,
if no good solution is found. Finally, the CGMaxIter option increases the maximum number of CG iterations
from 15 (the default) to 500. When structure is imposed on some factors or coupled datasets are used, it
is recommended to increase CGMaxIter as it generally improves the convergence behavior at the cost of more
expensive iterations. Often the reduction in the number of iterations makes up for the increased cost per iteration.

The algorithm may converge to a local optimum, depending on the initialization. It is therefore recommended to
perform multiple runs with different initial values. Recall that the lines model.variables.a = randn(10,3)
etc. provide the initial guess, hence simply executing the sdf_nls(model) multiple times does not
change the result. The variables have to be reinitialized by reevaluating the lines model.variables.a ,
model.variables.b , etc. In the example above, a good solution can be be found using (multiple) random

initializations. Other problems may require better initialization strategies in order to get a good solution. One
can, for example, compute the decompositions of the uncoupled datasets, match the different terms and then use
this result to initialize the coupled problem.
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9.9.2 Example 9b: approximate coupling

The coupling between two or more tensors may not be exact. For example, the shared factors can be approximately
the same (see, e.g., [38]). In this example, two tensors 𝒯 and 𝒮 are coupled in the first mode. To model the
inexact coupling, an additional ‘noise’ term N is used: D = A + N. If this noise term is large compared to A,
there is almost no coupling. If the noise term is small compared to A, the coupling is stronger. The two tensors
are constructed as follows:

% first tensor T
U1 = cpd_rnd([10, 11, 12], 3); % factors A, B, C
T = cpdgen(U1);

% second tensor S
U2 = cpd_rnd([10, 13, 14], 3); % factors D, E, F
U2{1} = U1{1} + randn(10,3)*1e-3; % D = A + N;
S = cpdgen(U2);

To model the approximate coupling, two transformations are needed: struct_select and struct_plus .
The former can be used to select one entry from a cell variable. The latter can be used to
sum all entries in a cell variable. The cell variable an contains the initial guesses for A and N:
an = {randn(10,3), randn(10,3)*1e-2} . Factor A simply selects the first entry of an , while factor
D sums both entries. The noise term N should be small, otherwise both tensors are uncoupled. Therefore, L2

regularization is applied to N.

model = struct;
model.variables.an = {randn(10,3), randn(10,3)*1e-2}; % {A, N}
model.variables.b = randn(11,3);
model.variables.c = randn(12,3);
model.variables.e = randn(13,3);
model.variables.f = randn(14,3);
model.factors.A = {'an', @(z,task) struct_select(z,task,1)}; % A
model.factors.B = 'b';
model.factors.C = 'c';
model.factors.D = {'an', @struct_plus}; % A + N
model.factors.E = 'e';
model.factors.F = 'f';
model.factors.N = {'an', @(z,task) struct_select(z,task,2)}; % N
model.factorizations.T.data = T;
model.factorizations.T.cpd = {'A', 'B', 'C'};
model.factorizations.S.data = S;
model.factorizations.S.cpd = {'D', 'E', 'F'};
model.factorizations.N.regL2 = {'N'};

sdf_check(model, 'print');

The overview of the model indeed shows that the right factors have been selected. (Click the different factors in
the Matlab Command Window.) The model can be computed by:

[sol,output] = sdf_nls(model, 'Display', 10, 'CGMaxIter', 100, 'MaxIter', 200);

The output output.relerr gives the relative error between the data and the computed decomposition for each
factorization. As can be seen, the tensors are approximated quite well:
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relerr: [1.6933e-06 1.4664e-06 Inf]

The Inf entry indicates that the norm of the data for the regularization term N is zero. (Recall that the data
field is zero if no data is specified.) The absolute error output.abserr is more useful for the regularization
term.

The average difference between the computed factors A and D is given by
mean(abs(sol.factors.A(:) - sol.factors.D(:))) :

0.0016

which is indeed of the expected order of magnitude (recall that 𝑁 is generated as randn(10,3)*1e-3 ).

9.9.3 Example 9c: linearly transformed coupling

In this example, two datasets are coupled using the relation D = XAY, i.e., D is a linear transformation of A
with two known matrices X and Y. This relation is used to jointly decompose a tensor 𝒯 and a matrix M, which
are generated as follows:

% tensor
U1 = cpd_rnd([10, 11, 12], 4); % factors A, B, C
T = cpdgen(U1);

% Matrix
U2 = cpd_rnd([10, 13], 4); % factors D, E
X = orth(randn(20,10)); % orthogonality is used pinv(X) = X'
Y = randn(4,4); % random transformation
U2{1} = X*U1{1}*Y; % D = X*A*Y
M = cpdgen(U2);

To model the linear transformation of the factor matrix A, the struct_matvec transformation is used. This
transformation can be used to model left and right multiplications with matrices. Indexed variables are used to
shorten the code.

model = struct;
model.variables = cpd_rnd([10 11 12 13], 4);
model.factors.A = 1;
model.factors.B = 2;
model.factors.C = 3;
model.factors.D = {1, @(z,task) struct_matvec(z, task, X, Y)};
model.factors.E = 4;
model.factorizations.T.data = T;
model.factorizations.T.cpd = {'A', 'B', 'C'};
model.factorizations.M.data = M;
model.factorizations.M.cpd = {'D', 'E'};

[sol,output] = sdf_nls(model, 'Display', 10, 'CGMaxIter', 500, ...
'TolFun', eps^2, 'TolX', eps, 'MaxIter', 250);

The output.relerr field shows that for both datasets the relative error is very small (multiple initializations
may be needed):
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output.relerr =
1.0e-14 *
0.0653 0.1022

The same holds for cpderr(U1, {sol.factors.A, sol.factors.B, sol.factors.C}) . By
construction, we have all(all(X*sol.factors.A*Y - sol.factors.D == 0)) . Note that
cpderr(U2, {sol.factors.D, sol.factors.E}) is not small in general, as a matrix decomposition

is not unique.

Note that the left multiplication with X can be removed, by multiplying the data matrix M on the left with
the (pseudo)inverse of X. As X has orthonormal columns, XH can be used. To do the left multiplication, the
tmprod command is used, as it works both for matrices and higher-order tensors:

% Only relevant lines shown:
model.factors.D = {1, @(z,task) struct_matvec(z, task, [], Y)};
model.factorizations.M.data = tmprod(M, X', 1);

[sol,output] = sdf_nls(model, 'Display', 10, 'CGMaxIter', 500, ...
'TolFun', eps^2, 'TolX', eps, 'MaxIter', 250);

Note that in the first line X is replaced by [] as the multiplication from the left is no longer necessary.

9.9.4 Example 9d: same underlying variable

Datasets may share an underlying variable that is transformed using different transformations. In this example,
factor matrices A and D are constructed as a transposed Vandermonde matrix (see Section 9.2) and a squared
transposed Vandermonde matrix. The shared underlying variables 𝑧 are the poles or generators of the Vandermonde
matrices. The other factor matrices for tensors 𝒯 and 𝒮 are generated using cpd_rnd .

% Shorthand function for transposed Vandermonde matrices
vander = @(z,range) struct_vander(z,[],range).';
% Poles = shared variable
poles = exp(2*pi*1i*randn(1,4));
% First tensor T
U1 = cpd_rnd([10, 11, 12], 4); % factors A, B, C
U1{1} = vander(poles, [1 10]);
T = cpdgen(U1);
% Second tensor S
U2 = cpd_rnd([7, 13, 14], 4); % factors D, E, F
U2{1} = vander(poles, [1 7]).^2;
S = cpdgen(U2);

The coupling can easily be expressed by generating two factor matrices A and D that use the same variable
poles , but through different transformations:

% Predefine transformations to improve readability
vander1 = @(z,task) struct_vander(z, task, [1 10]);
vander2 = @(z,task) struct_vander(z, task, [1 7]);
transp = @struct_transpose;
square = @(z,task) struct_power(z, task, 2);
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model = struct;
model.variables.poles = exp(2*pi*1i*rand(1,4));
model.variables.b = randn(11, 4);
model.variables.c = randn(12, 4);
model.variables.e = randn(13, 4);
model.variables.f = randn(14, 4);
model.factors.A = {'poles', vander1, transp};
model.factors.B = 'b';
model.factors.C = 'c';
model.factors.D = {'poles', vander2, transp, square};
model.factors.E = 'e';
model.factors.F = 'f';
model.factorizations.T.data = T;
model.factorizations.T.cpd = {'A', 'B', 'C'};
model.factorizations.S.data = S;
model.factorizations.S.cpd = {'D', 'E', 'F'};

sdf_check(model, 'print');

The overview created by sdf_check shows that the 1×4 vector of poles is transformed into the correct matrices.
For example, by clicking factor D the different steps can be investigated:

Expansion of factor D (id = 4) (view):
(1,1) poles [1x4] struct_vander temp [4x7]

temp [4x7] struct_transpose temp [7x4]
temp [7x4] struct_power Factor [7x4]

Finally, the model can be computed using the sdf_nls solver:

[sol,output] = sdf_nls(model, 'Display', 10, 'CGMaxIter', 150, ...
'TolFun', eps^2, 'TolX', eps, 'MaxIter', 350);

Multiple initializations may be required to find an accurate solution.
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TEN

STRUCTURED DATA FUSION: ADVANCED CONCEPTS

A few more advanced modeling concepts are explained in this section. These concepts allow for more dynamical
and/or more compact models. Three concepts are discussed: indexed references, the transform field which
applies transformations to multiple variables in a single line, and the implicit factors options which tries to
automatically create missing factors from variables. The details of these concepts can be found in the full
language specification (Chapter 12).

10.1 Using indexed notations

In the basic introduction to SDF (Chapter 8) we always used named variables, factors and factorizations, e.g.,
model.variables.a , and named references to variables and factors, e.g., model.factors.A = {'a'} . While

this practice makes the model easy to read, it requires many keystrokes and it complicates the adaption of models
afterwards, e.g., if a third-order tensor model is expanded into a fourth-order tensor model.

Internally, all structs are converted to cells, which means that instead of names indices are used. This cell format
is available to the user. For example:

model = struct;
model.variables.a = a;
model.variables.b = b;
model.factors.A = 'a';
model.factors.B = 'b';
model.factorizations.mat.data = T;
model.factorizations.mat.cpd = {'A','B'};

can be rewritten using indexed references as

model = struct;
model.variables.a = a;
model.variables.b = b;
model.factors.A = 1; % refers to variable a
model.factors.B = 2; % refers to variable b
model.factorizations.mat.data = T;
model.factorizations.mat.cpd = 1:2; % refers to factors A (1) and B (2)

We see that both the names and indices of variables and factors can be used to refer to them. The index of the
variable or factor is determined by the order in which the different variables or factors are defined the first time:

model = struct;
model.variables.a = a; % has index 1
model.variables.c = c; % has index 2
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model.variables.a = a2; % still has index 1 (defined a first time before)
model.variables.b = b; % has index 3

The names of the variables, factors and factorizations can even be omitted. In this situation we use indexed
variables, factors or factorizations instead.

model = struct;
model.variables{1} = a;
model.variables{2} = b;
model.factors{1} = 1;
model.factors{2} = 2;
model.factorizations{1}.data = T;
model.factorizations{1}.cpd = 1:2;

Named and indexed referencing can even be mixed, e.g.,

model = struct;
model.variables{1} = a;
model.variables{2} = b;
model.factors.A = 1;
model.factors.B = 2;
model.factorizations{1}.data = T; % a third-order tensor
model.factorizations{1}.cpd = {1, 'A', 'B'}; % == {1,1,2} or {'A','A','B'}

Named references can only be used if the variable or factor being referred to has been named. Within the same
field ( variables , factors or factorizations ) all definitions are either named or indexed. The following
block throws a MATLAB error:

model = struct;
model.variables.a = a;
model.variables{2} = b;

while the following block throws an error or gives a warning depending on the MATLAB version:

model = struct;
model.variables{1} = a;
model.variables.b = b;

If no error is thrown, the model above is the same as
model = struct;
model.variables.b = b;

hence the definition of variable 1 is ignored.

The fact that all fields can be cells, can be used to shorten the code. Consider a regularized CPD of a third-order
tensor 𝒯 of rank 5. In the basic SDF syntax, we have

Uinit = cpd_rnd(size(T), 5);
model = struct;
model.variables.a = Uinit{1};
model.variables.b = Uinit{2};
model.variables.c = Uinit{3};
model.factors.A = 'a';
model.factors.B = 'b';
model.factors.C = 'c';
model.factorizations.tensor.data = T;
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model.factorizations.tensor.cpd = {'A', 'B', 'C'};
model.factorizations.regul.regL2 = {'A', 'B', 'C'};

By exploiting the fact that all fields can be cells, the model above can be rewritten as:

model = struct;
model.variables = cpd_rnd(getsize(T), 5);
model.factors = 1:getorder(T);
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = 1:getorder(T);
model.factorizations.regul.regL2 = 1:getorder(T);

Note that we used getorder(T) instead of 3 . If 𝒯 is a fourth-order tensor, the code block above still works
without the need to alter the code. Instead of getorder(T) the Matlab command ndims(T) can also be
used. The advantage of the former is that it works on full, sparse, incomplete and structured tensors, while the
latter only works for full tensors.

For the factorizations field, there exists an additional shortcut. Apart from a struct or cell, the
factorizations field can also be a struct array. As an example, consider a coupled CPD of two third-order

tensors 𝒮 and 𝒯 which are coupled in the first mode. The usual way of constructing this model is (only relevant
fields are shown):

model.factorizations{1}.data = S;
model.factorizations{1}.cpd = 1:3;
model.factorizations{2}.data = T;
model.factorizations{2}.cpd = [1 4 5];

Using a struct array, the following equivalent specification can be used:

datasets = {S, T};
coupling = {[1 2 3], [1 4 5]};
model.factorizations = struct('data', datasets, 'cpd', coupling);

This syntax can be useful for coupled factorizations that involve many datasets.

10.2 The transform field

In the case of structured factorizations, it often occurs that some factors have the same or a highly similar
structure, i.e., the same transformation is used for multiple factors. This transformation can have the same or
different parameters for each factor. Consider the following nonnegative CPD of a third-order rank-5 tensor 𝒯 :

model = struct;
model.variables.a = rand(size(T, 1), 5);
model.variables.b = rand(size(T, 2), 5);
model.variables.c = rand(size(T, 3), 5);
model.factors.A = {'a', @struct_nonneg};
model.factors.B = {'b', @struct_nonneg};
model.factors.C = {'c', @struct_nonneg};
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

This model can be written more compactly using a transform field:
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model = struct;
model.variables.a = rand(size(T, 1), 5);
model.variables.b = rand(size(T, 2), 5);
model.variables.c = rand(size(T, 3), 5);
model.transform.nonneg = {{'a', 'b', 'c'}, {'A', 'B', 'C'}, @struct_nonneg};
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};

The nonneg transform transforms the variables {'a', 'b', 'c'} into the factors {'A', 'B', 'C'} using
the transformation @struct_nonneg . As can be seen using sdf_check(model, 'print') , three factors A ,
B and C are created. The factor names are often not needed as such: if they are omitted, the variable names

are also used as factor names. Note that if {’A’, ’B’, ’C’} is omitted, the newly created factors have names
a , b and c , and lowercase names should also be used in the last line of the previous model. This can again

be checked using sdf_check(model, 'print') . Using indexing instead of explicit naming, the model can be
simplified further and made more dynamic:

model = struct;
model.variables = cpd_rnd(T, 5, 'Real', @rand);
model.transform{1} = {1:getorder(T), @struct_nonneg};
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = 1:getorder(T);

Similar to variables, factors and factorizations, multiple transforms can be defined by using the struct
( model.transform.t1 = ... ) or the cell ( model.transform{1} = .. ) notation. Also, the factors and
the transform field can be used together in a model, as shown in the following example in which the second
and third factor matrix have polynomials as columns, while the first factor matrix is unconstrained. Without
transform the code is:

model = struct;
model.variables.A = randn(size(T,1), 5); % R = 5
model.variables.coefB = randn(5, d); % d-1 is the degree of the polynomial
model.variables.coefC = randn(5, d); % d-1 is the degree of the polynomial
model.factors{1} = 1; % unconstrained factor A
model.factors{2} = {2, @(z,task) struct_poly(z,task,tb)}; % poly in points tb
model.factors{3} = {3, @(z,task) struct_poly(z,task,tc)}; % poly in points tc
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = 1:3;

Using transform , the code becomes:

model = struct;
model.variables.A = randn(size(T,1), 5); % R = 5
model.variables.coefB = randn(5, d); % d-1 is the degree of the polynomial
model.variables.coefC = randn(5, d); % d-1 is the degree of the polynomial
model.factors{1} = 1; % unconstrained factor A
model.transform{1} = {2:3, @struct_poly, {tb, tc}}; % tb, tc are

% evaluation points
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = 1:3;

Note that there is no need to define an anonymous function @(z,task) struct_poly(...). The second factor
still has evaluation points tb as parameters while the third factor has evaluations points tc . This way many pa-
rameters can easily be passed to the transformations. Consider the following transform (see help struct_poly
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for more information on the different parameters):

model.transform{1} = {1:3, @struct_poly, {t1,t2,t3}, 'chebyshev', {true}};
% which is equivalent to
model.factors{1} = {1, @(z,task) struct_poly(z,task,t1,'chebyshev',true)};
model.factors{2} = {2, @(z,task) struct_poly(z,task,t2,'chebyshev',true)};
model.factors{3} = {3, @(z,task) struct_poly(z,task,t3,'chebyshev',true)};

Hence, cell parameters are distributed if the length of the cell is equal to the number of factors to be created. If
the cell parameter has length one, each factor gets the content of the cell as argument. (Cells with a different
length are not allowed.) All other parameter types are copied for each transformation. It is also possible to chain
transformations:

model.transform{1} = {1:3, @struct_vander, @struct_transpose};

Each transformation can have its own set of parameters.

As shown, multiple variables can easily be transformed into multiple factors using the transform field if the
transformation is the same for all factors. There are some (minor) restrictions regarding naming, however. The
transform field cannot overwrite factors with the same name or index (remember that if no factor names/indices

are specified, the variable names/indices become factor names/indices); multiple transform entries cannot
define the same factor names or indices; and if named (indexed) factors are used, named (indexed) factor references
in the transform field should be used. More details on the syntax of the transform field can be found in the
full language specification (Section 12.6).

10.3 Using implicit factors

It is quite common to have lines like

model.factors.A = 'a';

In these lines the variable is used directly as a factor as no transformation or concatenation of subfactors is
performed. These spurious lines can be avoided by allowing factors to be defined implicitly. This can be done
by setting the model.options.ImplicitFactors = true . When implicit factors are allowed, variables can
be used directly in factorizations, as a factor with the same name is implicitly defined. Consider the following
example:

model = struct;
model.variables.A = rand(10,5);
model.variables.B = rand(11,5);
model.variables.C = rand(12,5);
model.factors.A = 'A';
model.factors.B = 'B';
model.factors.C = 'C';
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A','B','C'};

This model can also be defined by

model = struct;
model.variables.A = rand(10,5);
model.variables.B = rand(11,5);
model.variables.C = rand(12,5);
model.factorizations.tensor.data = T;
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model.factorizations.tensor.cpd = {'A','B','C'};
model.options.ImplicitFactors = true;

No factors with names A , B or C can be found, but variables with these names exist. Therefore, the factors
A , B and C are automatically created. If, for example, a factor with A as name does exist, the latter is used.

The result can be checked using sdf_check(model,'print') . Of course the model can also be defined as

model = struct;
model.variables.A = rand(10,5);
model.variables.B = rand(11,5);
model.variables.C = rand(12,5);
model.factors = 1:3;
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = 1:3;

If some factors are structured, however, the simple line model.factors = 1:3; cannot be used. Implicit factors
are more convenient in this case. As an example, consider a model that involves two unstructured factors A and
C and a nonnegative factor B .

model = struct;
model.variables.A = rand(10,5);
model.variables.B = rand(11,5);
model.variables.C = rand(12,5);
model.factors{2} = {'B', @struct_nonneg};
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = 1:3;
model.options.ImplicitFactors = true;

As implicit factors can be confusing for inexperienced users, this option is turned off by default. The full language
specification (Section Section 12.7.1) explains a method to turn the option on by default. This way the line
model.options.ImplicitFactors is no longer needed in every model definition.

10.4 High accuracy for NLS algorithms

Sometimes accuracy up to machine precision is required. The nonlinear least squares (NLS) type algorithms like
cpd_nls , ll1_nls , lmlra_nls and btd_nls are often a good choice to achieve high accuracy thanks to

their fast convergence in the neighborhood of optima. This means that once the algorithm has found an iterate
close to an optimum, the optimum is found up to machine precision a few iterations later. To get high accuracy
results, the relative function tolerance TolFun and the step size tolerance TolX should be small enough, e.g.,
TolFun = eps^2 and TolX = eps .

10.4.1 Number of CG iterations

If structure is imposed on one or more factors in a decomposition, it may seem that sdf_nls does not always
have this fast convergence property. The reason behind this is rather technical, but the main idea is that underlying
linear systems are not solved accurately enough by the Conjugate Gradients (CG) algorithm, as not enough CG
iterations are performed. By default the maximum number of iterations is limited by CGMaxIter = 15 . Often
the number of iterations for the optimization routine can be significantly reduced if the maximum number of CG
iterations is increased, e.g., CGMaxIter = 50 or CGMaxIter = 100 . Exceptionally, CGMaxIter needs to be
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increased to the number of underlying variables. Increasing CGMaxIter is likely to increase the cost per iteration,
but often the number of iterations of the optimization routines decreases resulting in a net gain.

Instead of increasing CGMaxIter it is also possible to use the sdf_minf solver, as sdf_minf avoids solving
this linear system. When to use sdf_minf or sdf_nls with increased CGmaxIter is problem specific.

As an example, consider the following nonnegative tensor factorization:

R = 5;
T = ful(cpd_rnd([40 50 60], R, 'Real', @rand));
model = struct;
model.variables = cpd_rnd([40 50 60], R);
model.transform = {1:3, @struct_nonneg};
model.factorizations{1}.data = T;
model.factorizations{1}.cpd = 1:3;

[sol,output] = sdf_nls(model, 'Display', 100, 'TolX', eps, 'TolFun', eps^2);

The algorithm prints its progress every 100 iterations:

fval relfval relstep delta rho
=1/2*norm(F)^2 TolFun = 5e-32 TolX = 2e-16

0: 1.05508511e+02 |
1: 1.15611717e+01 | 8.90424274e-01 | 1.52025153e-01 | 8.0584e+00 | 8.9202e-01

100: 4.61577625e-11 | 2.11901351e-14 | 8.20225374e-06 | 1.7762e-01 | 1.0063e+00
200: 1.05870120e-12 | 3.18735863e-16 | 1.07081681e-06 | 1.7762e-01 | 9.9611e-01
300: 4.59820639e-14 | 1.39850518e-17 | 2.29709351e-07 | 1.7762e-01 | 1.0072e+00
400: 2.37198537e-15 | 6.68979657e-19 | 4.45819524e-08 | 1.7762e-01 | 9.8808e-01
500: 1.07873831e-16 | 3.13699148e-20 | 1.09605852e-08 | 1.7762e-01 | 9.9295e-01

As can be seen, machine precision is not attained within the maximum number of iterations. When looking at
the number of CG iterations ( output.cgiterations ) it is clear that they are clipped against the maximum
number of CG iterations:

[min(output.cgiterations) max(output.cgiterations)]

ans =
15 15

When the maximum number of CG iterations is increased to 150, the number of iterations decreases significantly:

sol = sdf_nls(model, 'Display', 10, 'TolX', eps, 'TolFun', eps^2,...
'CGMaxIter', 150);

fval relfval relstep delta rho
=1/2*norm(F)^2 TolFun = 5e-32 TolX = 2e-16

0: 1.05508511e+02 |
1: 1.18695988e+01 | 8.87501030e-01 | 2.14514488e-01 | 1.1371e+01 | 8.8881e-01

10: 8.24322930e-03 | 2.17476982e-05 | 4.20034477e-02 | 1.6564e+00 | 1.0810e+00
20: 1.82692225e-13 | 7.25666009e-13 | 1.03495202e-04 | 1.3658e+00 | 9.9992e-01
30: 1.75577946e-26 | 2.92600487e-27 | 1.38043361e-11 | 1.3658e+00 | 9.9998e-01
34: 1.69764270e-31 | 2.60423058e-32 | 4.11640579e-14 | 1.3658e+00 | 9.9753e-01

Now only 34 iterations are needed to obtain a solution that is accurate up to machine precision, which can be
validated by computing cpderr .
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10.4.2 Incomplete tensors

By default, sdf_nls uses an approximation for the Gramian of the Jacobian in the case of incomplete tensors.
This approximation is fast and works well if the number of missing entries is low and the missing entries are spread
out uniformly across the tensor. When very few entries are known or when the missing entries follow a pattern,
this approximation is no longer valid. This can result in very slow convergence. An exact implementation of the
Gramian of the Jacobian is available that allows fast convergence regardless of the number of missing entries.
This implementation can be selected by using the cpdi factorization type, instead of cpd [15]:

model.factorizations{1}.data = T;
model.factorizations{1}.cpdi = {'A','B','C'};

While the number of iterations in the optimization algorithm usually decreases, each iteration is more expensive.
However, when very few entries are known, there is often a gain.

The remarks about the CG iterations in the previous subsection also hold for the cpdi factorization type.
sdf_minf does not use the Gramian of the Jacobian, and therefore it does not have a problem with incomplete

tensors.
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CHAPTER

ELEVEN

STRUCTURED DATA FUSION: IMPLEMENTING A
TRANSFORMATION

In SDF, structure can be imposed on a factor by transforming variables 𝑧 into a factor 𝑥, i.e., 𝑥 is a function
𝑥 : 𝑧 → 𝑥(𝑧). An example is struct_nonneg in which nonnegativity is imposed by using the transformation
𝑥(𝑧) = 𝑧2 for each entry. This chapter discusses the different elements needed to implement a transformation
and illustrates how the user can implement his or her own transformations. This way new types of structure can
be imposed on factors. All concepts are illustrated by two examples: the implementation of struct_sqrt which
implements a square root constraint, and the implementation of a (simplified) version of struct_poly which
imposes that a factor has polynomial factor vectors.

11.1 Elements in a transformation

Each transformation implements at least three operations or tasks: the function evaluation, the right Jacobian-
vector product and the left Jacobian-vector product. In this section, the global structure of a transformation is
explained, as well as the different tasks. As this is a rather technical section, it can be useful to first read the
examples in Section 11.2.

Each transformation accepts at least two input arguments: the underlying variables z and the task to perform.
Two output arguments are needed: the computed result x which depends on the task, and state (which should
be set to [] if not used). The function definition of a transformation looks like:

function [x,state] = struct_name(z, task)

There are three tasks to be implemented depending on the fields in the task struct:

• ~isempty(task.r) : x is the the right Jacobian-vector product 𝜕𝑥
𝜕𝑧 · 𝑟 in which 𝑟 is task.r .

• ~isempty(task.l) : x is the left Jacobian-vector product ( 𝜕𝑥
𝜕𝑧 )H · 𝑙 + ( 𝜕𝑥

𝜕𝑧 )T · 𝑙 in which 𝑙 is task.l .

• Otherwise ( task can be [] ): x is the function evaluation 𝑥(𝑧).

The different tasks are now discussed separately.

11.1.1 Function evaluation

The transformation returns the function evaluation 𝑥(𝑧) if task is empty, or both task.r and task.l are
empty. To increase the readability, we introduce the variables right and left :
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if nargin < 2, task = []; end
right = ~isempty(task) && isfield(task, 'r') && ~isempty(task.r);
left = ~isempty(task) && isfield(task, 'l') && ~isempty(task.l);

if ~right && ~left
% function evaluation

The input argument z is the variable, in the same format as defined in the model. For example, if a variable a
defined as

model.variables.a = randn(10,3);

and is transformed, then z = a is a matrix of size 10×3. z can also be the output of a previous transformation,
e.g.,

t = 1:10;
model.variables.c = rand(5,3);
model.factors.A = {'c', @(z,task) struct_poly(z,task,t), @struct_nonneg};

For struct_poly , z is the variable c (a 5 × 3 matrix), while for struct_nonneg , z is the output of
struct_poly (a 10 × 5 matrix).

Depending on the transformation, the output x can be a scalar, vector, matrix or tensor. x can also be a cell,
which can be processed by subsequent transformations.

11.1.2 Right Jacobian-vector product

The transformation returns the right Jacobian-vector product if task.r is not empty. task.l is always empty
in this case. This right Jacobian-vector product is only computed in NLS type algorithms. In this task, the
derivative 𝜕𝑥

𝜕𝑧 · 𝑟 is computed, in which 𝑟 is given in task.r . Mathematically, 𝑥, 𝑧 and 𝑟 are vectors of length
𝐹 , 𝑉 and 𝑉 respectively. Suppose 𝐷 = 𝜕𝑥

𝜕𝑧 is an 𝐹 × 𝑉 matrix, then we have 𝑑𝑖𝑗 = 𝜕𝑥𝑖

𝜕𝑧𝑗
. To simplify the code,

task.r is not a vector, but has the same format as the input variable z , while the result x has the same
format as the resulting factor would have if 𝑥(𝑧) was evaluated. In the code of the transformation, the following
lines are added:

elseif right
% compute right Jacobian-vector product

The right Jacobian-vector product can only be computed if the function 𝑥 depends solely on 𝑧, and hence not on
its conjugate 𝑧. If 𝑥 is a function of both 𝑧 and 𝑧, i.e., 𝑥(𝑧, 𝑧), an error should be thrown if the input data is
complex:

elseif right
if ~isreal(z) || isreal(task.r)

error('struct_name:nonanalytic', ['Nonanalytic objective ' ...
'functions are currently not supported in sdf_nls, please ' ...
'use sdf_minf instead.']);

end

11.1.3 Left Jacobian-vector product

The transformation returns the left Jacobian-vector product if task.l is not empty ( task.r is always empty
in this case). This left Jacobian-vector product is computed in all algorithms. In this task, the derivative
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( 𝜕𝑥
𝜕𝑧 )H · 𝑙 + ( 𝜕𝑥

𝜕𝑧 )T · 𝑙 is computed, in which 𝑙 is given. Mathematically, 𝑥, 𝑧 and 𝑙 are vectors of length 𝐹 , 𝑉 and 𝐹

respectively. Suppose 𝐷 = 𝜕𝑥
𝜕𝑧 is an 𝐹 × 𝑉 matrix, then each entry is given by 𝑑𝑖𝑗 = 𝜕𝑥𝑖

𝜕𝑧𝑗
. To simplify the code,

task.l is not a vector, but has the same format as as the output x would have if 𝑥(𝑧) was evaluated. The
result of the derivative x should have the same format as the input variable z . In the code of the transformation,
the following lines are added:

elseif left
% compute left Jacobian-vector product

end

To compute 𝜕𝑥
𝜕𝑧 , 𝑧 is assumed to be constant, while 𝑧 is kept constant when 𝜕𝑥

𝜕𝑧 is computed. Hence, if 𝑥 is only a
function of 𝑧, i.e., 𝑥(𝑧), the derivative w.r.t. 𝑧 is zero. If we have 𝑥(𝑧, 𝑧) both derivatives need to be computed.

11.2 Examples

11.2.1 Implementing struct_sqrt

The transformation struct_sqrt implements the function 𝑓 : R𝐼×𝑅 → R𝐼×𝑅 : 𝑥 =
√

𝑧 in which the square
root is applied entry-wise. Three elements are required for this transformation: the function evaluation, the right
Jacobian-vector product and the left Jacobian-vector product.

The function evaluation is simply x = sqrt(z) . The right and left Jacobian-vector products are given by 𝜕𝑥
𝜕𝑧 · 𝑟

and ( 𝜕𝑥
𝜕𝑧 )H · 𝑙 + ( 𝜕𝑥

𝜕𝑧 )T · 𝑙, respectively. The derivative 𝜕𝑥
𝜕𝑧 is given by 1

2
√

𝑧
. When computing the derivative w.r.t.

𝑧, 𝑧 is kept constant. As 𝑥 does not depend on 𝑧, the derivative 𝜕𝑥
𝜕𝑧 = 0. Hence, the complete code for the

transformation is given by:

function [x,state] = struct_sqrt(z,task)
state = [];
if nargin < 2, task = []; end
right = ~isempty(task) && isfield(task, 'r') && ~isempty(task.r);
left = ~isempty(task) && isfield(task, 'l') && ~isempty(task.l);
if ~right && ~left

x = sqrt(z);
elseif right

x = 1./(2*sqrt(z)).*task.r;
elseif left

x = conj(1./(2*sqrt(z))).*task.l;
end

11.2.2 Implementing struct_poly

The transformation struct_poly imposes polynomial structure on each of the columns of a factor matrix, i.e.,
each entry of the factor 𝑥 (an 𝐼 × 𝑅 matrix) is given by 𝑥𝑖𝑟 = 𝑐𝑟0 + 𝑐𝑟1𝑡𝑖 + 𝑐𝑟2𝑡2

𝑖 + · · · + 𝑐𝑟𝑑𝑡𝑑
𝑖 . The points

𝑡𝑖, 𝑖 = 1, . . . , 𝐼 are fixed. The coefficients 𝑐 (an 𝑅 × (𝑑 + 1) matrix) are the variables 𝑧 (the highest-degree
coefficients 𝑐𝑟𝑑 form the first column).

Again, the different tasks are implemented. The first lines of the transformation are similar to struct_sqrt :

function [x, state] = struct_poly(z, task, t)
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if nargin < 2, task = []; end
right = ~isempty(task) && isfield(task, 'r') && ~isempty(task.r);
left = ~isempty(task) && isfield(task, 'l') && ~isempty(task.l);
state = [];

The function evaluation can be written as a matrix multiplication by using a basis matrix B in which each column
is a power of the point vector t , i.e., x = B*z :

if ~right && ~left
B = bsxfun(@power, t(:), size(z, 2)-1:-1:0);
x = B*z;

The derivative 𝜕𝑥
𝜕𝑧 is simply given by B , hence the right and left Jacobian-vector products are given by

elseif right
B = bsxfun(@power, t(:), size(z, 2)-1:-1:0);
x = B*task.r.';

elseif left
B = bsxfun(@power, t(:), size(z, 2)-1:-1:0);
x = task.l.'*conj(B);

end

11.3 Storing intermediate results

Some transformations require expensive computations, which may depend on the current value of the variables,
but also on extra input parameters that stay constant over all iterations. In the latter case, persistent storage can
be used to store precomputed results, while the state field can be used in the former case. First, the use of
the state field is illustrated for a transformation that implements the square root constraint: struct_sqrt .
Next, the use of the persistent field is illustrated for the polynomial transformation struct_poly .

11.3.1 Using the state field

In the struct_sqrt example, the quantity sqrt(z) and the division 1./(2*sqrt(z)) are computed many
times in each iteration, as the three tasks are performed multiple times per iteration depending on the chosen
optimization algorithm. A property of the optimization-based algorithms used in Tensorlab is that every time a
variable is changed, the function value is computed. In other words, the variable z does not change between
function value computations. Therefore, the variable z seen by the right and left Jacobian-vector products, is the
same as in the last function evaluation. The computation time can hence be reduced by performing computations
depending on z in the function evaluation and by reusing these results in the right and left Jacobian-vector
product computations. The state output field allows the temporary storage of such intermediary results.

The state output is a struct. Each field set during the function evaluation is available under the same name in
the task struct. In this example, a field dz is constructed to store the result 1./(2*sqrt(z)) . To compute
the right and left Jacobian-vector product, this precomputed value is used:

function [x,state] = struct_sqrt(z,task)
state = [];
if nargin < 2, task = []; end
right = ~isempty(task) && isfield(task, 'r') && ~isempty(task.r);
left = ~isempty(task) && isfield(task, 'l') && ~isempty(task.l);
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if ~left && ~right
x = sqrt(z);
state.dz = 1./(2*x);

elseif right
x = task.dz.*task.r;

elseif left
x = conj(task.dz).*task.l;

end

As can be seen, the value of state.dz is only computed when the function is evaluated. As the function
evaluation is always called before the left and right Jacobian-vector products, state should be set in the
function evaluation task. The value of state is ignored in the other calls, hence state can be left empty
( [] ) for the right and left Jacobian-vector products.

11.3.2 Persistent storage

In the previous example, the precomputed value depends on the variable 𝑧. As this variable changes every iteration,
the state needs to be recomputed every iteration. In the struct_poly transformation, the matrix basis B is
computed every function evaluation, but B is independent of the variables. Hence, setting state.B = B every
iteration reduces the computational cost a little, but this still wastes a lot of computation time. Therefore, a
special field is provided: the persistent field. B can be computed in the first call to struct_poly and stored
in state.persistent.B = B . In all subsequent calls, the struct task will contain the field persistent

which contains B as a field. Hence, the transformation can be rewritten as:

function [x, state] = struct_poly(z, task, t)

if nargin < 2, task = []; end
right = ~isempty(task) && isfield(task, 'r') && ~isempty(task.r);
left = ~isempty(task) && isfield(task, 'l') && ~isempty(task.l);

if ~isempty(task) && isfield(task, 'persistent')
B = task.persistent.B;
state = [];

else % not present, compute
B = bsxfun(@power, t(:), size(z, 2)-1:-1:0);
state.persistent.B = B;

end

if ~left && ~right
x = B*z;

elseif right
x = B*task.r.';

elseif left
x = task.l.'*conj(B);

end
end

B is now computed only once. In subsequent iterations B can be loaded from the task.persistent struct
to be used in further computations. Note that state = [] if B has already been computed: there is no need
to pass persistent data as this is done in the background.
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11.3.3 Comparing state and persistent

Setting the state field in the function value call is useful to store intermediate results needed for the right and
left Jacobian-vector products. The state field can be used if the intermediate results depend on the variables
z and possibly on extra input parameters.

The state.persistent field can be used to store precomputed data that depend solely on extra input param-
eters.

11.4 Non-numerical variables

In the previous examples, only numerical values are used as variable 𝑧 and output 𝑥. Cells can be used as well,
which is useful if several variables need to be combined. As an example, consider the struct_poly example
again. Now, instead of taking fixed points t , the evaluation points are considered variables as well, i.e.:

model.variables.z = {rand(5,3), rand(10,1)}; % note this is a cell
model.factors.x = {'z', @struct_poly2};

We reimplement the three tasks. Note that this example is given for illustration purposes only, and that the code
below may not be the best way to implement this kind of structure.

The function evaluation for struct_poly2 is very similar as for struct_poly , only now z is a cell with the
coefficient c = z{1} and the evaluation points t = z{2} :

function [x, state] = struct_poly(z, task, t)
% trivial parts omitted
c = z{1}; t = z{2};
if ~left && ~right

B = bsxfun(@power, t(:), size(c,2)-1:-1:0);
x = B*c;

Note that the persistent field cannot be used here, as t changes every iteration.

For the right Jacobian-vector product, task.r has the same format as the input variable z , i.e., task.r is a
cell of length two. The output x has the same format as the factor. The derivative 𝜕𝑥

𝜕𝑧 = [ 𝜕𝑥
𝜕𝑐 , 𝜕𝑥

𝜕𝑡 ] is multiplied
by [vec (𝑟𝑐)T

, vec (𝑟𝑡)T]T in which 𝑟𝑐 and 𝑟𝑡 are the parts of 𝑟 corresponding to the variables 𝑐 and 𝑡, respectively.
The multiplication can be written as 𝜕𝑥

𝜕𝑐 vec (𝑟𝑐) + 𝜕𝑥
𝜕𝑡 vec (𝑟𝑡). Therefore, the right Jacobian-vector product can

be computed as

elseif right
% derivative w.r.t. c
B = bsxfun(@power, t(:), size(c,2)-1:-1:0);
x = B*task.r{1}.';
% derivative w.r.t. t
cder = [zeros(size(c,1),1),

bsxfun(@times, c(:,1:end-1),size(c,2)-1:-1:1)];
x = x + (B*cder).*task.r{2};

Finally, the left Jacobian-vector product is computed. task.l has the same format as the resulting factor. The
output x should have the same format as the variable z in this case. Following the same reasoning as for the
right Jacobian-vector product, the following result is obtained:
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elseif left
% derivative w.r.t. c
B = bsxfun(@power, t(:), size(c,2)-1:-1:0);
cl = B'*task.l;
% derivative w.r.t. t
cder = [zeros(size(c,1),1),

bsxfun(@times, c(:,1:end-1),size(c,2)-1:-1:1)];
tl = conj(B*cder).*task.l;
x = {cl.', tl};

end

As before, the repeated computations of B and cder can be avoided by computing both during the function
evaluation and using state.B and state.cder to store the results.

The transformations struct_poly and struct_poly2 can be merged. The merged transformation executes
the code for struct_poly2 if z is a cell. Otherwise, the results for struct_poly are returned.
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CHAPTER

TWELVE

STRUCTURED DATA FUSION: SPECIFICATION OF DOMAIN
SPECIFIC LANGUAGE

An extensive, more technical overview of the domain specific language (DSL) to express structured data fusion
(SDF) models is given in this section. The specification allows the user to get insight in how the language works,
enabling him or her to unlock the full potential of the SDF framework.

This chapter is structured as follows. First we give an overview of important definitions w.r.t. naming, referencing
and auto-wrapping. Next the model and its different fields (variables, factors, factorizations, transform and
options) are explained.

12.1 Definitions

To simplify and shorten the specification of the DSL, we first define some frequently used concepts. The following
concepts are explained:

• Named and indexed definitions and references

• Valid references

• Auto-wrapping

12.1.1 Named and indexed definitions

The variables , factors , transform and factorizations fields can be defined in two ways: as a struct
or as a cell. The following definitions are equivalent:

% named definition
model.variables.A = A;
model.variables.B = B;

% indexed definition
model.variables{1} = A;
model.variables{2} = B;

If the field is a struct, it is converted to a cell using struct2cell . This means that the order in which the
variables appear first remains unchanged. Hence the following two blocks are equivalent:

% named definition
model.variables.B = B;
model.variables.A = A;
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model.variables.B = B; % B is already defined, and therefore is still the
% first variable

% indexed definition
model.variables{1} = B;
model.variables{2} = A;

The fields are not sorted and redefining a field (see B ) does not change the order of the fields.

Variables, factors, transforms and factorizations can be defined using names or indexes. References to variables
and factors can also be named or indexed. For example:

% first define named variables
model.variables.A = A;
model.variables.B = B;

% named references
model.factors.f1 = {'A', 'A'};
model.factors.f2 = 'B';

% indexed references (equivalent to the above)
model.factors.f1 = {1, 1};
model.factors.f2 = 2;

% mixing named and index references (also equivalent)
model.factors.f1 = {1, 'A'};
model.factors.f2 = 2;

Named references can only be used if named definitions are used for the variable or factor that is being referred
to. For example:

% indexed definition for variables
model.variables{1} = A;
model.variables{2} = B;
% named definitions for factors, only indexed references to variables can be
% used.
model.factors.A = 1;
model.factors.B = 2;
% indexed definition of factorizations (both named and indexed references)
model.factorizations{1}.regL1 = {'A', 2};

In the remaining part of this section, named and indexed definitions/references are used interchangeably.

12.1.2 Valid references

A valid reference is a named or indexed reference to a named or indexed variable or factor that can be resolved,
i.e., a variable or factor with the given name or index exists, regardless of how it is constructed. Recall that factors
can be constructed using a factors or a transform field, or can be defined implicitly. Named variables or
factors also have indices. As an example, consider

model.factors.F = {'a', 2};

The factor F has two references a and 2. The named reference a is valid if the variables are defined using named
definitions ( model.variables is a struct) and model.variables contains a field with name a . Names are
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case sensitive. The indexed reference 2 is valid if model.variables{2} exists or if model.variables is a
struct and at least two variables are defined. Hence, 2 is a valid reference if length(model.variables) >= 2 .
The same holds for factor references in factorizations. Note that the transform field generates new factors as
if they are defined using the factors field. Also note that the ImplicitFactors option (see Section 12.7.1)
allows factors to be defined implicitly, i.e., if a factor is not defined and if there exists a variable with a matching
name or index, a new factor is created automatically.

12.1.3 Auto-wrapping

The auto-wrapping function automatically adds missing braces {} around content, or calling num2cell if this
can be done unambiguously. Some examples:

model.factors = 1:3;
% is equivalent to
model.factors{1} = {{1}};
model.factors{2} = {{2}};
model.factors{3} = {{3}};

model.factors.A = rand(2,2);
% is equivalent to
model.factors.A = {{rand(2,2)}};

model.factors = {1, @struct_nonneg};
% is equivalent to
model.factors{1} = {{1, @struct_nonneg}};

model.factors{1} = {1, 1; 'a', {'b', @struct_nonneg}};
% is equivalent to
model.factors{1} = {{1}, {1}; {'a'}, {'b', @struct_nonneg}};

model.factorizations{1}.cpd = 1:3;
% is equivalent to
model.factorizations{1}.cpd = {1,2,3};
% but the following is invalid
model.factorizations{1}.cpd = {1:3};

model.factorizations{1}.btd = 1:4;
% is equivalent to
model.factorizations{1}.btd = {1:4};
% is equivalent to
model.factorizations{1}.btd = {1,2,3,4};
% is equivalent to
model.factorizations{1}.btd = {{1,2,3,4}};
% but the following is invalid
model.factorizations{1}.btd = {{1:4}};
% mixing is allowed though:
model.factorizations{1}.btd = {{1,2,3,4}, 5:8};

model.transform = {1:3, 3:5, @struct_nonneg};
% is equivalent to
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model.transform = {{1:3, 3:5, @struct_nonneg}};
% is equivalent to
model.transform{1} = {1:3, 3:5, @struct_nonneg};
% is equivalent to
model.transform{1} = {{1,2,3}, {3,4,5}, @struct_nonneg};

In the examples above, the last lines (excluding the invalid cases) are the internal representations used. All other
formulations facilitate the definition of the models. If in doubt, sdf_check(model, 'print') can be used to
see if the desired model has been constructed.

12.2 The model struct

Each SDF model is defined as a struct (in Matlab’s definition). Five different fields can be defined, some of which
are always obligatory, others are only in some cases obligatory, and some are optional. The five fields are:

• model.variables : always obligatory

• model.factors : obligatory unless the model.transform field is present or implicit factors are used

• model.factorizations : always obligatory

• model.transform : optional

• model.options : optional

In the remaining part of this section, the different fields are discussed.

12.3 The variables field

The model.variables field is a struct or cell defining named or indexed variables, respectively. Here, we only
consider indexed variables as named variables are converted to indexed variables internally. (The names are kept
to be able to resolve named references.) Each variable can be either an array of numerical values, or a cell of
arrays of numerical values.

If named variables are used (and hence model.variables is a struct) the name (constant) cannot be used.

12.4 The factors field

The model.factors field is a struct or cell defining named or indexed factors, respectively. Here, we only
consider indexed factors as named factors are converted to indexed factors internally (while keeping track of the
names for references). Each entry in the cell defines a single factor, and has one of the following forms (after
auto-wrapping):

% one subfactor with variable v1
model.factors{1} = {{v1}};
% two subfactors concatenated column-wise, no transformation
model.factors{1} = {{v1}, {v2}};
% two subfactors concatenated row-wise, with transformation t1
model.factors{1} = {{v1,t1}; {v2}};
% two subfactors concatenated in mode 3, with transformations t1, t2, t3
model.factors{1} = reshape({{v1, t1}, {v2,t1,t2,t3}}, 1,1,2);
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% two subfactors concatenated in mode 3, with transformed constant c1
model.factors{1} = {{v1}, {c1,t1}};

Each factor can be a concatenation of an arbitrary number of subfactors, as long as the dimensions of the
subfactors are compatible, i.e., if the dimensions of the expanded subfactors are compatible for concatenation
using cell2mat (see sdf_check(model, 'print') ). Each subfactor is of the form {v1,t1,t2,...} or
{c1,t1,t2,...} in which v1 is a valid variable reference and c1 is a constant. Each variable reference or

constant can be followed by an arbitrary number of transformations t1 , t2 , etc. Each transformation is a
function handle that accepts two arguments: a variable z and a task struct. If extra parameters are to be
defined, the following can be used:

t1 = @(z,task) struct_name(z,task,param1,param2,...);

All transformations are applied from left to right. For each subfactor, the result of the final transformation should
be a scalar, vector, matrix or tensor.

Constants follow the same rules as variables, i.e., each constant is a scalar, vector, matrix, or tensor, or is a cell of
scalars, vectors, matrices and/or tensors. All transformations defined for constants are applied before the actual
computations start. An alternative syntax for constant subfactors uses the (constant) keyword:

model.factors{1} = {{c1, '(constant)', t1, t2, ..}};

The (constant) keyword is optional if c1 is not a scalar. If c1 is a scalar, it is recognized as a variable
reference if the (constant) keyword is not given.

If implicit factors are allowed and if model.factors is a struct (and hence named factors are used), names of
the form IFx in which x is a number are prohibited.

12.5 The factorizations field

The model.factorizations field defines the different parts of the objective function. These parts can be
factorization or regularization terms. model.transformations is a struct or a cell, each entry being a single
factorization or regularization term. Each such term is a struct with fields depending on the factorization or
regularization type. In general, a factorization looks like

model.factorizations.fac1.data = T;
model.factorizations.fac1.cpd = {f1,f2,f3};

in which f1 , f2 and f3 should be valid named or indexed factor references.

As a special case, model.factorizations can be a struct array as well, e.g.,

T = {rand(10,11,12), randn(12,13,14)};
couplingind = {1:3, 3:5};
model.factorizations = struct('data', T, 'cpd', couplingind);

% is equivalent to
model.factorizations{1}.data = rand(10,11,12);
model.factorizations{1}.cpd = 1:3;
model.factorizations{2}.data = rand(12,13,14);
model.factorizations{2}.cpd = 3:5;

This only works if numel(model.factorizations) > 1 .
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12.5.1 Factorization types

Seven different factorization types are currently defined: four factorizations ( cpd (and a cpdi variant), btd ,
ll1 and lmlra ) and three regularizations ( regL0 , regL1 and regL2 ). Each factorization defines a field

with the factorization or regularization type as name, and a (possibly nested) cell of factor references as values.
Apart from the factorization type, a second field data is required for the factorizations, and optional for the
regularizations. The data has as value the tensor to be decomposed or the value to be regularized to.

The different factorization and regularization types are now discussed. The shorthand notation ℳtype(A, . . .) is
used to define a factorization of type type involving factors A , etc.

• cpd : a term 1
2 ||𝒯 − ℳCPD(A, B, . . .)||2F is added to the objective function. The references in the cpd

field indicate which factors are involved in this term. The data field defines the tensor 𝒯 . For example:

model.factorizations{1}.cpd = {'A','B',...};

In the case 𝒯 is an incomplete tensor, a more accurate algorithm can be selected if an NLS based solver is
used. For SDF models this algorithm is chosen by using the cpdi factorization instead of cpd , e.g.,

model.factorizations{1}.cpdi = {'A','B',...};

• btd : a term 1
2 ||𝒯 − ℳBTD(A1, B1, C1, 𝒮1, A2, B2, C2, 𝒮2, . . .)||2F is added to the objective function.

The references in the btd field indicate which factors are involved in this term. The btd field is a nested
cell of factor references (after auto-wrapping), e.g.,

model.factorizations{1}.btd = {{'A1','B1','C2','S1'},{'A2','B2','C2','S2'}};

The data field defines the tensor 𝒯 .

• ll1 : a term 1
2 ||𝒯 − ℳLL1(A, B, C)||2F is added to the objective function. The references in the ll1

field indicate which factors are involved in this term. The LL1 term only accepts factors in the CPD format,
e.g.,

model.factorizations{1}.ll1 = {'A', 'B', 'C'};
model.factorizations{1}.L = L;

The extra field L = [L1,L2,...,LR] is obligatory. A and B have sum(L) columns, and C has
length(L) columns. The data field defines the tensor 𝒯 .

• lmlra : a term 1
2 ||𝒯 − ℳLMLRA(A, B, C, . . . , 𝒮)||2F is added to the objective function. The references in

the lmlra field indicate which factors are involved in this term. The lmlra field is a cell, or a cell of
cells (after auto-wrapping), e.g.,

model.factorizations{1}.lmlra = {'A','B','C','S'}; % or
model.factorizations{1}.lmlra = {{'A','B','C','S'}};

Note that in contrast to other LMLRA routines such as lmlra_rnd and lmlra and in contrast to the
structured tensor format, the correct format here is {A,B,C,S} and not {{A,B,C},S} . The data field
defines the tensor 𝒯 .

In the case of regularization types, define ℳ(A) = ||vec (A)||0 for type regL0 , ℳ(A) = 1
2 ||vec (A)||1 for type

regL1 and 1
2 ℳ(A) = ||A||2F for type regL2 , in which A can be a scalar, vector, matrix or tensor. We then

have (replace reg by regL0 , regL1 or regL2 ):

• ℳ(A) can be modeled as

12.5. The factorizations field 126



Tensorlab User Guide, Release 3.0

model.factorizations.regterm.reg = {'A'};

• (ℳ(A) + ℳ(B)) can be modeled as

model.factorizations.regterm.reg = {'A', 'B'};

• (ℳ(1 − A) + ℳ(2 − B)) can be modeled as

model.factorizations.regterm.data = {ones(size(A)), ones(size(B))*2};
model.factorizations.regterm.reg = {'A', 'B'};

In the case of L0 regularization, a smoothed approximation of the L0 norm is used for computational reasons:
‖vec (A) ‖0 is approximated by

∑︀𝐼
𝑖=1 1 − exp(− 𝑎2

𝑖

𝜎2 ) with 𝐼 the number of entries in A [39]. The parameter 𝜎

can be a scalar constant or a function of the iteration k and the cell of regularized factors x . The value can
be set using the sigma field:

model.factorizations.myreg.regL0 = 'A';
model.factorizations.myreg.sigma = 0.01; % (the default), or
model.factorizations.myreg.sigma = @(k,x) 0.01*frob(x{1}); % x = cell of factors

For all the cases above, sdf_check(model) (which is automatically called before all computational routines)
checks if the given data and factors are consistent, i.e., if the assumptions for the model or type hold, and match
with the provided data. For example, for the CPD all factors should be matrices with exactly 𝑅 columns, and
the number of rows of each factor should match the dimension of the data in the corresponding mode. It is
recommended to run sdf_check(model, 'print') as this signals potential syntax and consistency errors.

Internally, the different fields in a factorization are redefined. The type field contains a string with the factor-
ization type, the factors field contains the factor references. The original field, e.g., cpd = 1:3 , is removed.
For example:

model.factorizations{1}.myfac.data = T;
model.factorizations{1}.myfac.cpd = {1,2,3};
% becomes
model.factorizations{1}.myfac.data = T;
model.factorizations{1}.myfac.type = 'cpd';
model.factorizations{1}.myfac.factors = {1,2,3};

12.5.2 Defining weights

When different datasets are coupled or regularization terms are added, it is often needed to give terms a weight.
For example:

min
A,B,C

𝜆1

2 ||𝒯 − ℳCPD(A, B, C)||2F + 𝜆2

2 ||𝐴||2F + 𝜆3

2 (||𝐵||1 + ||𝐶||1)

The weights 𝜆𝑖 are often called hyperparameters. Here, the term weight is used. The weights can be set as
follows

model = struct;
% definition of variables and factors omitted
model.factorizations.tensor.data = T;
model.factorizations.tensor.cpd = {'A', 'B', 'C'};
model.factorizations.tensor.weight = lambda1;
model.factorizations.regA.regL2 = 'A';
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model.factorizations.regA.weight = lambda2;
model.factorizations.regBC.regL1 = {'B', 'C'};
model.factorizations.regBC.weight = lambda3;

or can be set as an option of the computational routine, e.g.:

sdf_nls(model, 'Weight', [lambda1, lambda2, lambda3]);

If weights are provided to both the model and the computational routine, the latter weights take precedence.
If weights are provided solely through the model, and some factorizations do not define a weight, weight is
assumed to be 1 .

Instead of absolute weights, it is possible to define relative weights using the relweight field of a factorization
or the RelWeights option of the computational routine. Relative weights 𝜌𝑖 are translated into absolute weights
using the following formula:

𝜆𝑖 = 2 𝜌𝑖∑︀
𝑗 𝜌𝑗

1
𝑁𝑖

in which 𝑁𝑖 is the number of entries in a tensor Ti , i.e., Ni = prod(getsize(Ti)) . If Ti is incomplete,
then Ni = length(Ti.val) . For regularization terms, Ni = sum(cellfun(@numel, f)) in which f is the
cell of all expanded factors to be regularized by regularization term i .

In the case weights are provided by the model, absolute weights (the weight field) and relative weights (the
relweight field) cannot be combined, i.e., if one factorization defines the field weight it cannot define
relweight and no other factorization can define relweight .

12.5.3 Providing extra information

Some computational routines accept extra information provided by the model to speed up computations. Currently,
the ccpd_nls and ccpd_minf routines exploit symmetry if symmetry is detected or if a dataset is explicitly
declared symmetric using the issymmetric field. The example below exploits the symmetry between the first
and second mode of T .

model = struct;
model.variables = {A, B};
model.factors{1} = {{1}};
model.factors{2} = {{2}};
model.factorizations{1}.data = T;
model.factorizations{1}.cpd = {1,1,2};
model.factorizations{1}.issymmetric = true;

Ures = ccpd_nls(model);

The cpd field defines the type of symmetry.

12.6 The transform field

The model.transform field facilitates the creation of multiple factors having a similar structure. Using a single
line of code, multiple variables can be transformed using the same transformation. The transformations do not
necessarily have the same parameters.
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Consider the following example. Each column in factor matrix 1 is a polynomial evaluated in points t1 . Similarly
each column in factor matrix 2 is a polynomial evaluated in points t2 , and the same holds for factor matrix 3.
Without the transform field, this is written as:

model.factors{1} = {1, @(z,task) struct_poly(z, task, t1)};
model.factors{2} = {2, @(z,task) struct_poly(z, task, t3)};
model.factors{3} = {3, @(z,task) struct_poly(z, task, t3)};

The transform field allows the code block above to be rewritten as

model.transform{1} = {1:3, @struct_poly, {t1, t2, t3}};

Both code fragments result in exactly the same model, as the transform fields are converted to factors by
the DSL parser sdf_check . If all points sets are the same, i.e., if t1 = t2 = t3 = t , this can be further
simplified as

model.transform{1} = {1:3, @struct_poly, t};

The transform field should be a struct or a cell with different transformations. (In contrast to variables
and factors, the names of the transformations do not have a meaning.) A transform should have the following
structure:

% as a struct
model.transform.a = {varrefs, factrefs, func1, args1, func2, args2, ...};
% or as a cell
model.transform{1} = {varrefs, factrefs, func1, args1, func2, args2, ...};

The entry varrefs contains references to variables, either indexed or named. The entry factrefs contains
the indices or names of the factors to be created as a result of the transformations func1 , func2 , etc. This
entry is optional. If omitted, factrefs = varrefs . An arbitrary number of transformations func1 , func2
can be defined (including zero transformations). Each transformation can have an arbitrary number of parameters
(including zero), separated by commas. For example, if func1 does not require any parameter, and func2
requires two, the code is as follows:

model.transform{1} = {varrefs, factrefs, func1, func2, param1, param2};

In the remaining part of this subsection, different restrictions are outlined.

• varrefs : variable references should be valid references to defined variables. If factrefs is omitted, the
rules for factrefs also apply for varrefs .

• factrefs : factor references should be valid references to undefined factors. A number of additional rules
apply:

– All entries of the cell factrefs (after auto-wrapping) should be either integers or strings. Mixing
named and indexed references is not allowed.

– If model.factors is defined, and named factors are used, then named references should be used for
factrefs as well. If indexed factors are used, indexed references should be used for factrefs .

– All references in factrefs should point to non-existing factors to prevent overwriting previously
defined factors. Factors can be defined previously using model.factors (this field is always pro-
cessed before model.transform ), or by previous transforms. This also means that all references in
factrefs should be unique.

– The number of references in varrefs should be equal to the number of references in factrefs .
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– If named references are used in factrefs the list of factors is created as follows. First the fac-
tors defined using the factors field are added. Then the factors created by the first transform
model.transform{1} are added in the order defined by factrefs . Next the factors created by

the second transform model.transform{2} are added, and so on. This order is important if indexed
references are used in the factorizations field.

• func : each transformation should be a function handle to a valid transformation, e.g., struct_xxx in
which xxx can be any transformation defined in Tensorlab. func should accept two + 𝑁 arguments in
which 𝑁 is the number of extra parameters.

• arg : arguments, or parameters, of the transformations. Each created factor can have a different parameter
value for a transformation. How the parameters are distributed to the factors depends on the type of the
parameter:

– if arg is not a cell, every created factor gets the same value for the parameter.

– if arg is a cell of length 1, every created factor gets the same value for the parameter, being arg{1} .
(Additional braces may be necessary depending on the intended result. For example, to pass a cell
{1,2} it has to be wrapped: {{1,2}} .)

– if arg is a cell with length length(factrefs) (or length(varrefs) if factrefs is omitted),
the 𝑛th factor gets as parameter the value arg{n} .

– if arg is a cell of a different length, an error is thrown. If one intends to have this cell as a parameter
for all factors, arg should be replaced by {arg} such that the length 1 case applies.

12.7 The options field

The model.options field can be used to set additional options to allow or disallow certain language constructs.
The field model.options is a struct with case-sensitive fields defining the option names. Currently, one option
can be defined:

• model.options.ImplicitFactors can be used to allow ( true ) or disallow ( false ) the use of implicit
factors. The default is false .

The options can be permanently set to a value chosen by the user. If a file tensorlabsettings.mat is
on the search path, this file is loaded by sdf_check . All fields in the sdfoptions struct (if present
in the file) are used automatically. Hence, if sdfoptions.ImplicitFactors = true , the default value
for model.options.ImplicitFactors is set to true. If an option is defined in model.options and
sdfoptions , the value provided by model.options takes precedence.

12.7.1 Implicit factors

If implicit factors are allowed, variables can be used directly in factorizations. For example, consider the following:

model = struct;
model.variables = {rand(4,3), rand(5,3)};
model.factors{2} = 2;
model.factorizations{1}.data = rand(4,4,5);
model.factorizations{1}.cpd = {1,1,2};
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If sdf_check(model) is called, an error is thrown as factor 1 is not defined ( model.factors{1} is empty). If
implicit factors are allowed, the DSL parser sdf_check attempts to create all missing factors by using variables
with the same reference. Hence, in the example above, model.variables{1} can be used as a replacement
for model.factors{1} . Therefore, sdf_check creates the new factor matrix 1 as variable 1, i.e., as if the
following had been written:

model = struct;
model.variables = {rand(4,3), rand(5,3)};
model.factors{1} = 1;
model.factors{2} = 2;
model.factorizations{1}.data = rand(4,4,5);
model.factorizations{1}.cpd = {1,1,2};

Note that implicit factors are only created in the last phase of the DSL parsing, i.e., after model.factors has
been checked, and after all transforms in model.transform have been converted to factors. If named factors
are used, the new implicitly defined factors are added after the already defined factors, in the order in which they
occur in model.factorizations . If indexed variables and named factors are used, the newly created factor
has as name IFx with x the index of the variable to which is referred in the factorization. Note that IFx is
only created when needed, so it cannot be referenced before it is created. For example, the following model is
invalid:

model = struct;
model.variables = cpd_rnd([10 11], 5);
model.factors.A = 1;
model.factorizations{1}.data = randn(10,11,11);
model.factorizations{1}.cpd = {1, 'IF2', 'IF2'};
model.options.ImplicitFactors = true;
sdf_check(model, 'print') % throws unknown factor error

The factors IF2 cannot be resolved because no factor or variable with the name IF2 is known. The following
model is valid though:

model = struct;
model.variables = cpd_rnd([10 11], 5);
model.factors.A = 1;
model.factorizations{1}.data = randn(10,11,11);
model.factorizations{1}.cpd = {1, 2, 'IF2'};
model.options.ImplicitFactors = true;
sdf_check(model, 'print')

Now sdf_check creates a factor IF2 when the reference 2 is encountered. When the reference IF2 is
processed, this factor already exists and can therefore be resolved.
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CHAPTER

THIRTEEN

COMPLEX OPTIMIZATION

Optimization problems

An integral part of Tensorlab comprises optimization of real functions in complex variables [7, 8]. Tensorlab offers
algorithms for complex optimization that solve unconstrained nonlinear optimization problems of the form

minimize
z ∈C𝑛

𝑓(z, z), (13.1)

where 𝑓 : C𝑛 → R is a smooth function (cf. minf_lbfgs , minf_lbfgsdl and minf_ncg ) and nonlinear least
squares problems of the form

minimize
z ∈C𝑛

1
2‖ℱ(z, z)‖2

𝐹 , (13.2)

where ‖ · ‖𝐹 is the Frobenius norm and ℱ : C𝑛 → C𝐼1×···×𝐼𝑁 is a smooth function that maps 𝑛 complex variables
to

∏︀
𝐼𝑛 complex residuals (cf. nls_gndl , nls_gncgs and nls_lm ). For nonlinear least squares problems,

simple bound constraints of the form

minimize
z ∈C𝑛

1
2‖ℱ(z, z)‖2

𝐹

subject to Re{l} ≤ Re{z} ≤ Re{u}
Im{l} ≤ Im{z} ≤ Im{u}

are also supported (cf. nlsb_gndl ). Furthermore, when a real solution z ∈ R𝑛 is sought, complex optimization
reduces to real optimization and the algorithms are computationally equivalent to their real counterparts.

Prototypical example

Throughout this section, we will use the Lyapunov equation

𝐴 · 𝑋 + 𝑋 · 𝐴H + 𝑄 = 0,

which has important applications in control theory and model order reduction, as a prototypical example. In this
matrix equation, the matrices 𝐴, 𝑄 ∈ C𝑛×𝑛 are given and the objective is to compute the matrix 𝑋 ∈ C𝑛×𝑛. Since
the equation is linear in 𝑋, there exist direct methods to compute 𝑋. However, these are relatively expensive,
requiring 𝑂(𝑛6) floating point operations (flop) to compute the solution. Instead, we will focus on a nonlinear
extension of this equation to low-rank solutions 𝑋, which enables us to solve large-scale Lyapunov equations.

From here on, 𝑋 is represented as the matrix product 𝑈 · 𝑉 , where 𝑈 ∈ C𝑛×𝑘, 𝑉 ∈ C𝑘×𝑛 (𝑘 < 𝑛). In the
framework of (13.1) and (13.2), we define the objective function and residual function as

𝑓lyap(𝑈, 𝑉 ) := 1
2‖ℱlyap(𝑈, 𝑉 )‖2

𝐹
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and

ℱlyap(𝑈, 𝑉 ) := 𝐴 · (𝑈 · 𝑉 ) + (𝑈 · 𝑉 ) · 𝐴H + 𝑄,

respectively.

Note: Please note that this example serves mainly as an illustration and that computing a good low-rank
solution to a Lyapunov equation proves to be quite difficult in practice due to an increasingly large amount
of local minima as 𝑘 increases.

13.1 Complex derivatives

13.1.1 Pen & paper differentiation

Scalar functions

To solve optimization problems of the form (13.1), many algorithms require first-order derivatives of the real-
valued objective function 𝑓 . For a function of real variables 𝑓𝑅 : R𝑛 → R, these derivatives can be captured in
the gradient 𝜕𝑓𝑅

𝜕x . For example, let

𝑓𝑅(x) := sin(xTx + 2xTa)

for a, x ∈ R𝑛, then its gradient is given by

𝑑𝑓𝑅

𝑑x = cos(xTx + 2xTa) · (2x + 2a).

Things get more interesting for real-valued functions of complex variables. Let

𝑓(z) := sin(zTz + (z + z)Ta),

where z ∈ C𝑛 and an overline denotes the complex conjugate of its argument. It is clear that 𝑓(x) ≡ 𝑓𝑅(x) for
x ∈ R𝑛 and hence 𝑓 is a generalization of 𝑓𝑅 to the complex plane. Because 𝑓 is now a function of both z and
z, the limit limh→0

𝑓(z+h)−𝑓(z)
h no longer exists in general and so it would seem a complex gradient does not

exist either. In fact, this only tells us the function 𝑓 is not analytic in z, i.e., its Taylor series in z alone does not
exist. However, it can be shown that 𝑓 is analytic in z and z as a whole, meaning 𝑓 has a Taylor series in the
variables z𝐶 :=

[︀
zT zT

]︀T with a complex gradient

𝑑𝑓

𝑑z𝐶
=

⎡⎢⎢⎣
𝜕𝑓

𝜕z
𝜕𝑓

𝜕z

⎤⎥⎥⎦ ,

where 𝜕𝑓
𝜕z and 𝜕𝑓

𝜕z are the cogradient and conjugate cogradient, respectively. The (conjugate) cogradient is a
Wirtinger derivative and is to be interpreted as a partial derivative of 𝑓 with respect to the variables z (z), while
treating the variables z (z) as constant. For the example above, we have

𝜕𝑓

𝜕z = cos(zTz + (z + z)Ta) · (z + a)

𝜕𝑓

𝜕z = cos(zTz + (z + z)Ta) · (z + a).

First, we notice that 𝜕𝑓
𝜕z = 𝜕𝑓

𝜕z , which holds for any real-valued function 𝑓(z, z). A consequence is that any
algorithm that optimizes 𝑓 will only need one of the two cogradients, since the other is just its complex conjugate.
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Second, we notice that the cogradients evaluated in real variables z ∈ R𝑛 are equal to the real gradient 𝑑𝑓𝑅

𝑑x up
to a factor 2. Taking these two observations into account, the unconstrained nonlinear optimization algorithms
in Tensorlab require only the scaled conjugate cogradient

g(z) := 2𝜕𝑓

𝜕z ≡ 2𝜕𝑓

𝜕z

and can optimize 𝑓 over both z ∈ C𝑛 and z ∈ R𝑛.

Vector-valued functions

To solve optimization problems of the form (13.2), first-order derivatives of the vector-valued, or more generally
tensor-valued, residual function ℱ are often required. For a tensor-valued function ℱ : R𝑛 → R𝐼1×···×𝐼𝑁 , these
derivatives can be captured in the Jacobian 𝜕vec(ℱ)

𝜕xT . For example, let

ℱ𝑅(x) :=
[︂
sin(xTx) xTb

xTa cos(xTx)

]︂
for a, b, x ∈ R𝑛, then its Jacobian is given by

𝑑vec (ℱ𝑅)
𝑑xT

=

⎡⎢⎢⎣
cos(xTx) · (2xT)

aT

bT

− sin(xTx) · (2xT)

⎤⎥⎥⎦ .

But what happens when we allow ℱ : C𝑛 → C𝐼1×···×𝐼𝑁 ? For example,

ℱ(z) :=
[︂
sin(zTz) zTb

zTa cos(zTz)

]︂
,

where z ∈ C𝑛 could be a generalization of ℱ𝑅 to the complex plane. Following a similar reasoning as for scalar
functions 𝑓 , we can define a Jacobian and conjugate Jacobian as 𝜕vec(ℱ)

𝜕zT and 𝜕vec(ℱ)
𝜕zT , respectively. For the

example above, we have

𝜕vec (ℱ)
𝜕zT

=

⎡⎢⎢⎣
cos(zTz) · (2zT)

0T

bT

− sin(zTz) · zT

⎤⎥⎥⎦ and 𝜕vec (ℱ)
𝜕zT =

⎡⎢⎢⎣
0T

aT

0T

− sin(zTz) · zT

⎤⎥⎥⎦ .

Because ℱ maps to the complex numbers, it is no longer true that the conjugate Jacobian is the complex conjugate
of the Jacobian. In general, algorithms that solve (13.2) require both the Jacobian and conjugate Jacobian. In
some cases only one of the two Jacobians is required, e.g., when ℱ is analytic in z, which implies 𝜕vec(ℱ)

𝜕zT ≡ 0.
Tensorlab offers nonlinear least squares solvers for both the general nonanalytic case and the latter analytic case.

Numerical differentiation

Real scalar functions (with the 𝑖-trick)

The real gradient can be numerically approximated with deriv using the so-called 𝑖-trick [9]. For example,
define the scalar functions

𝑓1(𝑥) := 10−20

1 − 103𝑥
𝑓2(x) := sin(xTa)3 𝑓3(𝑋, 𝑌 ) := arctan(trace(𝑋T · 𝑌 )),
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where 𝑥 ∈ R, a, x ∈ R𝑛 and 𝑋, 𝑌 ∈ R𝑛×𝑛. Their first-order derivatives are

𝑑𝑓1

𝑑𝑥
= 10−17

(1 − 103𝑥)2
𝑑𝑓2

𝑑x = 3 sin(xTa)2 cos(xTa) · a

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑓3

𝜕𝑋
= 1

1+trace(𝑋T·𝑌 )2 · 𝑌

𝜕𝑓3

𝜕𝑌
= 1

1+trace(𝑋T·𝑌 )2 · 𝑋

.

An advantage of using the 𝑖-trick is that it can compute first-order derivatives accurately up to the order of
machine precision. The disadvantages are that this requires an equivalent of about 4 (real) function evaluations
per variable (compared to 2 for finite differences) and that certain requirements must be met. First, only the real
gradient can be computed, meaning the gradient can only be computed where the variables are real. Second,
the function must be real-valued when evaluated in real variables. Third, the function must be analytic on the
complex plane. In other words, the function may not be a function of the complex conjugate of its argument. For
example, the 𝑖-trick can be used to compute the gradient of the function @(x)x.'*x , but not of the function
@(x)x'*x because the latter depends on x. As a last example, note that @(x)real(x) is not analytic in

𝑥 ∈ C because it can be written as @(x)(x+conj(x))/2 .

Choosing a as ones(size(x)) in the example functions above, the following example uses deriv to compute
the real gradient of these functions using the 𝑖-trick:

% Three test functions.
f1 = @(x)1e-20/(1-1e3*x);
f2 = @(x)sin(x.'*ones(size(x)))^3;
f3 = @(XY)atan(trace(XY{1}.'*XY{2}));

% Their first-order derivatives.
g1 = @(x)1e-17/(1-1e3*x)^2;
g2 = @(x)3*sin(x.'*ones(size(x)))^2*cos(x.'*ones(size(x)))*ones(size(x));
g3 = @(XY){1/(1+trace(XY{1}.'*XY{2})^2)*XY{2}, ...

1/(1+trace(XY{1}.'*XY{2})^2)*XY{1}};

% Approximate the real gradient with the i-trick and compute its relative error.
x = randn;
relerr1 = abs(g1(x)-deriv(f1,x))/abs(g1(x))
x = randn(10,1);
relerr2 = norm(g2(x)-deriv(f2,x))/norm(g2(x))
XY = {randn(10),randn(10)};
relerr3 = cellfun(@(a,b)frob(a-b)/frob(a),g3(XY),deriv(f3,XY))

In Tensorlab, derivatives of scalar functions are returned in the same format as the function’s argument. Notice
that f3 is function of a cell array XY , containing the matrix 𝑋 in XY{1} and the matrix 𝑌 in XY{2} . In
similar vein, the output of deriv(f3,XY) is a cell array containing the matrices 𝜕𝑓3

𝜕𝑋 and 𝜕𝑓3
𝜕𝑌 . Often, this allows

the user to conveniently write functions as a function of a cell array of variables (containing vectors, matrices or
tensors) instead of coercing all variables into one long vector which must then be disassembled in the respective
variables.

Scalar functions (with finite differences)

If the conditions for the 𝑖-trick are not satisfied, or if a scaled conjugate cogradient is required, an alternative is
using finite differences to approximate first-order derivatives. In both cases, the finite difference approximation
can be computed using deriv(f,x,[],'gradient') . As a first example, we compute the relative error of the
finite difference approximation of the real gradient of 𝑓1, 𝑓2 and 𝑓3:
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% Approximate the real gradient with finite differences and compute its relative error.
x = randn;
relerr1 = abs(g1(x)-deriv(f1,x,[],'gradient'))/abs(g1(x))
x = randn(10,1);
relerr2 = norm(g2(x)-deriv(f2,x,[],'gradient'))/norm(g2(x))
XY = {randn(10),randn(10)};
relerr3 = cellfun(@(a,b)frob(a-b)/frob(a),g3(XY),deriv(f3,XY,[],'gradient'))

If 𝑓(z) is a real-valued scalar function of complex variables, deriv can compute its scaled conjugate cogradient
g(z). For example, let

𝑓(z) := aT(z + z) + log(zHz) g(z) := 2𝜕𝑓

𝜕z ≡ 2𝜕𝑓

𝜕z = 2 · a + 2
zHz · z,

where a ∈ R𝑛 and z ∈ C𝑛. Since 𝑓 is real-valued and z is complex, calling deriv(f,z) is equivalent to
deriv(f,z,[],'gradient') and uses finite differences to approximate the scaled conjugate cogradient. In the

following example a is chosen as ones(size(z)) and the relative error of the finite difference approximation of
the scaled conjugate cogradient g(z) is computed:

% Approximate the scaled conjugate cogradient with finite differences
% and compute its relative error.
f = @(z)ones(size(z)).'*(z+conj(z))+log(z'*z);
g = @(z)2*ones(size(z))+2/(z'*z)*z;
z = randn(10,1)+randn(10,1)*1i;
relerr = norm(g(z)-deriv(f,z))/norm(g(z))

Note: In case of doubt, use deriv(f,z,[],'gradient') to compute the scaled conjugate cogradient.
Running deriv(f,z) will attempt to use the 𝑖-trick when z is real, which can be substantially more
accurate, but should only be applied when f is analytic.

Real vector-valued functions (with the 𝑖-trick)

Analogously to scalar functions, the real Jacobian of tensor-valued functions can also be numerically approximated
with deriv using the 𝑖-trick. Take for example the following matrix-valued function

ℱ1(x) :=
[︂
log(xTx) 0

2aTx sin(xTx)

]︂
,

where a, x ∈ R𝑛, and its real Jacobian

𝐽1(x) := 𝑑vec (ℱ1)
𝑑xT

= 2

⎡⎢⎢⎣
1

xTx · xT

aT

0
cos(xTx) · xT

⎤⎥⎥⎦ .

Set a equal to ones(size(x)) . Since each entry in ℱ1(x) is real-valued and not a function of x, we can
approximate the real Jacobian 𝐽1(x) with the 𝑖-trick:

% Approximate the Jacobian of a tensor-valued function with the i-trick
% and compute its relative error.
F1 = @(x)[log(x.'*x) 0; 2*ones(size(x)).'*x sin(x.'*x)];
J1 = @(x)2*[1/(x.'*x)*x.'; ones(size(x)).'; zeros(size(x)).'; cos(x.'*x)*x.'];
x = randn(10,1);
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relerr1 = frob(J1(x)-deriv(F1,x))/frob(J1(x))

Analytic vector-valued functions (with finite differences)

The Jacobian of an analytic tensor-valued function ℱ(z) can be approximated with finite differences by calling
deriv(F,z,[],'Jacobian') . Functions that are analytic when their argument is real, may no longer be

analytic when their argument is complex. For example, ℱ(z) :=
[︀
zHz Re{z}Tz

]︀
is not analytic in z ∈ C𝑛

because it depends on z, but is analytic when z ∈ R𝑛. An example of a function that is analytic for both real and
complex z is the function ℱ1(z). The following two examples compute the relative error of the finite differences
approximation of the Jacobian 𝐽1(x) in a real vector x:

% Approximate the Jacobian of an analytic tensor-valued function
% with finite differences and compute its relative error.
x = randn(10,1);
relerr1 = frob(J1(x)-deriv(F1,x,[],'Jacobian'))/frob(J1(x))

and the relative error of the finite differences approximation of 𝐽1(z) in a complex vector z:

% Approximate the Jacobian of an analytic tensor-valued function
% with finite differences and compute its relative error.
z = randn(10,1)+randn(10,1)*1i;
relerr1 = frob(J1(z)-deriv(F1,z,[],'Jacobian'))/frob(J1(z))

Nonanalytic vector-valued functions (with finite differences)

In general, a tensor-valued function may be function of its argument and its complex conjugate. The matrix-valued
function

ℱ2(𝑋, 𝑌 ) :=
[︂
log(trace(𝑋H · 𝑌 )) 0

aT(𝑋 + 𝑋)a aT(𝑌 − 𝑌 )a

]︂
,

where a ∈ R𝑛 and 𝑋, 𝑌 ∈ C𝑛×𝑛 is an example of such a nonanalytic function because it depends on 𝑋, 𝑌 and
𝑋, 𝑌 . Its Jacobian and conjugate Jacobian are given by

𝐽2(𝑋, 𝑌 ) := 𝜕vec (ℱ2)
𝜕

[︀
vec (𝑋)T vec (𝑌 )T]︀ =

⎡⎢⎢⎣
0 1

trace(𝑋H·𝑌 ) · vec
(︀
𝑋

)︀T

(a ⊗ a)T 0
0 0
0 (a ⊗ a)T

⎤⎥⎥⎦

𝐽𝑐
2(𝑋, 𝑌 ) := 𝜕vec (ℱ2)

𝜕
[︁
vec

(︀
𝑋

)︀T vec
(︀
𝑌

)︀T
]︁ =

⎡⎢⎢⎣
1

trace(𝑋H·𝑌 ) · vec (𝑌 )T 0
(a ⊗ a)T 0

0 0
0 −(a ⊗ a)T

⎤⎥⎥⎦ ,

respectively. For a nonanalytic tensor-valued function ℱ(z), deriv(F,z,[],'Jacobian-C') computes a finite
differences approximation of the complex Jacobian[︂

𝜕vec (ℱ)
𝜕zT

𝜕vec (ℱ)
𝜕zT

]︂
,

comprising both the Jacobian and conjugate Jacobian. The complex Jacobian of ℱ2(𝑋, 𝑌 ) is the matrix[︀
𝐽2(𝑋, 𝑌 ) 𝐽𝑐

2(𝑋, 𝑌 )
]︀
. In the following example a is equal to ones(length(z{1})) and the relative error

of the complex Jacobian’s finite differences approximation is computed:
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% Approximate the complex Jacobian of a nonanalytic tensor-valued function
% with finite differences and compute its relative error.
F2 = @(z)[log(trace(z{1}'*z{2})) 0; ...

sum(sum(z{1}+conj(z{1}))) sum(sum(z{2}-conj(z{2})))];
J2 = @(z)[zeros(1,numel(z{1})) 1/trace(z{1}'*z{2})*reshape(conj(z{1}),1,[]) ...

1/trace(z{1}'*z{2})*reshape(z{2},1,[]) zeros(1,numel(z{2})); ...
ones(1,numel(z{1})) zeros(1,numel(z{1})) ...
ones(1,numel(z{2})) zeros(1,numel(z{2})); ...
zeros(1,2*numel(z{1})) zeros(1,2*numel(z{2})); ...
zeros(1,numel(z{1})) ones(1,numel(z{1})) ...
zeros(1,numel(z{1})) -ones(1,numel(z{1}))];

z = {randn(10)+randn(10)*1i,randn(10)+randn(10)*1i};
relerr2 = frob(J2(z)-deriv(F2,z,[],'Jacobian-C'))/frob(J2(z))

13.2 Nonlinear least squares

Algorithms

Tensorlab offers three algorithms for unconstrained nonlinear least squares: nls_gndl , nls_gncgs and
nls_lm . The first is Gauss–Newton with a dogleg trust region strategy, the second is Gauss–Newton with

CG-Steihaug for solving the trust region subproblem and the last is Levenberg–Marquardt. A bound-constrained
method, nlsb_gndl , is also included and is a projected Gauss–Newton method with dogleg trust region. All
algorithms are applicable to both analytic and nonanalytic residual functions and offer various ways of exploiting
the structure available in its (complex) Jacobian.

With numerical differentiation

The complex optimization algorithms that solve (13.2) require the Jacobian of the residual function ℱ(z, z),
which will be ℱlyap(𝑈, 𝑉 ) for the remainder of this section (cf. Section 13). The second argument dF of the
nonlinear least squares optimization algorithms nls_gndl , nls_gncgs and nls_lm specifies how the Jacobian
should be computed. To approximate the Jacobian with finite differences, set dF equal to 'Jacobian' or
'Jacobian-C' .

The first case, 'Jacobian' , corresponds to approximating the Jacobian 𝜕vec(ℱ)
𝜕zT , assuming ℱ is analytic in

z. The second case, 'Jacobian-C' , corresponds to approximating the complex Jacobian consisting of the
Jacobian 𝜕vec(ℱ)

𝜕zT and conjugate Jacobian 𝜕vec(ℱ)
𝜕zT , where z ∈ C𝑛. Since ℱlyap does not depend on 𝑈 or 𝑉 , we

may implement a nonlinear least squares solver for the low-rank solution of the Lyapunov equation as

function z = lyap_nls_deriv(A,Q,z0)

F = @(z)(A*z{1})*z{2}+z{1}*(z{2}*A')+Q;
z = nls_gndl(F,'Jacobian',z0);

end

The residual function F(z) is matrix-valued and its argument is a cell array z , consisting of the two matrices
𝑈 and 𝑉 . The output of the optimization algorithm, in this case nls_gndl , is a cell array of the same format
as the argument of the residual function F(z) .

With the Jacobian

Using the property vec (𝐴 · 𝑋 · 𝐵) ≡ (𝐵T ⊗ 𝐴) · vec (𝑋), it is easy to verify that the Jacobian of ℱlyap(𝑈, 𝑉 ) is
given by
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𝜕vec (ℱlyap)
𝜕

[︀
vec (𝑈)T vec (𝑉 )T]︀ =

[︀
(𝑉 T ⊗ 𝐴) + (𝐴 · 𝑉 T ⊗ I) (I ⊗ 𝐴 · 𝑈) + (𝐴 ⊗ 𝑈)

]︀
. (13.3)

To supply the Jacobian to the optimization algorithm, set the field dF.dz as the function handle of the function
that computes the Jacobian at a given point z. For problems for which the residual function ℱ depends on both
z and z, the complex Jacobian can be supplied with the field dF.dzc . See Section 13.1 or the help page of
the selected algorithm for more information. Applied to the Lyapunov equation, we have

function z = lyap_nls_J(A,Q,z0)

dF.dz = @J;
z = nls_gndl(@F,dF,z0);

function F = F(z)
U = z{1}; V = z{2};
F = (A*U)*V+U*(V*A')+Q;

end

function J = J(z)
U = z{1}; V = z{2}; I = eye(size(A));
J = [kron(V.',A)+kron(conj(A)*V.',I) kron(I,A*U)+kron(conj(A),U)];

end

end

With the Jacobian’s Gramian

When the residual function ℱ : C𝑛 → C𝐼1×···×𝐼𝑁 is analytic 1 in z (i.e., it is not a function of z) and the number
of residuals

∏︀
𝐼𝑛 is large compared to the number of variables 𝑛, it may be beneficial to compute the Jacobian’s

Gramian 𝐽H𝐽 instead of the Jacobian 𝐽 := 𝜕vec(ℱ)
𝜕zT itself. This way, each iteration of the nonlinear least squares

algorithm no longer requires computing the (pseudo-)inverse 𝐽†, but rather the less expensive (pseudo-)inverse
(𝐽H𝐽)†. In the case of the Lyapunov equation, this can lead to a significantly more efficient method if the rank
𝑘 of the solution is small with respect to its order 𝑛. Along with the Jacobian’s Gramian, the objective function
𝑓 := 1

2 ‖ℱ‖2
𝐹 and its gradient 𝜕𝑓

𝜕z ≡ 𝐽H · vec (ℱ) are also necessary. Skipping the derivation of the gradient and
Jacobian’s Gramian, the implementation could look like

function z = lyap_nls_JHJ(A,Q,z0)

AHA = A'*A;
dF.JHJ = @JHJ;
dF.JHF = @grad;
z = nls_gndl(@f,dF,z0);

function f = f(z)
U = z{1}; V = z{2};
F = (A*U)*V+U*(V*A')+Q;
f = 0.5*(F(:)'*F(:));

end

function g = grad(z)

1 In the more general case of a nonanalytic residual function, the structure in its complex Jacobian can be exploited by computing
an inexact step. See the following paragraph for more details.
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U = z{1}; V = z{2};
gU = AHA*(U*(V*V'))+A'*(U*(V*A'*V'))+A'*(Q*V')+ ...

A*(U*(V*A*V'))+U*(V*AHA*V')+Q*(A*V');
gV = (U'*AHA*U)*V+((U'*A'*U)*V)*A'+(U'*A')*Q+ ...

((U'*A*U)*V)*A+((U'*U)*V)*AHA+(U'*Q)*A;
g = {gU,gV};

end

function JHJ = JHJ(z)
U = z{1}; V = z{2}; I = eye(size(A));
tmpa = kron(conj(V*A'*V'),A); tmpb = kron(conj(A),U'*A'*U);
JHJ11 = kron(conj(V*V'),AHA)+kron(conj(V*AHA*V'),I)+tmpa+tmpa';
JHJ22 = kron(I,U'*AHA*U)+kron(conj(AHA),U'*U)+tmpb+tmpb';
JHJ12 = kron(conj(V),AHA*U)+kron(conj(V*A),A'*U)+ ...

kron(conj(V*A'),A*U)+kron(conj(V*AHA),U);
JHJ = [JHJ11 JHJ12; JHJ12' JHJ22];

end

end

By default, the algorithm nls_gndl uses the Moore–Penrose pseudo-inverse of either 𝐽 or 𝐽H𝐽 to compute a
new descent direction. However, if it is known that these matrices always have full rank, a more efficient least
squares inverse can be computed. To do so, use

% Compute a more efficient least squares step instead of using the pseudoinverse.
options.JHasFullRank = true;
z = nls_gndl(@f,dF,z0,options);

The other nonlinear least squares algorithms nls_gncgs and nls_lm use a different approach for calculating
the descent direction and do not have such an option.

With an inexact step

The most computationally intensive part of most nonlinear least squares problems is computing the next descent
direction, which involves inverting either the Jacobian 𝐽 := 𝜕vec(ℱ)

𝜕zT or its Gramian 𝐽H𝐽 in the case of an analytic
residual function. With iterative solvers such as preconditioned conjugate gradient (PCG) and LSQR, the descent
direction can be approximated using only matrix-vector products. The resulting descent directions are said to
be inexact. Many problems exhibit some structure in the Jacobian which can be exploited in its matrix-vector
product, allowing for an efficient computation of an inexact step. Concretely, the user has the choice of supplying
the matrix vector products 𝐽 · x and 𝐽H · y, or the single matrix-vector product (𝐽H𝐽) · x. An implementation of
an inexact nonlinear least squares solver using the former method can be

function z = lyap_nls_Jx(A,Q,z0)

dF.dzx = @Jx;
z = nls_gndl(@F,dF,z0);

function F = F(z)
U = z{1}; V = z{2};
F = (A*U)*V+U*(V*A')+Q;

end

function b = Jx(z,x,transp)
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U = z{1}; V = z{2};
switch transp

case 'notransp' % b = J*x
Xu = reshape(x(1:numel(U)),size(U));
Xv = reshape(x(numel(U)+1:end),size(V));
b = (A*Xu)*V+Xu*(V*A')+(A*U)*Xv+U*(Xv*A');
b = b(:);

case 'transp' % b = J'*x
X = reshape(x,size(A));
Bu = A'*(X*V')+X*(A*V');
Bv = (U'*A')*X+(U'*X)*A;
b = [Bu(:); Bv(:)];

end
end

end

where the Kronecker structure of the Jacobian (13.3) is exploited by reducing the computations to matrix-matrix
products. Under suitable conditions on 𝐴 and 𝑄, this implementation can achieve a complexity of 𝑂(𝑛𝑘2), where
𝑛 is the order of the solution 𝑋 = 𝑈 · 𝑉 and 𝑘 is its rank.

In the case of a nonanalytic residual function ℱ(z, z), computing an inexact step requires matrix-vector products
𝐽 · x, 𝐽H · y, 𝐽𝑐 · x and 𝐽H

𝑐 · y, where 𝐽 := 𝜕vec(ℱ)
𝜕zT and 𝐽𝑐 := 𝜕vec(ℱ)

𝜕zT are the residual function’s Jacobian and
conjugate Jacobian, respectively. For more information on how to implement these matrix-vector products, read
the help information of the desired (13.2) solver.

Setting the options

The parameters of the selected optimization algorithm can be set by supplying the method with an options
structure, e.g.,

% Set algorithm tolerances.
options.TolFun = 1e-12;
options.TolX = 1e-6;
options.MaxIter = 100;
dF.dz = @J;
z = nls_gndl(@F,dF,z0,options);

Note: It is important to note that since the objective function is the square of a residual norm, the objective
function tolerance options.TolFun can be set as small as 10−32 for a given machine epsilon of 10−16.
See the help information on the selected algorithm for more details.

Viewing the algorithm output

The second output of the optimization algorithms returns additional information pertaining to the algorithm.
For example, the algorithms keep track of the objective function value in output.fval and also output the
circumstances under which the algorithm terminated in output.info . As an example, the norm of the residual
function of each iterate can be plotted with

% Plot each iterate's objective function value.
dF.dz = @J;
[z,output] = nls_gndl(@F,dF,z0);
semilogy(0:output.iterations,sqrt(2*output.fval));

Since the objective function is 1
2 ‖ℱ‖2

𝐹 , we plot sqrt(2*output.fval) to see the norm ‖ℱ‖𝐹 . See the help
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information on the selected algorithm for more details.

13.3 Unconstrained nonlinear optimization

Algorithms

Tensorlab offers three algorithms for unconstrained complex optimization: minf_lbfgs , minf_lbfgsdl and
minf_ncg . The first two are limited-memory BFGS with Moré–Thuente line search and dogleg trust region,

respectively, and the last is nonlinear conjugate gradient with Moré–Thuente line search. Instead of the supplied
Moré–Thuente line search, the user may optionally supply a custom line search method. See the help information
for details.

With numerical differentiation

The complex optimization algorithms that solve (13.1) require the (scaled conjugate co-)gradient of the objective
function 𝑓(z, z), which will be 𝑓lyap(z, z) for the remainder of this section (cf. Section 13). The second argument
of the unconstrained nonlinear minimization algorithms minf_lbfgs , minf_lbfgsdl and minf_ncg specifies
how the gradient should be computed. To approximate the (scaled conjugate co-)gradient with finite differences,
set the second argument equal to the empty matrix [] . An implementation for the Lyapunov equation could
look like

function z = lyap_minf_deriv(A,Q,z0)

f = @(z)frob((A*z{1})*z{2}+z{1}*(z{2}*A')+Q);
z = minf_lbfgs(f,[],z0);

end

As with the nonlinear least squares algorithms, the argument of the objective function is a cell array z , consisting
of the two matrices 𝑈 and 𝑉 . Likewise, the output of the optimization algorithm, in this case minf_lbfgs , is
a cell array of the same format as the argument of the objective function f(z) .

With the gradient

If an expression for the (scaled conjugate co-)gradient is available, it can be supplied to the optimization algorithm
in the second argument. For the Lyapunov equation, the implementation could look like

function z = lyap_minf_grad(A,Q,z0)

AHA = A'*A;
z = minf_lbfgs(@f,@grad,z0);

function f = f(z)
U = z{1}; V = z{2};
F = (A*U)*V+U*(V*A')+Q;
f = 0.5*(F(:)'*F(:));

end

function g = grad(z)
U = z{1}; V = z{2};
gU = AHA*(U*(V*V'))+A'*(U*(V*A'*V'))+A'*(Q*V')+ ...

A*(U*(V*A*V'))+U*(V*AHA*V')+Q*(A*V');
gV = (U'*AHA*U)*V+((U'*A'*U)*V)*A'+(U'*A')*Q+ ...
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((U'*A*U)*V)*A+((U'*U)*V)*AHA+(U'*Q)*A;
g = {gU,gV};

end

end

The function grad(z) computes the scaled conjugate cogradient 2 𝜕𝑓lyap
𝜕z , which coincides with the real gradient

for z ∈ R𝑛. See Section Complex derivatives for more information on complex derivatives.

Note: Note that the gradient grad(z) is returned in the same format as the solution z , i.e., as a cell
array containing matrices of the same size as 𝑈 and 𝑉 . However, the gradient may also be returned as a
vector if this is more convenient for the user. In that case, the scaled conjugate cogradient should be of the
format 2 𝜕𝑓lyap

𝜕z where z := [vec (𝑈)T vec (𝑉 )T]T.

Setting the options

The parameters of the selected optimization algorithm can be set by supplying the method with an options
structure, e.g.,

% Set algorithm tolerances.
options.TolFun = 1e-6;
options.TolX = 1e-6;
options.MaxIter = 100;
z = minf_lbfgs(@f,@grad,z0,options);

See the help information on the selected algorithm for more details.

Viewing the algorithm output

The second output of the optimization algorithms returns additional information pertaining to the algorithm.
For example, the algorithms keep track of the objective function value in output.fval and also output the
circumstances under which the algorithm terminated in output.info . As an example, the objective function
value of each iterate can be plotted with

% Plot each iterate's objective function value.
[z,output] = minf_lbfgs(@f,@grad,z0);
semilogy(0:output.iterations,output.fval);

See the help information on the selected algorithm for more details.
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GLOBAL MINIMIZATION OF BIVARIATE FUNCTIONS

14.1 Analytic bivariate polynomials

Consider the problem of minimizing a bivariate polynomial
minimize

𝑥,𝑦 ∈R
𝑝(𝑥, 𝑦),

or more generally, a rational function

minimize
𝑥,𝑦 ∈R

𝑝(𝑥, 𝑦)
𝑞(𝑥, 𝑦) .

Since all local minimizers (𝑥*, 𝑦*) are stationary points, they are roots of the system of bivariate polynomials
𝜕𝑝

𝜕𝑥
𝑞 − 𝑝

𝜕𝑞

𝜕𝑥
= 0

𝜕𝑝

𝜕𝑦
𝑞 − 𝑝

𝜕𝑞

𝜕𝑦
= 0,

where 𝑞(𝑥, 𝑦) ≡ 1 in the case of minimizing a bivariate polynomial. With polysol2 , Tensorlab offers a numeri-
cally robust way of computing isolated real roots of a system of bivariate polynomials

𝑓(𝑥, 𝑦) = 0
𝑔(𝑥, 𝑦) = 0

(14.1)

as the eigenvalues of a generalized eigenvalue problem [1, 2]. Stationary points of bivariate polynomials and
rational functions may be computed with polymin2 and ratmin2 , respectively.

14.2 Polyanalytic univariate polynomials

Closely related is the problem of minimizing a polyanalytic univariate polynomial
minimize

𝑧 ∈C
𝑝(𝑧, 𝑧),

or more generally, a rational function

minimize
𝑧 ∈C

𝑝(𝑧, 𝑧)
𝑞(𝑧, 𝑧) .

Analogously to the analytic bivariate case, all local minimizers are roots of the system
𝜕𝑝

𝜕𝑧
𝑞 − 𝑝

𝜕𝑞

𝜕𝑧
= 0

𝜕𝑝

𝜕𝑧
𝑞 − 𝑝

𝜕𝑞

𝜕𝑧
= 0,
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where the derivatives are Wirtinger derivatives (cf. Section 13.1). The method polysol2 can also solve systems
of polyanalytic polynomials

𝑓(𝑧, 𝑧) = 0
𝑔(𝑧, 𝑧) = 0.

(14.2)

In fact, given a system of bivariate polynomials (14.1), polysol2 will first convert it to the form (14.2) before
computing the roots as the eigenvalues of a (complex) generalized eigenvalue problem. Stationary points of
real-valued polyanalytic polynomials and rational functions may be computed with polymin2 and ratmin2 ,
respectively.x

14.2.1 Stationary points of polynomials and rational functions

14.3 Polynomials and rational functions

In MATLAB, a polynomial 𝑝(𝑥) is represented by a row vector p = [ad ... a2 a1 a0] as

𝑝(𝑥) =
[︀
𝑎𝑑 · · · 𝑎2 𝑎1 𝑎0

]︀
·
[︀
𝑥𝑑 · · · 𝑥2 𝑥 1

]︀T .

For example, the polynomial 𝑝(𝑥) = 𝑥3 + 2𝑥2 + 3𝑥 + 4 is represented by the row vector p = [1 2 3 4] . Its
derivative 𝑑𝑝

𝑑𝑥 can be computed with polyder(p) and its zeros can be computed with roots(p) .

The stationary points of 𝑝(𝑥), i.e., all 𝑥* which satisfy 𝑑𝑝
𝑑𝑥 (𝑥*) = 0, are the output of roots(polyder(p)) .

However, some of these solutions may have a small imaginary part which correspond to a numerical zero. The
stationary points can also be computed as roots of the polynomial’s derivative with polymin(p) , which deals
with solutions with small imaginary part and returns only real solutions.

Analogously, the stationary points of a a rational function 𝑝(𝑥)
𝑞(𝑥) are given by

roots(conv(polyder(p),q)-conv(p,polyder(q)))

where conv(p,q) is the convolution of the two row vectors p and q and is equivalent to computing the
coefficients of the polynomial 𝑝(𝑥) · 𝑞(𝑥). As in the polynomial case, there are a few numerical issues which can
be dealt with by computing the stationary points of 𝑝(𝑥)

𝑞(𝑥) with ratmin(p,q) .

14.4 Bivariate polynomials and rational functions

In Tensorlab, a bivariate polynomial 𝑝(𝑥, 𝑦) is represented by a matrix p as

𝑝(𝑥, 𝑦) =
[︀
1 𝑦 · · · 𝑦𝑑𝑦

]︀
·

⎡⎢⎣ 𝑎00 · · · 𝑎0𝑑𝑥

... . . . ...
𝑎𝑑𝑦0 · · · 𝑎𝑑𝑦𝑑𝑥

⎤⎥⎦ ·

⎡⎢⎢⎢⎣
1
𝑥
...

𝑥𝑑𝑥

⎤⎥⎥⎥⎦ .

For example, the six-hump camel back function [3]

𝑝(𝑥, 𝑦) = 4𝑥2 − 2.1𝑥4 + 1
3𝑥6 + 𝑥𝑦 − 4𝑦2 + 4𝑦4

is represented by the matrix
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p = [ 0 0 4 0 -2.1 0 1/3; ...
0 1 0 0 0 0 0; ...

-4 0 0 0 0 0 0; ...
0 0 0 0 0 0 0; ...
4 0 0 0 0 0 0];

and can be seen in Fig. 14.1. The stationary points of the polynomial 𝑝(𝑥, 𝑦) can be computed as the solutions
of the system 𝜕𝑝

𝜕𝑥 = 𝜕𝑝
𝜕𝑦 = 0 with polymin2(p) . To obtain a global minimum, select the solution with smallest

function value using

[xy,v] = polymin2(p);
[vmin,idx] = min(v);
xymin = xy(idx,:);

To visualize the level zero contour lines of 𝜕𝑝
𝜕𝑥 and 𝜕𝑝

𝜕𝑦 in the neighbourhood of the stationary points, set
options.Plot = true as follows

p = randn(6); % Generate random bivariate polynomial of coordinate degree 5.
options.Plot = true;
xy = polymin2(p,options);

or inline as polymin2(randn(6),struct('Plot',true)) .

Fig. 14.1: The six-hump camel back function and its stationary points as red dots.

The corresponding system of polynomials is solved by polysol2 . The latter includes several balancing steps to
improve the accuracy of the solution. For some poorly scaled problems, the method may fail to find all solutions
of the system. In that case, try decreasing the polysol2 balancing tolerance options.TolBal to a smaller
value, e.g.,
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options.TolBal = 1e-4;
xy = polymin2(p,options);

Computing the stationary points of a bivariate rational function 𝑝(𝑥,𝑦)
𝑞(𝑥,𝑦) is completely analogous to the polynomial

case. The following example generates a random bivariate rational function and computes its stationary points:

p = randn(6); % Random bivariate polynomial of coordinate degree 5.
q = randn(4); % Random bivariate polynomial of coordinate degree 3.
options.Plot = true;
xy = ratmin2(p,q,options);

The inline equivalent of this example is ratmin2(randn(6),randn(4),struct('Plot',true)) .

14.5 Polyanalytic polynomials and rational functions

Polyanalytic polynomials 𝑝(𝑧, 𝑧) are represented by a matrix p as

𝑝(𝑧, 𝑧) =
[︀
1 𝑧 · · · 𝑧𝑑𝑦

]︀
·

⎡⎢⎣ 𝑎00 · · · 𝑎0𝑑𝑥

... . . . ...
𝑎𝑑𝑦0 · · · 𝑎𝑑𝑦𝑑𝑥

⎤⎥⎦ ·

⎡⎢⎢⎢⎣
1
𝑧
...

𝑧𝑑𝑥

⎤⎥⎥⎥⎦ .

For example, the polynomial 𝑝(𝑧, 𝑧) = 1 + 2𝑧 + 3𝑧2 + 4𝑧 + 5𝑧𝑧 + 6𝑧2𝑧 + 7𝑧2 is represented by the matrix

p = [1 2 3; ...
4 5 6; ...
7 0 0];

However, minimizing a polyanalytic polynomial 𝑝(𝑧, 𝑧) only makes sense if 𝑝(𝑧, 𝑧) is real-valued for all 𝑧 ∈ C.
A polyanalytic polynomial is real-valued if and only if its matrix representation is Hermitian, i.e., p == p' . As
with bivariate polynomials, the stationary points of a real-valued polyanalytic polynomial 𝑝(𝑧, 𝑧) can be computed
with polymin2(p) .

As an example, the stationary points of a pseudorandom real-valued polyanalytic polynomial can be computed
with

p = rand(6)+rand(6)*1i;
p = p*p';
options.Plot = true;
xy = polymin2(p,options);

Computing the stationary points of a polyanalytic rational function 𝑝(𝑧,𝑧)
𝑞(𝑧,𝑧) is completely analogous to the polynomial

case. For example,

p = rand(6)+rand(6)*1i; p = p*p';
q = rand(4)+rand(4)*1i; q = q*q';
options.Plot = true;
xy = ratmin2(p,q,options);

Note: If the matrix p contains complex coefficients and is Hermitian, polymin2 will treat p as a
real-valued polyanalytic polynomial. Otherwise, it will be treated as a bivariate polynomial. In some cases
it may be necessary to specify what type of polynomial p is. In that case, set options.Univariate to
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true if p is a real-valued polyanalytic polynomial and false otherwise. The same option also applies
to ratmin2 .

14.5.1 Isolated solutions of a system of two bivariate polynomials

The functions polymin2 and ratmin2 depend on the lower level function polysol2 to compute the isolated
solutions of systems of bivariate polynomials (14.1) or systems of polyanalytic univariate polynomials (14.2). In
the case (14.1), polysol2(p,q) computes the isolated real solutions of the system 𝑝(𝑥, 𝑦) = 𝑞(𝑥, 𝑦) = 0. A
solution (𝑥*, 𝑦*) is said to be isolated if there exists a neighbourhood of (𝑥*, 𝑦*) in C2 that contains no solution
other than (𝑥*, 𝑦*). Some systems may have solutions that are isolated in R2, but not in C2.

Note: By default, polysol2(p,q) assumes p and q are polyanalytic univariate if at least one of p and
q contains complex coefficients. If this is not the case, the user can specify the type of polynomial by setting
options.Univariate to true if both polynomials are polyanalytic univariate or false otherwise.

The algorithm in polysol2 applies several balancing steps to the problem in order to improve the accuracy
of the computed roots, before refining them with Newton-Raphson. If the system is poorly scaled, it may be
necessary to decrease the balancing tolerance options.TolBal to a smaller value. In Fig. 14.2, the solutions
of a relatively difficult bivariate system 𝑝(𝑥, 𝑦) = 𝑞(𝑥, 𝑦) = 0 are plotted. The polynomials 𝑝(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) are
both of total degree 20 and have coefficients of which the exponents (in base 10) range between 1 and 7.

Fig. 14.2: A system of bivariate polynomials 𝑝(𝑥, 𝑦) = 𝑞(𝑥, 𝑦) = 0 of total degree 20.
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