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ABSTRACT
This article addresses the problem of continuous speech
recognition from visual information only, without exploiting
any audio signal. Our approach combines a video camera
and an ultrasound imaging system for monitoring simultane-
ously the speaker’s lips and the movement of the tongue. We
investigate the use of convolutional neural networks (CNN)
to extract visual features directly from the raw ultrasound
and video images. We propose different architectures among
which a multimodal CNN processing jointly the two vi-
sual modalities. Combined with an HMM-GMM decoder,
the CNN-based approach outperforms our previous baseline
based on Principal Component Analysis. Importantly, the
recognition accuracy is only 4% lower than the one obtained
when decoding the audio signal, which makes it a good can-
didate for a practical visual speech recognition system.

Index Terms— Visual Speech Recognition, Convolu-
tional Neural Networks, Deep Learning.

1. INTRODUCTION

The use of visual information in voice-based human-computer
interface (HCI) has been investigated in many studies. In this
article, we focus on visual-only speech recognition (VSR),
that is speech recognition without exploiting any audio signal.
Since the lips movements provide only a partial information
on speech articulation, we have investigated in [1] the use of
medical ultrasound imaging to capture also the movement of
the tongue, with a probe placed beneath the speaker’s chin, as
shown in Fig. 1. Such a system can be referred to as a silent
speech interface [2], since it should enable oral speech com-
munication without the necessity to emit any audible sound.
It will allow the design of confidential, non-disturbing, and
noise-robust voice-based HCI.

Most studies on VSR (mainly from lips gestures only),
decompose this problem into two consecutive stages: the ex-
traction of visual features from raw images, and the classi-
fication itself. For the feature extraction stage, many tech-
niques have been proposed among which active shape model
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Fig. 1. Overview of the visual speech recognition system
from video and ultrasound images.

[3], active appearance model [4], discrete cosine transform
[5], and principal components analysis (PCA) [6]. Similarly
to audio-based speech recognition (ASR), the classification
stage is often addressed using models able to take explicitly
into account the speech dynamics. Among other approaches,
graphical models such as hidden Markov model (HMM) [7],
coupled-HMM [8], and dynamic Bayesian network [9] have
been widely investigated. In our previous work ([1, 10]), we
have followed the same pipeline, by using (1) a PCA-based
decomposition for encoding both the video and the ultrasound
images, and (2) a 2-stream HMM-GMM classifier.

Deep neural networks have shown in many domains their
ability to learn representations directly from the raw data and
can be used to extract a set of discriminative features. In the
context of image processing, one powerful deep architecture
is the so-called Convolutional Neural Network (CNN) [11].
The use of CNN for gestures recognition in video has been
proposed in few recent studies such as [12, 13, 14]. To the
best of our knowledge, the use of CNN in VSR has been in-
vestigated in one study [15] for encoding lips images in an
isolated word recognition task.

In this article, we investigate the use of CNN to extract vi-
sual features directly from the raw ultrasound and video im-
ages (Sec. 2). We describe several architectures (Sec. 2.2)
among which a multimodal CNN processing jointly the two
visual modalities (Sec. 2.3). The proposed method is com-
pared to our baseline based on Principal Component Analysis
[10] and to a golden standard given by a conventional audio-
based speech recognition system (ASR) trained on the same
database (Sec. 3). Importantly, we focus in this study on
continuous speech (as opposed to isolated word) recognition.
Results are presented and discussed in Sec. 4.
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2. VISUAL FEATURE EXTRACTION USING CNN

2.1. Convolutional neural networks

A CNN is a multilayer stack of learning modules well-suited
for treating bi-dimensional dataset (i.e. images). CNNs are
subclass of neural networks that combine the nonlinear pro-
cessing of hidden layer neurons with essential properties of
weight sharing (over customizable sub-images so-called con-
volutional filters), pooling and down-sampling. As a conse-
quence, such networks are expected to learn representation
of data with increasing levels of abstraction regrouped by se-
mantic similarities. The canonical structure of a CNN [11]
contains: 1) a given number of convolutional layers, each
being divided in four sub-tasks: convolutional filtering, non-
linearity, pooling and sub-sampling, 2) a set of fully connected
layers with properties identical to that of classical neural net-
works, 3) a softmax layer performing softmax function which
outputs posterior probabilities for each class.

2.2. Independent processing of the visual modalities

Our first implementation is based on two CNNs, each one pro-
cessing independently one visual modality (i.e. ultrasound
and video). At training stage, the classical gradient-descent
back-propagation technique is used to estimate the parame-
ters in a supervised manner, the phonetic labels being used
as targets. For each modality, a vector of visual features is
extracted from the network by taking the output of the last
fully-connected layer (just before the final softmax layer).

2.3. Multimodal architecture

We propose a multimodal CNN processing jointly pairs of
video and ultrasound images. This architecure is illustrated
in Fig. 2 and consists in the fusion of two canonical CNNs
[16]. Importantly, it includes a fusion layer combining the ul-
trasound and video modalities. Such an architecture aims at
extracting high-level features from the simulatenous observa-
tion of tongue, lips and jaw. As in Section 2.2, the multimodal
CNN is trained in a supervised manner, the phonetic labels
being used as targets.

Based on this multimodal architecture, we investigated
two ways of extracting visual features: 1) extracting one sin-
gle feature vector at the output of the fusion layer (imple-
mentation S3, see Fig. 2, top), and 2) extracting two feature
vectors, one for each modality, at the output of the last fully
connected layer, before the fusion layer (implementation S4,
see Fig. 2, top). Let us mention that the resulting features
may be different from the one obtained when considering two
CNNs trained separately. Indeed, the two modalities are here
tied together. Their parameters are jointly estimated and thus
can be mutually influenced.

2.4. HMM-based visual speech recognition

In this study, CNNs are used as feature extractors and are
combined with a conventional HMM-GMM phonetic de-
coder. This architecture allows the introduction of prior
linguistic knowledge during the decoding via the use of a
pronunciation dictionary and a language model. Such prior
knowledge remains of particular interest in the context of
visual speech recognition for regularization purposes. As
a matter of fact, several sources of information such as the
voicing are missing when considering only visual data.

Two strategies can be investigated for combining the ultra-
sound and video modalities within the HMM-GMM decoder:
(1) an early fusion strategy in which the feature vectors re-
lated to each modality are concatenated together and mod-
eled using a 1-stream HMM-GMM decoder, and (2), a mid-
dle fusion strategy based on a 2-stream HMM-GMM decoder
where the modalities are combined at the HMM state level.
The combination of the two CNN-based feature extraction
techniques (independent vs. joint modeling) with these two
strategies (early vs. middle fusion) results in 4 VSR architec-
tures. Those architectures are referred to as S1, S2, S3, and
S4, and are illustrated in Fig. 2 (bottom).

3. EXPERIMENTS

3.1. Database

Experiments were conducted on the same database used in
[10] which contains 488 sentences pronounced by a male
French speaker. Ultrasound images (320x240 grayscale im-
ages, 60fps) were acquired using the Terason T3000 med-
ical ultrasound system, with a 128 elements microconvex
transducer (3-5 MHz frequency, 140◦ angle, 7cm penetra-
tion depth). Video images of the speaker’s face (640x480
grayscale images, 60 fps) were recorded using an industrial
CMOS camera. Ultrasound and video sensors were kept
fixed with respect to the speaker’s head using a stabilization
helmet. Visual and audio data were recorded simultaneously
using the Ultraspeech software [17], in a sound-proof room,
and under stable conditions of lightning. French language
was described using a set of 34 phonemes. The phonetic tran-
scription of each recorded sentences was extracted automat-
ically and manually post-checked. The temporal boundaries
of each phoneme were extracted from the audio signal using a
conventional ASR system and a forced-alignment procedure.
The phonetic segmentation of the audio signal was then used
to label the visual data (since audio, ultrasound and video
data are recorded synchronously) and to train the CNNs and
HMM-GMM decoders.

3.2. Implementation details

For S1 and S2 systems (independent processing of the two
modalities), it appeared that the simplest CNN structure: one
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Fig. 2. Top: Architecture of the proposed multimodal convolutional neural network (CNN). Bottom: Schematic representation
of the 4 proposed VSR systems (S1,S2,S3, and S4) combining CNN-based feature extraction and HMM-GMM decoding.

convolution layer, one full layer, and one softmax layer with
only a moderate number of filters (respectively 16 and 8),
provides satisfying results (as discussed in Sec. 4). For S3
and S4 systems (multimodal CNN), the best results were ob-
tained also using a simple structure: one convolution layer,
one full layer, one fusion layer and one softmax layer. Given
the number of free parameters at play, we do not claim that
the proposed architecture is optimal and tuning is likely to
improve its performance. For all CNNs, the Rectified Lin-
ear Unit (ReLU) non-linearity was used for all convolutional,
fusion and full layers. All CNNs were implemented using
the MatconvNet toolkit [18] and were trained using GPU-
acceleration.

All HMM-GMM decoders were built using the HTK
toolkit [19] with a standard HMM topology (3 states) and a
standard training procedure (tied states and context-dependent
triphone modeling). For all experiments, the visual features
were modeled together with their first derivatives. At decod-
ing stage, the most likely sequence of phonemes was esti-
mated by decoding the HMM-GMM state posterior probabil-
ities using the Viterbi algorithm (the model insertion penalty

was optimized on the training set). For the 2-stream HMM
architecture, the weighting parameters used to combine the
stream likelihoods were also optimized on the training set.
Optimal values were found to be 0.7 for ultrasound and 0.3
for video (a similar result was found in [10]).

Since the present study aim only at probing the ability
of the multimodal CNN to process the visual data, recog-
nition experiments were conducted without exploiting prior
linguistic information. The performance was measured by
calculating the phoneme recognition accuracy Tp defined as
Tp = (Np − D − S − I)/Np where Np is the number of
phonemes in the test corpus, and D, S and I are respectively
the number of deletions, substitutions and insertions. The
95% confidence interval (∆95%) of the phonetic recognition
rate was computed following [20]. A 8-fold cross-validation
was used to refine our statistics, by splitting our corpus into
eight subsets, keeping seven subsets for the training and the
remaining one for testing (taking into account all the possible
permutations).
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Table 1. Accuracy of the 4 systems of visual speech recogni-
tion based on CNN (S1,S2,S3,S4), and PCA (B1, B2). Com-
parison with an ASR system trained on the audio stream. For
all experiments, the 95%-confidence interval is ∼1.5%.

ASR - MFCC
Tp (%) 84

VSR - PCA VSR - CNN
B1 B2 S1 S2 S3 S4

Tp (%) 74.7 73.1 77.8 79.9 75.8 80.4

3.3. Baseline

The CNN-based feature extraction approach was compared
to a PCA-based approach, as used in our previous studies ([1,
10]). This technique is a slight adaptation of the EigenFaces
technique [21] and aims at finding a decomposition basis that
best explains the variation of pixel intensity in a set of training
frames. At feature extraction stage, resized and normalized
video/ultrasound frame is projected onto this basis and the
visual features are defined as the D first coordinates, for each
stream. The number of coordinates is a free parameter. In our
implementation, it is optimized on the training set by keeping
the eigenvectors that carry 80% of the variance, which led in
our case to D = 30 for both video and ultrasound images.
Based on this approach, we derive two baseline systems, B1
and B2, where PCA-based features are decoded using either
an early fusion strategy (i.e. 1-stream HMM-GMM, as in S1
and S3) or a middle fusion strategy was used (i.e. 2-stream
HMM-GMM, as in S2 and S4).

For each experiment, the performance was also compared
with the one obtained when considering the audio data (which
was recorded simultaneously with the visual data). Consid-
ering that audio provides thorough information, we assume
that the ASR accuracy gives the upper bound reachable by a
VSR system. Audio signal was parametrized using MFCC
decomposition (resulting in a vector of 13 static coefficients
with their first derivatives, extracted every 5ms). The HMM-
GMM decoder was trained using the same procedure as for
the VSR systems (3-states, tied-state, context-dependent, tri-
phone models).

4. RESULTS AND DISCUSSION

Results are presented in Table 1. First, CNN-based ap-
proaches systematically outperform PCA-based baselines,
regardless the strategy used to combine the modalities (early
or middle fusion). This demonstrates the potential of the
CNNs to extract relevant features from the raw video and ul-
trasound images. Second, the differences observed between
the 4 CNN-based VSR systems are more difficult to interpret.
Nonetheless, the following conclusions can be drawn:

1. The middle fusion strategy always outperforms the

early fusion since S2>S1 and S4>S3 (surprisingly, it
was not the case for the baseline since B1>B2).

2. The best performance was obtained with the multi-
modal CNN architecture and the middle fusion strategy
(S4), with 80.4% accuracy. However, the difference
with the system S2 lies within the confidence interval.
Therefore, the benefit of considering jointly the two
modalities at the feature extraction stage need to be
confirmed with additional experiments.

3. The lowest performance was obtained with the system
S3 in which the features are extracted at the output of
the fusion layer. Among other possible explanations,
we can conjecture that the fusion layer operates as a
bottle-neck in the network and directly control the di-
mension of the extracted feature vector. In this study,
we empirically set this parameters to 34 in order to
match the number of target phonetic classes and limit
the number of fully-connected layers before the final
softmax layer. Considering the relatively low perfor-
mance, we infer that the reduction of the dimension (by
a factor of 2 in comparison with S1,S2 and S4) is too
severe. Hence, the optimization of the size of the fusion
layer seems to be a key issue and should be addressed
carefully in a future study.

4. With 80.4% accuracy, the best VSR system S4 ap-
proaches the ultimate accuracy of 84% derived from
audio data. Such performance is very encouraging and
makes the multimodal CNN a good candidate for a
practical VSR system.

5. CONCLUSIONS

In this article, we investigated the use of CNN for extract-
ing visual features from ultrasound and video images of the
tongue and lips. We proposed a multimodal architecture in
which the two visual modalities are jointly processed. We de-
rived different systems in which the CNN is used as a feature
extractor and is combined with a HMM-GMM decoder. Ex-
periments were conducted on a continuous speech VSR task.
Results have demonstrated the potential of the CNN over a
previously published baseline. However, further experiments
should be conducted to valid the potential benefit of the mul-
timodal architecture over the use of two distincts CNN. Such
experiments will be conducted in future studies on a multi-
speaker database. Future work will also focus on the design of
an end-to-end VSR system (in line with recent work on ASR
[22]), combining convolutional layers for processing the raw
visual data with a recurrent architecture (as in [23]) to model
the dynamics of speech articulation.
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