Chapter 
    5. System Identification: The Bases
  5.1 System Model Identification 
    Principles 
  5.2 Algorithms for Parameter 
    Estimation 
   
    5.2.1 Introduction 
      
    5.2.2 Gradient Algorithm
    5.2.3 Least Squares 
      Algorithm
    5.2.4 Choice of the 
      Adaptation Gain
  
  5.3 Choice of the Input 
    Sequence for System Identification
   
    5.3.1 The Problem
    5.3.2 Pseudo Random 
      Binary Sequences (PRBS)
  
  5.4 Effects of Random 
    Disturbances upon Parameter Estimation
  5.5 Structure of Recursive 
    Identification Methods
  5.6 Concluding Remarks
  5.7 Notes and References